Skip to main content

The Contribution of High Density Lipoprotein Apolipoproteins and Derivatives to Serum Paraoxonase-1 Activity and Function

  • Conference paper
  • First Online:
Book cover Paraoxonases in Inflammation, Infection, and Toxicology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 660))

Abstract

High density lipoproteins (HDL) not only provide a serum transport vector for paraoxonase-1 (PON1) but also contribute to enzyme activity, stability and, consequently, function. The contribution of the apolipoprotein (apo) components of HDL to overall PON1 activity and function is not clearly established. ApoAI appears of major importance in defining serum PON1 activity and stability, but in the context of an interaction with the phospholipid fraction of HDL. This may involve a role in establishing the architecture of the HDL particle that optimally integrates the PON1 peptide. As the second, major structural peptide of HDL, apoAII may accomplish a similar role. These apolipoproteins, together with others associated with HDL, may also exert a more indirect influence on PON1 function by sequestering oxidised lipids that could compromise enzyme activity. The latter has been exploited therapeutically to give rise to apolipoprotein mimetic peptides that may be useful in limiting oxidative stress within the lipoprotein system, thus permitting PON1 activity to be maximally expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Birjmohun RS, Dallinga-Thie GM, Kuivenhoven JA et al. (2007). Apolipoprotein A-II is inversely associated with risk of future coronary artery disease. Circulation 116:2029–2035.

    Article  CAS  PubMed  Google Scholar 

  • Blatter M-C, James RW, Messmer S et al. (1993). Identification of a distinct human high-density lipoprotein subspecies defined by a lipoprotein-associated protein, K-45. Identity of K-45 with paraoxonase. Eur J Biochem 211:871–879.

    Article  CAS  PubMed  Google Scholar 

  • Boucher J, Ramsamy TA, Braschi S et al. (2004). Apolipoprotein A-II regulates HDL stability and affects hepatic lipase association and activity. J Lipid Res 45:849–858.

    Article  CAS  PubMed  Google Scholar 

  • Cabana VG, Reardon CA, Feng N et al. (2003). Serum paraoxonase: effect of the apolipoprotein composition of HDL and the acute phase response. J Lipid Res 44:780–792.

    Article  CAS  PubMed  Google Scholar 

  • Cascorbi I, Laule M, Mrozikiewicz PM et al. (1999). Mutations in the human paraoxonase 1 gene: frequencies, allelic linkages, and association with coronary artery disease. Pharmacogenet 9:755–761.

    Article  CAS  Google Scholar 

  • Cheung MC, Albers JJ (1984). Characterization of lipoprotein particles isolated by immunoaffinity chromatography: particles containing A-I and A-II and particles containing A-I but no A-II. J Biol Chem 259:12201–12209.

    CAS  PubMed  Google Scholar 

  • Deakin S, Leviev I, Gomaraschi M et al. (2002). Enzymatically active paraoxonase-1 is located at the external membrane of producing cells and released by a high affinity, saturable, desorption mechanism. J Biol Chem 277:4301–4308.

    Article  CAS  PubMed  Google Scholar 

  • Deakin S, Moren X, James RW (2005). Very low density lipoproteins provide a vector for secretion of paraoxonase-1 from cells. Atherosclerosis 179:17–25.

    Article  CAS  PubMed  Google Scholar 

  • Forte TM, Subbanagounder G, Berliner JA et al. (2002). Altered activities of anti-atherogenic enzymes, LCAT, paraoxonase, and platelet activating factor acetylhydrolase in atherosclerosis-susceptible mice. J Lipid Res 43:477–485.

    Article  CAS  PubMed  Google Scholar 

  • Gaidukov L, Rosenblat M, Aviram M et al. (2006). The 192R/Q polymorphs of serum paraoxonase PON1 differ in HDL binding, lipolactonase stimulation, and cholesterol efflux. J Lipid Res 47:2492–2502.

    Article  CAS  PubMed  Google Scholar 

  • Gaidukov L, Tawfik DS (2005). High affinity, stability, and lactonase activity of serum paraoxonase PON1 anchored on HDL with ApoA-I. Biochemistry 44:11843–11854.

    Article  CAS  PubMed  Google Scholar 

  • Gupta H, White CR, Handattu S et al. (2005). Apolipoprotein E mimetic peptide dramatically lowers plasma cholesterol and restores endothelial function in watanabe heritable hyperlipidemic rabbits. Circulation 111:3112–3118.

    Article  CAS  PubMed  Google Scholar 

  • James RW, Blatter Garin MC, Calabresi L et al. (1998). Modulated serum activities and concentrations of paraoxonase in high density lipoprotein deficiency states. Atherosclerosis 139:77–82.

