Skip to main content

Interactive Effects of Genetics and Acute Exercise and Exercise Training on Plasma Lipoprotein-Lipid and Blood Pressure Phenotypes

  • Chapter
  • First Online:
Exercise Genomics

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 1036 Accesses

Abstract

Plasma lipoprotein-lipid and blood pressure (BP) profiles vary substantially among individuals, and their levels have generally been found to be moderately heritable (0.20–0.60). Candidate gene and genome-wide linkage and association studies have provided further evidence for a genetic basis for the variability in these cardiovascular (CV) disease risk factors among individuals. More recently, it has also become evident that there is substantial interindividual variability in the responses of different components of the plasma lipoprotein-lipid profile and BP to acute (i.e., immediate or short-term) exercise and exercise training (i.e., chronic or long-term). Minimal data are available to address the genetic basis for these responses in terms of heritability and genome-wide linkage or association studies, with most of the available data coming from candidate gene association studies. There is some evidence of association of the apolipoprotein E (APOE), cholesteryl ester transfer protein (CETP), lipoprotein lipase (LPL), hepatic lipase (LIPC), and endothelial lipase (LIPG) gene variants with the changes in components of the plasma lipoprotein-lipid profile with exercise training. Some evidence also indicates common variants at the angiotensin converting enzyme (ACE), angiotensinogen (AGT), endothelial nitric oxide synthase (NOS3), endothelin 1 (EDN1), and guanine nucleotide binding protein beta polypeptide 3 (GNB3) loci might be associated with the BP responses to either acute exercise or exercise training. However, no definitive conclusions can be generated from these previous results because many of these studies had relatively small sample sizes, they studied different genetic variants within the same gene, and generally had inconsistent results. Thus, substantially more work needs to be done to develop a genetic screening panel that might be used as a “personal medicine” tool to optimally apply exercise training to improving these important CV disease risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leon AS, Gaskill SE, Rice T, Bergeron J, Gagnon J, Rao DC, et al. Variability in the response of HDL cholesterol to exercise training in the HERITAGE family study. Int J Sports Med. 2002;23(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  2. Obisesan TO, Leeuwenburgh C, Phillips T, Ferrell RE, Phares DA, Prior SJ, Hagberg JM. C-reactive protein genotypes affect baseline, but not exercise training-induced changes, in C-reactive protein levels. Arterioscler Thromb Vasc Biol. 2004;24(10):1874–9.

    Article  PubMed  CAS  Google Scholar 

  3. Halverstadt A, Phares DA, Ferrell RE, Wilund KR, Goldberg AP, Hagberg JM. High-density lipoprotein-cholesterol, its subfractions, and responses to exercise training are dependent on endothelial lipase genotype. Metabolism. 2003;52(11):1505–11. Accessed 24 June 2010.

    Article  PubMed  CAS  Google Scholar 

  4. Wilund KR, Ferrell RE, Phares DA, Goldberg AP, Hagberg JM. Changes in high-density lipoprotein-cholesterol subfractions with exercise training may be dependent on cholesteryl ester transfer protein (CETP) genotype. Metabolism. 2002;51(6):774–8.

    Article  PubMed  CAS  Google Scholar 

  5. Heiberg A. The heritability of serum lipoprotein and lipid concentrations. A twin study. Clin Genet. 1974;6(4):307–16.

    Article  PubMed  CAS  Google Scholar 

  6. Weinberg R, Avet LM, Gardner MJ. Estimates of the heritability of serum lipoprotein and lipid concentrations. Clin Genet. 1976;9(6):588–92.

    Article  PubMed  CAS  Google Scholar 

  7. Namboodiri KK, Green PP, Kaplan EB, Tyroler HA, Morrison JA, Chase GA, et al. Family aggregation of high density lipoprotein cholesterol. collaborative lipid research clinics program family study. Arteriosclerosis. 1983;3(6):616–26.

    PubMed  CAS  Google Scholar 

  8. Namboodiri KK, Green PP, Kaplan EB, Morrison JA, Chase GA, Elston RC, et al. The collaborative lipid research clinics program family study. IV. familial associations of plasma lipids and lipoproteins. Am J Epidemiol. 1984;119(6):975–96.

