Skip to main content

In Vivo Imaging of Brain Development: Technologies, Models, Applications, and Impact on Understanding the Etiology of Mental Retardation

  • Chapter
  • First Online:

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Development of the mammalian brain proceeds in a precisely controlled sequence of cell divisions, migration, differentiation, and synaptogenesis. It is a process of precise dynamic assembly, and time lapse in vivo imaging of these processes is fundamental for the multidisciplinary endeavor to merge and understand the morphological, physiological, and regulatory processes of neurogenesis.

Modern optical and non-optical imaging technologies enable us to achieve 5-dimensional (5D) imaging of neurogenesis: 3-dimensional (3D) images of neuronal structures, collected over time (4D) in the living tissue or specimen, with simultaneous spectral information and data indicating specific structures, cellular phenotypes, functions, or genes expression patterns (5D). These imaging technologies make it possible to simultaneously monitor structure and function in vivo and merge morphological and physiological perspectives on brain development.

Modern in vivo imaging technologies combined with advances in molecular biology definitely have the potential to unravel basic mechanisms of neurogenesis. Further advances will enable these technologies to elucidate the pathogenesis of developmental neurological disorders and eventually make critical steps of neurogenesis clinically detectable and therapeutically approachable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ang ES Jr, Haydar TF, Gluncic V, Rakic P (2003) Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J Neurosci 23:5805–5815

    PubMed  CAS  Google Scholar 

  2. Caviness VS Jr, Takahashi T, Nowakowski RS (1995) Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci 18:379–383

    PubMed  CAS  Google Scholar 

  3. Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388

    PubMed  CAS  Google Scholar 

  4. Rakic P (2000) Molecular and cellular mechanisms of neuronal migration: relevance to cortical epilepsies. Adv Neurol 84:1–14

    PubMed  CAS  Google Scholar 

  5. Rakic P (2003) Elusive radial glial cells: historical and evolutionary perspective. Glia 43:19–32

    PubMed  Google Scholar 

  6. Rakic PA (2006) Century of progress in corticoneurogenesis: from silver impregnation to genetic engineering. Cereb Cortex 16(Suppl):3–17

    Google Scholar 

  7. Ang ES Jr, Gluncic V, Duque A et al (2006) Prenatal exposure to ultrasound waves impacts neuronal migration in mice. Proc Natl Acad Sci USA 103:12903–12910

    PubMed  CAS  Google Scholar 

  8. Bassell GJ, Kelic S (2004) Binding proteins for mRNA localization and local translation, and their dysfunction in genetic neurological disease. Curr Opin Neurobiol 14:574–581

    PubMed  CAS  Google Scholar 

  9. Bond J, Roberts E, Mochida GH et al (2002) ASPM is a major determinant of cerebral cortical size. Nat Genet 32:316–320

    PubMed  CAS  Google Scholar 

  10. Caviness VS Jr, Takahashi T, Nowakowski RS (2002) Neocortical malformation as consequence of nonadaptive regulation of neuronogenetic sequence. Ment Retard Dev Disabil Res Rev 6:22–33

    Google Scholar 

  11. Frints SG, Marynen P, Hartmann D et al (2003) CALL interrupted in a patient with non-specific mental retardation: gene dosage-dependent alteration of murine brain development and behavior. Hum Mol Genet 12:1463–1474

    PubMed  CAS  Google Scholar 

  12. Gambello MJ, Darling DL, Yingling J et al (2003) Multiple dose-dependent effects of Lis1 on cerebral cortical development. J Neurosci 23:1719–1729

    PubMed  CAS  Google Scholar 

  13. Guerrini R, Marini C (2006) Genetic malformations of cortical development. Exp Brain Res 173:322–333

    PubMed  Google Scholar 

  14. Lo Nigro C, Chong CS, Smith AC et al (1997) Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum Mol Genet 6:157–164

    PubMed  CAS  Google Scholar 

  15. Misgeld T, Kerschensteiner M (2006) In vivo imaging of the diseased nervous system. Nat Rev Neurosci 7:449–463

    PubMed  CAS  Google Scholar 

  16. Casanova MF, Buxhoeveden D, Gomez J (2003) Disruption in the inhibitory architecture of the cell minicolumn: implications for autism. Neuroscientist 9:496–507