    Article  CAS  PubMed  Google Scholar 

  • Kelso GJ, Stuart WD, Richter RJ et al. (1994). Apolipoprotein J is associated with paraoxonase in human plasma. Biochemistry 33:832–839.

    Article  CAS  PubMed  Google Scholar 

  • La Du BN (1992). Human serum paraoxonase/arylesterase. Pharmacogenetics of drug metabolism. W. Kalow (ed.). New York: Pergamon Press 51–91.

    Google Scholar 

  • Mackness B, Hunt R, Durrington PN et al. (1997). Increased immunolocalization of paraoxonase, clusterin, and apolipoprotein A-I in the human artery wall with the progression of atherosclerosis. Arterioscler Thromb Vasc Biol 17:1233–1238.

    CAS  PubMed  Google Scholar 

  • Moren X, Deakin S, Liu M-L et al. (2008). HDL subfraction distribution of paraoxonase-1 and its relevance to enzyme activity and resistance to oxidative stress. J Lipid Res 49:1228–1234.

    Article  Google Scholar 

  • Navab M, Anantharamaiah GM, Reddy ST et al. (2005a). Oral small peptides render HDL anti-inflammatory in mice and monkeys and reduce atherosclerosis in apoE null mice. Circulation Res 97:524–532.

    Article  CAS  PubMed  Google Scholar 

  • Navab M, Anantharamaiah GM, Reddy ST et al. (2007). Peptide mimetics of apolipoproteins improve HDL function. J Clin Lipidol 1:142–147.

    Article  PubMed  Google Scholar 

  • Navab M, Anantharamaiah GM, Reddy ST et al. (2004). Human apolipoprotein A-I and A-I mimetic peptides: potential for atherosclerosis reversal. Curr Opin Lipidol 15:645–649.

    Article  CAS  PubMed  Google Scholar 

  • Navab M, Anantharamaiah GM, Reddy ST et al. (2005b). An oral apoJ peptide renders HDL antiinflammatory in mice and monkeys and dramatically reduces atherosclerosis in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 25:1932–1937.

    Article  CAS  PubMed  Google Scholar 

  • Navab M, Hama-Levy S, Van Lenten B et al. (1997). Mildly oxidised LDL induces an increased apolipoprotein J/paraoxonase ratio. J Clin Invest 99:2005–2019.

    Article  CAS  PubMed  Google Scholar 

  • Navab M, Hama SY, Cooke CJ et al. (2000). Normal high density lipoprotein inhibits three steps in the formation of mildly oxidised low density lipoprotein: step 1. J Lipid Res 41:1481–1494.

    CAS  PubMed  Google Scholar 

  • Oda MN, Bielicki JK, Berger T et al. (2001). Cysteine substitutions in apolipoprotein A-I primary structure modulate paraoxonase activity. Biochemistry 40:1710–1718.

    Article  CAS  PubMed  Google Scholar 

  • Ribas V, Sanchez-Quesada JL, Anton R et al. (2004). Human apolipoprotein A-II enrichment displaces paraoxonase from HDL and impairs its antioxidant properties: a new mechanism linking HDL protein composition and antiatherogenic potential. Circ Res 95:789–797.

    Article  CAS  PubMed  Google Scholar 

  • Segrest JP, Jones MK, De Loof H et al. (1992). The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res. 33:141–166.

    CAS  PubMed  Google Scholar 

  • Sorenson RC, Bisgaier CL, Aviram M et al. (1999). Human serum paraoxonase/arylesterase’s retained hydrophobic N-terminal leader sequence associates with HDLs by binding phospholipids: apolipoprotein A-I stabilizes activity. Arterioscler Thromb Vasc Biol 19:2214–2225.

    CAS  PubMed  Google Scholar 

  • Tailleux A, Duriez P, Fruchart JC et al. (2002). Apolipoprotein A-II, HDL metabolism and atherosclerosis. Atherosclerosis 164:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Trougakos IP, Gonos ES (2006). Regulation of clusterin/apolipoprotein J, a functional homologue to the small heat shock proteins, by oxidative stress in ageing and age-related diseases. Free Radic Res 40:1324–1334.

    Article  CAS  PubMed  Google Scholar 

  • Winkler K, Hoffmann MM, Seelhorst U et al. (2008). Apolipoprotein A-II is a negative risk indicator for cardiovascular and total mortality: findings from the Ludwigshafen Risk and Cardiovascular Health Study. Clin Chem 54:1405–1406.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

James, R.W., Deakin, S.P. (2010). The Contribution of High Density Lipoprotein Apolipoproteins and Derivatives to Serum Paraoxonase-1 Activity and Function. In: Reddy, S. (eds) Paraoxonases in Inflammation, Infection, and Toxicology. Advances in Experimental Medicine and Biology, vol 660. Humana Press. https://doi.org/10.1007/978-1-60761-350-3_16

Download citation

Publish with us

Policies and ethics