    PubMed  CAS  Google Scholar 

  9. Namboodiri KK, Kaplan EB, Heuch I, Elston RC, Green PP, Rao DC, et al. The collaborative lipid research clinics family study: Biological and cultural determinants of familial resemblance for plasma lipids and lipoproteins. Genet Epidemiol. 1985;2(3):227–54.

    Article  PubMed  CAS  Google Scholar 

  10. Perusse L, Rice T, Despres JP, Rao DC, Bouchard C. Cross-trait familial resemblance for body fat and blood lipids: familial correlations in the quebec family study. Arterioscler Thromb Vasc Biol. 1997;17(11):3270–7.

    PubMed  CAS  Google Scholar 

  11. Kathiresan S, Manning AK, Demissie S, D’Agostino RB, Surti A, Guiducci C, et al. A genome-wide association study for blood lipid phenotypes in the framingham heart study. BMC Med Genet. 2007;8 Suppl 1:S17.

    Article  PubMed  CAS  Google Scholar 

  12. Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, Huang H, et al. A genome-wide association study of hypertension and blood pressure in african americans. PLoS Genet. 2009;5(7):e1000564.

    Article  PubMed  CAS  Google Scholar 

  13. de Oliveira CM, Pereira AC, de Andrade M, Soler JM, Krieger JE. Heritability of cardiovascular risk factors in a Brazilian population: Baependi heart study. BMC Med Genet. 2008;9:32.

    Article  PubMed  Google Scholar 

  14. Mitchell GF, DeStefano AL, Larson MG, Benjamin EJ, Chen MH, Vasan RS, et al. Heritability and a genome-wide linkage scan for arterial stiffness, wave reflection, and mean arterial pressure: The framingham heart study. Circulation. 2005;112(2):194–9.

    Article  PubMed  Google Scholar 

  15. DeStefano AL, Larson MG, Mitchell GF, Benjamin EJ, Vasan RS, Li J, et al. Genome-wide scan for pulse pressure in the national heart, lung and blood institute’s framingham heart study. Hypertension. 2004;44(2):152–5.

    Article  PubMed  CAS  Google Scholar 

  16. Nishina PM, Johnson JP, Naggert JK, Krauss RM. Linkage of atherogenic lipoprotein phenotype to the low density lipoprotein receptor locus on the short arm of chromosome 19. Proc Natl Acad Sci U S A. 1992;89(2):708–12.

    Article  PubMed  CAS  Google Scholar 

  17. Rainwater DL, Almasy L, Blangero J, Cole SA, VandeBerg JL, MacCluer JW, Hixson JE. A genome search identifies major quantitative trait loci on human chromosomes 3 and 4 that influence cholesterol concentrations in small LDL particles. Arterioscler Thromb Vasc Biol. 1999;19(3):777–83.

    PubMed  CAS  Google Scholar 

  18. Shearman AM, Ordovas JM, Cupples LA, Schaefer EJ, Harmon MD, Shao Y, et al. Evidence for a gene influencing the TG/HDL-C ratio on chromosome 7q32.3-qter: A genome-wide scan in the framingham study. Hum Mol Genet. 2000;9(9):1315–20.

    Article  PubMed  CAS  Google Scholar 

  19. Imperatore G, Knowler WC, Pettitt DJ, Kobes S, Fuller JH, Bennett PH, Hanson RL. A locus influencing total serum cholesterol on chromosome 19p: Results from an autosomal genomic scan of serum lipid concentrations in pima indians. Arterioscler Thromb Vasc Biol. 2000;20(12):2651–6.

    PubMed  CAS  Google Scholar 

  20. Sandhu MS, Waterworth DM, Debenham SL, Wheeler E, Papadakis K, Zhao JH, et al. LDL-cholesterol concentrations: A genome-wide association study. Lancet. 2008;371(9611):483–91.

    Article  PubMed  CAS  Google Scholar 

  21. Hiura Y, Shen CS, Kokubo Y, Okamura T, Morisaki T, Tomoike H, et al. Identification of genetic markers associated with high-density lipoprotein-cholesterol by genome-wide screening in a japanese population: The suita study. Circ J. 2009;73(6):1119–26.