    PubMed  Google Scholar 

  17. Casanova MF, Buxhoeveden DP, Switala AE et al (2002) Asperger’s syndrome and cortical neuropathology. J Child Neurol 17:142–145

    PubMed  Google Scholar 

  18. Casanova MF, Buxhoeveden DP, Switala AE et al (2002) Minicolumnar pathology in autism. Neurology 58:428–432

    PubMed  Google Scholar 

  19. Fatemi SH (2001) Reelin mutations in mouse and man: from reeler mouse to schizophrenia, mood disorders, autism and lissencephaly. Mol Psychiatry 6:129–133

    PubMed  CAS  Google Scholar 

  20. Kumada T, Lakshmana MK, Komuro H (2006) Reversal of neuronal migration in a mouse model of fetal alcohol syndrome by controlling second-messenger signaling. J Neurosci 26:742–756

    PubMed  CAS  Google Scholar 

  21. Powell EM, Campbell DB, Stanwood GD et al (2003) Genetic disruption of cortical interneuron development causes region - and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci 23:622–631

    PubMed  CAS  Google Scholar 

  22. Ross ME, Walsh CA (2001) Human brain malformations and their lessons for neuronal migration. Annu Rev Neurosci 24:1041–1070

    PubMed  CAS  Google Scholar 

  23. Brainered EL, Hale ME (2006) In vivo and functional imaging in developmental physiology. In: Warburton S, Burggren W (eds) Comparative developmental physiology. Oxford University Press, New York, pp 21–40

    Google Scholar 

  24. Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18:351–357

    PubMed  CAS  Google Scholar 

  25. Dent EW, Kalil K (2003) Dynamic imaging of neuronal cytoskeleton. Methods Enzymol 361:390–407

    PubMed  CAS  Google Scholar 

  26. Hatanaka Y, Murakami F (2002) In vitro analysis of the origin, migratory behavior, and maturation of cortical pyramidal cells. J Comp Neurol 454:1–14

    PubMed  Google Scholar 

  27. Haydar TF, Ang E Jr, Rakic P (2003) Mitotic spindle rotation and mode of cell division in the developing telencephalon. Proc Natl Acad Sci USA 100:2890–2895

    PubMed  CAS  Google Scholar 

  28. Haydar TF, Bambrick LL, Krueger BK et al (1999) Organotypic slice cultures for analysis of proliferation, cell death, and migration in the embryonic neocortex. Brain Res Protoc 4:425–437

    CAS  Google Scholar 

  29. Haydar TF (2005) Advanced microscopic imaging methods to investigate cortical development and the etiology of mental retardation. Ment Retard Dev Disabil Res Rev 11:303–316

    PubMed  Google Scholar 

  30. Helmchen F, Denk W (2002) New developments in multiphoton microscopy. Curr Opin Neurobiol 12:593–601

    PubMed  CAS  Google Scholar 

  31. Helmchen F, Fee MS, Tank DW, Denk W (2001) A miniature head-mounted two-photon microscope. High-resolution brain imaging in freely moving animals. Neuron 31:903–912

    PubMed  CAS  Google Scholar 

  32. Helmchen F, Waters J (2002) Ca2+ imaging in the mammalian brain in vivo. Eur J Pharmacol 447:119–129

    PubMed  CAS  Google Scholar 

  33. Lichtman JW, Fraser SE (2001) The neuronal naturalist: watching neurons in their native habitat. Nat. Neurosci 4(Suppl):1215–1220

    PubMed  CAS  Google Scholar 

  34. Nadarajah B, Alifragis P, Wong RO et al (2003) Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. Cereb Cortex 13:607–611

    PubMed  CAS  Google Scholar 

  35. Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3:423–432

    PubMed  CAS  Google Scholar 

  36. Squirrell JM, Wokosin DL, White JG et al (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17:763–767

    PubMed  CAS  Google Scholar 

  37. Svoboda K, Denk W, Kleinfeld D et al (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385:161–165

    PubMed  CAS  Google Scholar 

  38. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR et al (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794