    Article  PubMed  CAS  Google Scholar 

  22. Rice T, Rankinen T, Province MA, Chagnon YC, Perusse L, Borecki IB, et al. Genome-wide linkage analysis of systolic and diastolic blood pressure: The quebec family study. Circulation. 2000;102(16):1956–63.

    PubMed  CAS  Google Scholar 

  23. Levy D, DeStefano AL, Larson MG, O’Donnell CJ, Lifton RP, Gavras H, et al. Evidence for a gene influencing blood pressure on chromosome 17. genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study.Hypertension. 2000;36(4):477–83.

    PubMed  CAS  Google Scholar 

  24. Levy D, Larson MG, Benjamin EJ, Newton-Cheh C, Wang TJ, Hwang SJ, et al. Framingham heart study 100K project: Genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet. 2007;8 Suppl 1:S3.

    Article  PubMed  CAS  Google Scholar 

  25. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–76.

    Article  PubMed  CAS  Google Scholar 

  26. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–6.

    Article  PubMed  CAS  Google Scholar 

  27. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Article  CAS  Google Scholar 

  28. Havekes L, Vermeer BJ, de Wit E, Emeis JJ, Vaandrager H, van Gent CM, Koster JF. Suppression of cholesterol synthesis in cultured fibroblasts from a patient with homozygous familial hypercholesterolemia by her own low density lipoprotein density fraction. A possible role of apolipoprotein E. Biochim Biophys Acta. 1980;617(3):529–35.

    PubMed  CAS  Google Scholar 

  29. Utermann G, Langenbeck U, Beisiegel U, Weber W. Genetics of the apolipoprotein E system in man. Am J Hum Genet. 1980;32(3):339–47.

    PubMed  CAS  Google Scholar 

  30. Sing CF, Davignon J. Role of the apolipoprotein E polymorphism in determining normal plasma lipid and lipoprotein variation. Am J Hum Genet. 1985;37(2):268–85.

    PubMed  CAS  Google Scholar 

  31. Boerwinkle E, Visvikis S, Welsh D, Steinmetz J, Hanash SM, Sing CF. The use of measured genotype information in the analysis of quantitative phenotypes in man. II. The role of the apolipoprotein E polymorphism in determining levels, variability, and covariability of cholesterol, betalipoprotein, and triglycerides in a sample of unrelated individuals. Am J Med Genet. 1987;27(3):567–82.

    Article  PubMed  CAS  Google Scholar 

  32. Bennet AM, Di Angelantonio E, Ye Z, Wensley F, Dahlin A, Ahlbom A, et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 2007;298(11):1300–11.

    Article  PubMed  CAS  Google Scholar 

  33. Koizumi J, Mabuchi H, Yoshimura A, Michishita I, Takeda M, Itoh H, et al. Deficiency of serum cholesteryl-ester transfer activity in patients with familial hyperalphalipoproteinaemia. Atherosclerosis. 1985;58(1–3):175–86.

    Article  PubMed  CAS  Google Scholar 

  34. Thompson A, Di Angelantonio E, Sarwar N, Erqou S, Saleheen D, Dullaart RP, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299(23):2777–88.

    Article  PubMed  CAS  Google Scholar 

  35. Heiba IM, DeMeester CA, Xia YR, Diep A, George VT, Amos CI, et al. Genetic contributions to quantitative lipoprotein traits associated with coronary artery disease: Analysis of a large pedigree from the bogalusa heart study. Am J Med Genet. 1993;47(6):875–83.

    Article  PubMed  CAS  Google Scholar 

  36. Knoblauch H, Bauerfeind A, Krahenbuhl C, Daury A, Rohde K, Bejanin S, et al. Common haplotypes in five genes influence genetic variance of LDL and HDL cholesterol in the general population. Hum Mol Genet. 2002;11(12):1477–85.