    PubMed  CAS  Google Scholar 

  39. Gaiano N, Kohtz JD, Turnbull DH et al (1999) A method for rapid gain-of-function studies in the mouse embryonic nervous system. Nat Neurosci 2:812–819

    PubMed  CAS  Google Scholar 

  40. Liu A, Joyner AL, Turnbull DH (1998) Alteration of limb and brain patterning in early mouse embryos by ultrasound-guided injection of Shh-expressing cells. Mech Dev 75:107–115

    PubMed  CAS  Google Scholar 

  41. Olsson M, Campbell K, Turnbull DH (1997) Specification of mouse telencephalic and mid-hindbrain progenitors following heterotopic ultrasound-guided embryonic transplantation. Neuron 19:761–772

    PubMed  CAS  Google Scholar 

  42. Strome EM, Doudet DJ (2007) Animal models of neurodegenerative disease: insights from in vivo imaging studies. Mol Imaging Biol 9:186–195

    PubMed  Google Scholar 

  43. Megason SG, Fraser SE (2003) Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech Dev 120:1407–1420

    PubMed  CAS  Google Scholar 

  44. Rodriguez A, Ehlenberger D, Kelliher K, Einstein M, Henderson SC et al (2003) Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. Methods 30:94–105

    PubMed  CAS  Google Scholar 

  45. Yuste R, Lanni F, Konnerth A (eds) (2000) Imaging neurons. Cold Spring Harbor Lab, Cold Spring Harbor

    Google Scholar 

  46. Theer P, Hasan M, Denk W (2003) Two-photon imaging to a depth of 1000 μm in living brains by use of a TI:Al203 regenerative amplifier. Optics Lett 28:1002–1004

    Google Scholar 

  47. Kalatsky VA, Stryker MP (2003) New paradigm for optical imaging. Temporally encoded maps of intrinsic signal. Neuron 38:529–545

    PubMed  CAS  Google Scholar 

  48. Obrig H, Villringer A (2003) Beyond the visible – imaging the human brain with light. J Cereb Blood Flow Metab 23:1–18

    PubMed  Google Scholar 

  49. Rubin BD, Katz LC (1999) Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23:499–511

    PubMed  CAS  Google Scholar 

  50. Yuste R, Miller RB, Holthoff K, Zhang S, Miesenbock G (2000) Synapto-pHluorins: chimeras between pH-sensitive mutants of green fluorescent protein and synaptic vesicle membrane proteins as reporters of neurotransmitter release. Methods Enzymol 327:522–546

    PubMed  CAS  Google Scholar 

  51. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    PubMed  CAS  Google Scholar 

  52. Gan WB, Grutzendler J, Wong WT, Wong RO, Lichtman JW (2000) Multicolor “DiOlistic” labeling of the nervous system using lipophilic dye combinations. Neuron 27:219–225

    PubMed  CAS  Google Scholar 

  53. O’Brien JA, Lummis SC (2006) Diolistic labeling of neuronal cultures and intact tissue using a hand-held gene gun. Nat Protoc 1:1517–1521

    PubMed  Google Scholar 

  54. Janusonis S, Gluncic V, Rakic P (2004) Early serotonergic projections to Cajal-Retzius cells: relevance for cortical development. J Neurosci 24:1652–1659

    PubMed  CAS  Google Scholar 

  55. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436

    PubMed  CAS  Google Scholar 

  56. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    PubMed  CAS  Google Scholar 

  57. Djurisic M, Zochowski M, Wachowiak M, Falk CX, Cohen LB, Zecevic D (2003) Optical monitoring of neural activity using voltage-sensitive dyes. Methods Enzymol 361:423–451

    PubMed  CAS  Google Scholar 

  58. Ellis-Davies GC (2003) Development and application of caged calcium. Methods Enzymol 360:226–238

    PubMed  CAS  Google Scholar 

  59. Kettunen P, Demas J, Lohmann C, Kasthuri N, Gong Y et al (2002) Imaging calcium dynamics in the nervous system by means of ballistic delivery of indicators. J Neurosci Methods 119:37–43