    Article  PubMed  CAS  Google Scholar 

  37. Knoblauch H, Bauerfeind A, Toliat MR, Becker C, Luganskaja T, Gunther UP, et al. Haplotypes and SNPs in 13 lipid-relevant genes explain most of the genetic variance in high-density lipoprotein and low-density lipoprotein cholesterol. Hum Mol Genet. 2004;13(10):993–1004.

    Article  PubMed  CAS  Google Scholar 

  38. Jacob HJ, Lindpaintner K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, et al. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell. 1991;67(1):213–24.

    Article  PubMed  CAS  Google Scholar 

  39. Nara Y, Nabika T, Ikeda K, Sawamura M, Endo J, Yamori Y. Blood pressure cosegregates with a microsatellite of angiotensin I converting enzyme (ACE) in F2 generation from a cross between original normotensive wistar-kyoto rat (WKY) and stroke-prone spontaneously hypertensive rat (SHRSP). Biochem Biophys Res Commun. 1991;181(3):941–6.

    Article  PubMed  CAS  Google Scholar 

  40. Zee RY, Lou YK, Griffiths LR, Morris BJ. Association of a polymorphism of the angiotensin I-converting enzyme gene with essential hypertension. Biochem Biophys Res Commun. 1992;184(1):9–15.

    Article  PubMed  CAS  Google Scholar 

  41. Harrap SB, Davidson HR, Connor JM, Soubrier F, Corvol P, Fraser R, et al. The angiotensin I converting enzyme gene and predisposition to high blood pressure. Hypertension. 1993;21(4):455–60.

    PubMed  CAS  Google Scholar 

  42. Tiret L, Rigat B, Visvikis S, Breda C, Corvol P, Cambien F, Soubrier F. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet. 1992;51(1):197–205.

    PubMed  CAS  Google Scholar 

  43. Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, et al. Molecular basis of human hypertension: Role of angiotensinogen. Cell. 1992;71(1):169–80.

    Article  PubMed  CAS  Google Scholar 

  44. Bennett CL, Schrader AP, Morris BJ. Cross-sectional analysis of Met235–>Thr variant of angiotensinogen gene in severe, familial hypertension. Biochem Biophys Res Commun. 1993;197(2):833–9.

    Article  PubMed  CAS  Google Scholar 

  45. Hata A, Namikawa C, Sasaki M, Sato K, Nakamura T, Tamura K, Lalouel JM. Angiotensinogen as a risk factor for essential hypertension in japan. J Clin Invest. 1994;93(3):1285–7.

    Article  PubMed  CAS  Google Scholar 

  46. Hegele RA, Brunt JH, Connelly PW. A polymorphism of the angiotensinogen gene associated with variation in blood pressure in a genetic isolate. Circulation. 1994;90:2207–12.

    PubMed  CAS  Google Scholar 

  47. Gu D, Rice T, Wang S, Yang W, Gu C, Chen CS, et al. Heritability of blood pressure responses to dietary sodium and potassium intake in a chinese population. Hypertension. 2007;50(1):116–22.

    Article  PubMed  CAS  Google Scholar 

  48. Roy-Gagnon MH, Weir MR, Sorkin JD, Ryan KA, Sack PA, Hines S, et al. Genetic influences on blood pressure response to the cold pressor test: Results from the heredity and phenotype intervention heart study. J Hypertens. 2008;26(4):729–36.

    Article  PubMed  CAS  Google Scholar 

  49. Hunt SC, Hasstedt SJ, Kuida H, Stults BM, Hopkins PN, Williams RR. Genetic heritability and common environmental components of resting and stressed blood pressures, lipids, and body mass index in Utah pedigrees and twins. Am J Epidemiol. 1989;129(3):625–38.

    PubMed  CAS  Google Scholar 

  50. Bielen EC, Fagard RH, Amery AK. Inheritance of blood pressure and haemodynamic phenotypes measured at rest and during supine dynamic exercise. J Hypertens. 1991;9(7):655–63.

    Article  PubMed  CAS  Google Scholar 

  51. Ingelsson E, Larson MG, Vasan RS, O’Donnell CJ, Yin X, Hirschhorn JN, et al. Heritability, linkage, and genetic associations of exercise treadmill test responses. Circulation. 2007;115(23):2917–24.

    Article  PubMed  Google Scholar 

  52. Vasan RS, Larson MG, Aragam J, Wang TJ, Mitchell GF, Kathiresan S, et al. Genome-wide association of echocardiographic dimensions, brachial artery endothelial function and treadmill exercise responses in the framingham heart study. BMC Med Genet. 2007;8 Suppl 1:S2.

    Article  PubMed  CAS  Google Scholar 

  53. Bouchard C, Leon AS, Rao DC, Skinner JS, Wilmore JH, Gagnon J. family study. aims, design, and measurement protocol. Med Sci Sports Exerc. 1995;27(5):721–9.

    PubMed  CAS  Google Scholar 

  54. An P, Rice T, Gagnon J, Borecki IB, Bergeron J, Despres JP, et al. Segregation analysis of apolipoproteins A-1 and B-100 measured before and after an exercise training program: The HERITAGE family study. Arterioscler Thromb Vasc Biol. 2000;20(3):807–14.

    PubMed  CAS  Google Scholar 

  55. Hong Y, Rice T, Gagnon J, Perusse L, Province M, Bouchard C, et al. Familiality of triglyceride and LPL response to exercise training: The HERITAGE study. Med Sci Sports Exerc. 2000;32(8):1438–44.

    Article  PubMed  CAS  Google Scholar 

  56. Rice T, Despres JP, Perusse L, Hong Y, Province MA, Bergeron J, et al. Familial aggregation of blood lipid response to exercise training in the health, risk factors, exercise training, and genetics (HERITAGE) family study. Circulation. 2002;105(16):1904–8.

    Article  PubMed  CAS  Google Scholar 

  57. Feitosa MF, Rice T, Rankinen T, Almasy L, Leon AS, Skinner JS, et al. Common genetic and environmental effects on lipid phenotypes: The HERITAGE family study. Hum Hered. 2005;59(1):34–40.

    Article  PubMed  CAS  Google Scholar 

  58. Rice T, An P, Gagnon J, Leon AS, Skinner JS, Wilmore JH, et al. Heritability of HR and BP response to exercise training in the HERITAGE family study. Med Sci Sports Exerc. 2002;34(6):972–9.

    Article  PubMed  Google Scholar 

  59. An P, Perusse L, Rankinen T, Borecki IB, Gagnon J, Leon AS, et al. Familial aggregation of exercise heart rate and blood pressure in response to 20 weeks of endurance training: The HERITAGE family study. Int J Sports Med. 2003;24(1):57–62.

    Article  PubMed  CAS  Google Scholar 

  60. Rankinen T, An P, Rice T, Sun G, Chagnon YC, Gagnon J, et al. Genomic scan for exercise blood pressure in the health, risk factors, exercise training and genetics (HERITAGE) family study. Hypertension. 2001;38(1):30–7.

    PubMed  CAS  Google Scholar 

  61. Feitosa MF, Rice T, North KE, Kraja A, Rankinen T, Leon AS, et al. Pleiotropic QTL on chromosome 19q13 for triglycerides and adiposity: The HERITAGE family study.Atherosclerosis. 2006;185(2):426–32.

    Article  PubMed  CAS  Google Scholar 

  62. Feitosa MF, Borecki IB, Rankinen T, Rice T, Despres JP, Chagnon YC, et al. Evidence of QTLs on chromosomes 1q42 and 8q24 for LDL-cholesterol and apoB levels in the HERITAGE family study. J Lipid Res. 2005;46(2):281–6.

    Article  PubMed  CAS  Google Scholar 

  63. Rice T, Rankinen T, Chagnon YC, Province MA, Perusse L, Leon AS, et al. Genomewide linkage scan of resting blood pressure: HERITAGE family study. health, risk factors, exercise training, and genetics. Hypertension. 2002;39(6):1037–43.

    Article  PubMed  CAS  Google Scholar 

  64. Bray MS, Hagberg JM, Perusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: The 2006-2007 update. Med Sci Sports Exerc. 2009;41(1):35–73.