    PubMed  CAS  Google Scholar 

  60. Lohmann C, Myhr KL, Wong RO (2002) Transmitter-evoked local calcium release stabilizes developing dendrites. Nature 418:177–181

    PubMed  CAS  Google Scholar 

  61. Politz JC (1999) Use of caged fluorochromes to track macromolecular movement in living cells. Trends Cell Biol 9:284–287

    PubMed  CAS  Google Scholar 

  62. Rudolf R, Mongillo M, Rizzuto R, Pozzan T (2003) Innovation: looking forward to seeing calcium. Nat Rev Mol Cell Biol 4:579–586

    PubMed  CAS  Google Scholar 

  63. Friedman HV, Bresler T, Garner CC, Ziv NE (2000) Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27:57–69

    PubMed  CAS  Google Scholar 

  64. Lendvai B, Stern EA, Chen B, Svoboda K (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404:876–881

    PubMed  CAS  Google Scholar 

  65. Brager DH, Luther PW, Erdelyi F et al (2003) Regulation of exocytosis from single visualized GABAergic boutons in hippocampal slices. J Neurosci 23:10475–10486

    PubMed  CAS  Google Scholar 

  66. O’Donovan M, Ho S, Yee W (1994) Calcium imaging of rhythmic network activity in the developing spinal cord of the chick embryo. J Neurosci 14:6354–6369

    PubMed  Google Scholar 

  67. Tsien RY (1998) The green fluorescent protein. Ann Rev Biochem 67:509–544

    PubMed  CAS  Google Scholar 

  68. Washbourne P, McAllister AK (2002) Techniques for gene transfer into neurons. Curr Opin Neurobiol 12:566–573

    PubMed  CAS  Google Scholar 

  69. Chen BE, Lendvai B, Nimchinsky EA et al (2000) Imaging high-resolution structure of GFP-expressing neurons in neocortex in vivo. Learn Mem 7:433–441

    PubMed  CAS  Google Scholar 

  70. Spergel DJ, Kruth U, Shimshek DR, Sprengel R, Seeburg PH (2001) Using reporter genes to label selected neuronal populations in transgenic mice for gene promoter, anatomical, and physiological studies. Prog Neurobiol 63:673–686

    PubMed  CAS  Google Scholar 

  71. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    PubMed  CAS  Google Scholar 

  72. Miyasaka N, Arimatsu Y, Takiguchihayashi K (1999) Foreign gene expression in an organotypic culture of cortical anlage after in vivo electroporation. Neuroreport 10:2319–2323

    PubMed  CAS  Google Scholar 

  73. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    PubMed  CAS  Google Scholar 

  74. Ponti A, Vallotton P, Salmon WC, Waterman-Storer CM, Danuser G (2003) Computational analysis of f-actin turnover in cortical actin meshwork using fluorescent speckle microscopy. Biophys J 84:3336–3352

    PubMed  CAS  Google Scholar 

  75. Mochizuki N, Yamashita S, Kurokawa K, Ohba Y, Nagai T et al (2001) Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411:1065–1068

    PubMed  CAS  Google Scholar 

  76. Qian X, Shen Q, Goderie SK et al (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28:69–80

    PubMed  CAS  Google Scholar 

  77. Schaefer AW, Kabir N, Forscher P (2002) Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 158:139–152

    PubMed  CAS  Google Scholar 

  78. Brecht M, Fee MS, Garaschuk O et al (2004) Novel approaches to monitor and manipulate single neurons in vivo. J Neurosci 24:9223–9227

    PubMed  CAS  Google Scholar 

  79. Gahwiler BH, Capogna M, Debanne D et al (1997) Organotypic slice cultures: a technique has come of age. Trends Neurosci 20:471–477

    PubMed  CAS  Google Scholar 

  80. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182

    PubMed  CAS  Google Scholar 

  81. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293

    PubMed  CAS  Google Scholar 

  82. Belmonte MK, Cook EH Jr, Anderson GM et al (2004) Autism as a disorder of neural information processing: directions for research and targets for therapy. Mol Psychiatry 9:646–663