    Article  PubMed  CAS  Google Scholar 

  65. Friedl W, Krempler F, Sandhofer F, Paulweber B. Insertion/deletion polymorphism in the angiotensin-converting-enzyme gene and blood pressure during ergometry in normal males. Clin Genet. 1996;50(6):541–4.

    Article  PubMed  CAS  Google Scholar 

  66. Pescatello LS, Turner D, Rodriguez N, Blanchard BE, Tsongalis GJ, Maresh CM, et al. Dietary calcium intake and renin angiotensin system polymorphisms alter the blood pressure response to aerobic exercise: A randomized control design. Nutr Metab (Lond). 2007;4:1.

    Article  CAS  Google Scholar 

  67. Blanchard BE, Tsongalis GJ, Guidry MA, LaBelle LA, Poulin M, Taylor AL, et al. RAAS polymorphisms alter the acute blood pressure response to aerobic exercise among men with hypertension. Eur J Appl Physiol. 2006;97(1):26–33.

    Article  PubMed  CAS  Google Scholar 

  68. Krizanova O, Koska J, Vigas M, Kvetnansky R. Correlation of M235T DNA polymorphism with cardiovascular and endocrine responses during physical exercise in healthy subjects. Physiol Res. 1998;47(2):81–8.

    PubMed  CAS  Google Scholar 

  69. Rankinen T, Gagnon J, Perusse L, Chagnon YC, Rice T, Leon AS, et al. AGT M235T and ACE ID polymorphisms and exercise blood pressure in the HERITAGE family study. Am J Physiol Heart Circ Physiol. 2000;279(1):H368–74.

    PubMed  CAS  Google Scholar 

  70. Rankinen T, Gagnon J, Perusse L, Rice T, Leon AS, Skinner JS, et al. Body fat, resting and exercise blood pressure and the angiotensinogen M235T polymorphism: The heritage family study. Obes Res. 1999;7(5):423–30.

    PubMed  CAS  Google Scholar 

  71. Kim JS, Cho JR, Park S, Shim J, Kim JB, Cho DK, et al. Endothelial nitric oxide synthase Glu298Asp gene polymorphism is associated with hypertensive response to exercise in well-controlled hypertensive patients. Yonsei Med J. 2007;48(3):389–95.

    Article  PubMed  CAS  Google Scholar 

  72. Augeri AL, Tsongalis GJ, Van Heest JL, Maresh CM, Thompson PD, Pescatello LS. The endothelial nitric oxide synthase -786 T>C polymorphism and the exercise-induced blood pressure and nitric oxide responses among men with elevated blood pressure. Atherosclerosis. 2009;204(2):e28–34.

    Article  PubMed  CAS  Google Scholar 

  73. Taylor JY, Maddox R, Wu CY. Genetic and environmental risks for high blood pressure among African American mothers and daughters. Biol Res Nurs. 2009;11(1):53–65.

    Article  PubMed  Google Scholar 

  74. Taimela S, Lehtimäki T, Porkka KVK, Räsänen L, Viikari JSA. The effect of physical activity on serum total and low-density lipoprotein cholesterol concentrations varies with apolipoprotein E phenotype in male children and young adults: the cardiovascular risk in young Finns study. Metab Clin Exp. 1996;45(7):797–803.

    PubMed  CAS  Google Scholar 

  75. St-Amand J, Prud’homme D, Moorjani S, Nadeau A, Tremblay A, Bouchard C, et al. Apolipoprotein E polymorphism and the relationships of physical fitness to plasma lipoprotein-lipid levels in men and women. Med Sci Sports Exerc. 1999;31(5):692–7.

    Article  PubMed  CAS  Google Scholar 

  76. Bernstein MS, Costanza MC, James RW, Morris MA, Cambien F, Raoux S, Morabia A. Physical activity may modulate effects of ApoE genotype on lipid profile. Arterioscler Thromb Vasc Biol. 2002;22(1):133–40.

    Article  PubMed  CAS  Google Scholar 

  77. Corella D, Guillen M, Saiz C, Portoles O, Sabater A, Cortina S, et al. Environmental factors modulate the effect of the APOE genetic polymorphism on plasma lipid concentrations: Ecogenetic studies in a mediterranean spanish population. Metabolism. 2001;50(8):936–44.

    Article  PubMed  CAS  Google Scholar 

  78. Schmitz KH, Schreiner PJ, Jacobs DR, Leon AS, Liu K, Howard B, Sternfeld B. Independent and interactive effects of apolipoprotein E phenotype and cardiorespiratory fitness on plasma lipids. Ann Epidemiol. 2001;11(2):94–103.

    Article  PubMed  CAS  Google Scholar 

  79. Pisciotta L, Cantafora A, Piana A, Masturzo P, Cerone R, Minniti G, et al. Physical activity modulates effects of some genetic polymorphisms affecting cardiovascular risk in men aged over 40 years. Nutr Metab Cardiovasc Dis. 2003;13(4):202–10.

    Article  PubMed  CAS  Google Scholar 

  80. Hagberg JM, Ferrell RE, Katzel LI, Dengel DR, Sorkin JD, Goldberg AP. Apolipoprotein E genotype and exercise training-induced increases in plasma high-density lipoprotein (HDL)- and HDL2-cholesterol levels in overweight men. Metabolism. 1999;48(8):943–5.

    Article  PubMed  CAS  Google Scholar 

  81. Thompson PD, Tsongalis GJ, Seip RL, Bilbie C, Miles M, Zoeller R, et al. Apolipoprotein E genotype and changes in serum lipids and maximal oxygen uptake with exercise training Metabolism. 2004;53(2):193–202.

    Article  PubMed  CAS  Google Scholar 

  82. Leon AS, Togashi K, Rankinen T, Despres JP, Rao DC, Skinner JS, et al. Association of apolipoprotein E polymorphism with blood lipids and maximal oxygen uptake in the sedentary state and after exercise training in the HERITAGE family study. Metabolism. 2004;53(1):108–16.

    Article  PubMed  CAS  Google Scholar 

  83. Obisesan TO, Ferrell RE, Goldberg AP, Phares DA, Ellis TJ, Hagberg JM. APOE genotype affects black-white responses of high-density lipoprotein cholesterol subspecies to aerobic exercise training. Metabolism. 2008;57(12):1669–76.

    Article  PubMed  CAS  Google Scholar 

  84. Seip RL, Otvos J, Bilbie C, Tsongalis GJ, Miles M, Zoeller R, et al. The effect of apolipoprotein E genotype on serum lipoprotein particle response to exercise. Atherosclerosis. 2006;188(1):126–33.

    Article  PubMed  CAS  Google Scholar 

  85. Mukherjee M, Shetty KR. Variations in high-density lipoprotein cholesterol in relation to physical activity and taq 1B polymorphism of the cholesteryl ester transfer protein gene. Clin Genet. 2004;65(5):412–8.

    Article  PubMed  CAS  Google Scholar 

  86. Ayyobi AF, Hill JS, Molhuizen HO, Lear SA. Cholesterol ester transfer protein (CETP) Taq1B polymorphism influences the effect of a standardized cardiac rehabilitation program on lipid risk markers. Atherosclerosis. 2005;181(2):363–9.

    Article  PubMed  CAS  Google Scholar 

  87. Spielmann N, Leon AS, Rao DC, Rice T, Skinner JS, Bouchard C, Rankinen T. CETP genotypes and HDL-cholesterol phenotypes in the HERITAGE family study. Physiol Genomics. 2007;31(1):25–31.

    Article  PubMed  CAS  Google Scholar 

  88. Hagberg JM, Ferrell RE, Dengel DR, Wilund KR. Exercise training-induced blood pressure and plasma lipid improvements in hypertensives may be genotype dependent. Hypertension. 1999;34(1):18–23.

    PubMed  CAS  Google Scholar 

  89. Teran-Garcia M, Santoro N, Rankinen T, Bergeron J, Rice T, Leon AS, et al. Hepatic lipase gene variant -514C>T is associated with lipoprotein and insulin sensitivity response to regular exercise: The HERITAGE family study. Diabetes. 2005;54(7):2251–5.