    PubMed  CAS  Google Scholar 

  83. Courchesne E, Carper R, Akshoomoff N (2003) Evidence of brain overgrowth in the first year of life in autism. JAMA 290:337–344

    PubMed  Google Scholar 

  84. Hong SE, Shugart YY, Huang DT et al (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26:93–96

    PubMed  CAS  Google Scholar 

  85. Noctor SC, Flint AC, Weissman TA et al (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    PubMed  CAS  Google Scholar 

  86. Gorski JA, Talley T, Qiu M et al (2002) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci 22(15):6309–6314

    PubMed  CAS  Google Scholar 

  87. Lyons DA, Guy AT, Clarke JD (2003) Monitoring neural progenitor fate through multiple rounds of division in an intact vertebrate brain. Development 130:3427

    PubMed  CAS  Google Scholar 

  88. McCarthy M, Turnbull DH, Walsh CA et al (2001) Telencephalic neural progenitors appear to be restricted to regional and glial fates before the onset of neurogenesis. J Neurosci 21:6772–6781

    PubMed  CAS  Google Scholar 

  89. Takahashi T, Nowakowski RS, Caviness VS Jr (1996) The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J Neurosci 16:6183–6196

    PubMed  CAS  Google Scholar 

  90. Tan SS, Kalloniatis M, Sturm K et al (1998) Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 21:95–304

    Google Scholar 

  91. Walsh C, Cepko CL (1993) Clonal dispersion in proliferative layers of developing cerebral cortex. Nature 362:632–635

    PubMed  CAS  Google Scholar 

  92. Das T, Payer B, Cayouette M, Harris WA (2003) In vivo time-lapse imaging of cell divisions during neurogenesis in the developing zebrafish retina. Neuron 37:597–609

    PubMed  CAS  Google Scholar 

  93. Feng Y, Walsh CA (2004) Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44:279–293

    PubMed  CAS  Google Scholar 

  94. Noctor SC, Martinez-Cerdeno V, Ivic L et al (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144

    PubMed  CAS  Google Scholar 

  95. Demyanenko GP, Schachner M, Anton E et al (2004) Close homolog of L1 modulates area-specific neuronal positioning and dendrite orientation in the cerebral cortex. Neuron 44:423–437

    PubMed  CAS  Google Scholar 

  96. Gongidi V, Ring C, Moody M et al (2004) SPARC-like 1 regulates the terminal phase of radial glia-guided migration in the cerebral cortex. Neuron 41:57–69

    PubMed  CAS  Google Scholar 

  97. Hirotsune S, Fleck MW, Gambello MJ et al (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 19:333–339

    PubMed  CAS  Google Scholar 

  98. Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645–649

    PubMed  CAS  Google Scholar 

  99. Wichterle H, Turnbull DH, Nery S et al (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128:3759–3771

    PubMed  CAS  Google Scholar 

  100. Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260:95–97

    PubMed  CAS  Google Scholar 

  101. Komuro H, Rakic P (1998) Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+ fluctuations. J Neurobiol 37:110–130

    PubMed  CAS  Google Scholar 

  102. Koster RW, Fraser SE (2001) Direct imaging of in vivo neuronal migration in the developing cerebellum. Curr Biol 11:1858–1863

    PubMed  CAS  Google Scholar 

  103. Cline HT (2001) Dendritic arbor development and synaptogenesis. Curr Opin Neurobiol 11:118–126

    PubMed  CAS  Google Scholar 

  104. Feller MB (1999) Spontaneous correlated activity in developing neural circuits. Neuron 22:653–656

    PubMed  CAS  Google Scholar 

  105. Hutson LD, Chien CB (2002) Pathfinding and error correction by retinal axons: the role of astray/robo2. Neuron 33:205–217

    PubMed  CAS  Google Scholar 

  106. Jin X, Hu H, Mathers PH et al (2003) Brain-derived neurotrophic factor mediates activity-dependent dendritic growth in nonpyramidal neocortical interneurons in developing organotypic cultures. J Neurosci 23:5662–5673

    PubMed  CAS  Google Scholar 

  107. Trachtenberg JT, Trepel C, Stryker MP (2000) Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. Science 287:2029–2032

    PubMed  CAS  Google Scholar 

  108. Greenough WT, Klintsova AY, Irwin SA et al (2001) Synaptic regulation of protein synthesis and the fragile X protein. Proc Natl Acad Sci USA 98:7101–7106

    PubMed  CAS  Google Scholar 

  109. Jones JD, Buchanan J, Smith SJ (2000) Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nat Neurosci 3:231–237

    Google Scholar 

  110. Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10:981–991

    PubMed  CAS  Google Scholar 

  111. Purves D, Lichtman JW (1987) Synaptic sites on reinnervated nerve cells visualized at two different times in living mice. J Neurosci 7:1492–1497

    PubMed  CAS  Google Scholar 

  112. Gleason MR, Higashijima S, Dallman J, Liu K, Mandel G, Fetcho JR (2003) Translocation of CaM kinase II to synaptic sites in vivo. Nat Neurosci 6:217–218

    PubMed  CAS  Google Scholar 

  113. Gomez TM, Spitzer NC (1999) In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397:350–355

    PubMed  CAS  Google Scholar 

  114. Koh IY, Lindquist WB, Zito K, Nimchinsky EA, Svoboda K (2002) An image analysis algorithm for dendritic spines. Neural Comput 14:1283–1310

    PubMed  Google Scholar 

  115. Walsh MK, Lichtman JW (2003) In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron 37:67–73

    PubMed  CAS  Google Scholar 

  116. Cox CL, Denk W, Tank DW et al (2000) Action potentials reliably invade axonal arbors of rat neocortical neurons. Proc Natl Acad Sci USA 97:9724–9728

    PubMed  CAS  Google Scholar 

  117. Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816

    PubMed  CAS  Google Scholar 

  118. Alsina B, Vu T, Cohen-Cory S (2001) Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat Neurosci 4:1093–1101

    PubMed  CAS  Google Scholar 

  119. Nedivi E, Wu GY, Cline HT (1998) Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science 281:1863–1866

    PubMed  CAS  Google Scholar 

  120. Wong WT, Wong RO (2000) Rapid dendritic movements during synapse formation and rearrangement. Curr Opin Neurobiol 10:118–124

    PubMed  CAS  Google Scholar 

  121. Crair MC, Gillespie DC, Stryker MP (1998) The role of visual experience in the development of columns in cat visual cortex. Science 279:566–570

    PubMed  CAS  Google Scholar 

  122. Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138

    PubMed  CAS  Google Scholar 

  123. Shepherd GM, Pologruto TA, Svoboda K (2003) Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron 38:277–289

    PubMed  CAS  Google Scholar 

  124. Sin WC, Haas K, Ruthazer ES, Cline HT (2002) Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419:475–480

    PubMed  CAS  Google Scholar 

  125. Gaietta G, Deerinck TJ, Adams SR et al (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    PubMed  CAS  Google Scholar 

  126. Mochida GH, Walsh CA (2001) Molecular genetics of human microcephaly. Curr Opin Neurol 14:151–156

    PubMed  CAS  Google Scholar 

  127. Murcia CL, Gulden F, Herrup K (2004) A question of balance: a proposal for new mouse models of autism. Int J Dev Neurosci 23:265–275

    Google Scholar 

  128. Gu X, Olson EC, Spitzer NC (1994) Spontaneous neuronal calcium spikes and waves during early differentiation. J Neurosci 14:6325–6335

    PubMed  CAS  Google Scholar 

  129. Wong RO, Chernjavsky A, Smith SJ, Shatz CJ (1995) Early functional neural networks in the developing retina. Nature 374:716–718

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicko Gluncic MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gluncic, V. (2009). In Vivo Imaging of Brain Development: Technologies, Models, Applications, and Impact on Understanding the Etiology of Mental Retardation. In: Janigro, D. (eds) Mammalian Brain Development. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60761-287-2_9

Download citation

Publish with us

Policies and ethics