    Article  CAS  Google Scholar 

  90. Boer JM, Kuivenhoven JA, Feskens EJ, Schouten EG, Havekes LM, Seidell JC, et al. Physical activity modulates the effect of a lipoprotein lipase mutation (D9N) on plasma lipids and lipoproteins. Clin Genet. 1999;56(2):158–63.

    Article  PubMed  CAS  Google Scholar 

  91. Senti M, Elosua R, Tomas M, Sala J, Masia R, Ordovas JM, et al. Physical activity modulates the combined effect of a common variant of the lipoprotein lipase gene and smoking on serum triglyceride levels and high-density lipoprotein cholesterol in men. Hum Genet. 2001;109(4):385–92.

    Article  PubMed  CAS  Google Scholar 

  92. Smith CE, Arnett DK, Tsai MY, Lai CQ, Parnell LD, Shen J, et al. Physical inactivity interacts with an endothelial lipase polymorphism to modulate high density lipoprotein cholesterol in the GOLDN study. Atherosclerosis. 2009;206(2):500–4.

    Article  PubMed  CAS  Google Scholar 

  93. Zhang B, Sakai T, Miura S, et al. Association of angiotensin-converting-enzyme gene polymorphism with the depressor response to mild exercise therapy in patients with mild to moderate essential hypertension. Clin Genet. 2002;62(4):328–33.

    Article  PubMed  CAS  Google Scholar 

  94. Rauramaa R, Kuhanen R, Lakka TA, Vaisanen SB, Halonen P, Alen M, et al. Physical exercise and blood pressure with reference to the angiotensinogen M235T polymorphism. Physiol Genomics. 2002;10(2):71–7.

    PubMed  CAS  Google Scholar 

  95. Delmonico MJ, Ferrell RE, Meerasahib A, Martel GF, Roth SM, Kostek MC, Hurley BF. Blood pressure response to strength training may be influenced by angiotensinogen A-20C and angiotensin II type I receptor A1166C genotypes in older men and women. J Am Geriatr Soc. 2005;53(2):204–10.

    Article  PubMed  Google Scholar 

  96. Rankinen T, Rice T, Perusse L, Chagnon YC, Gagnon J, Leon AS, et al. NOS3 Glu298Asp genotype and blood pressure response to endurance training: The HERITAGE family study.Hypertension. 2000;36(5):885–9.

    PubMed  CAS  Google Scholar 

  97. Vimaleswaran KS, Franks PW, Barroso I, Brage S, Ekelund U, Wareham NJ, Loos RJ. Habitual energy expenditure modifies the association between NOS3 gene polymorphisms and blood pressure. Am J Hypertens. 2008;21(3):297–302.

    Article  PubMed  CAS  Google Scholar 

  98. Kimura T, Yokoyama T, Matsumura Y, Yoshiike N, Date C, Muramatsu M, Tanaka H. NOS3 genotype-dependent correlation between blood pressure and physical activity. Hypertension. 2003;41(2):355–60.

    Article  PubMed  CAS  Google Scholar 

  99. Rankinen T, Church T, Rice T, Markward N, Leon AS, Rao DC, et al. Effect of endothelin 1 genotype on blood pressure is dependent on physical activity or fitness levels. Hypertension. 2007;50(6):1120–5.

    Article  PubMed  CAS  Google Scholar 

  100. Rankinen T, Rice T, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C. G protein beta 3 polymorphism and hemodynamic and body composition phenotypes in the HERITAGE family study. Physiol Genomics. 2002;8(2):151–7.

    PubMed  CAS  Google Scholar 

  101. Grove ML, Morrison A, Folsom AR, Boerwinkle E, Hoelscher DM, Bray MS. Gene-environment interaction and the GNB3 gene in the atherosclerosis risk in communities study. Int J Obes (Lond). 2007;31(6):919–26.

    Article  CAS  Google Scholar 

  102. International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Hagberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hagberg, J.M. (2011). Interactive Effects of Genetics and Acute Exercise and Exercise Training on Plasma Lipoprotein-Lipid and Blood Pressure Phenotypes. In: Pescatello, L., Roth, S. (eds) Exercise Genomics. Molecular and Translational Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-355-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-355-8_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-354-1

  • Online ISBN: 978-1-60761-355-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics