Skip to main content

Drug Permeation Across the Fetal Maternal Barrier

  • Chapter
  • First Online:
Mammalian Brain Development

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 998 Accesses

Abstract

Mammalians have barriers that regulate and limit the distribution of a broad variety of compounds and xenobiotics. Among these, the placental barrier, which forms during embryogenesis, protects the developing fetus. The placenta is composed of several layers of cells acting as a barrier for the diffusion of substances between the maternal and fetal circulatory systems. Lipid-soluble molecules can readily cross while the transfer of large-molecular-weight molecules are limited. Anatomical and functional properties of the placental barrier and similarities to the blood-brain barrier (BBB) will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Syme MR, Paxton JW, Keelan JA (2004) Drug transfer and metabolism by the human placenta. Clin Pharmacokinet 43:487–514

    Article  PubMed  CAS  Google Scholar 

  2. Myllynen P, Pasanen M, Pelkonen O (2005) Human placenta: a human organ for developmental toxicology research and biomonitoring. Placenta 26:361–371

    Article  PubMed  CAS  Google Scholar 

  3. Myren M, Mose T, Mathiesen L, Knudsen LE (2007) The human placenta – an alternative for studying foetal exposure. Toxicol In Vitro 21:1332–1340

    Article  PubMed  CAS  Google Scholar 

  4. Cross JC (2006) Placental function in development and disease. Reprod Fertil Dev 18:71–76

    Article  PubMed  CAS  Google Scholar 

  5. Ganapathy V, Prasad PD, Ganapathy ME, Leibach FH (2000) Placental transporters relevant to drug distribution across the maternal-fetal interface. J Pharmacol Exp Ther 294:413–420

    PubMed  CAS  Google Scholar 

  6. Marin JJ, Macias RI, Serrano MA (2003) The hepatobiliary-like excretory function of the placenta. A review. Placenta 24:431–438

    Article  PubMed  CAS  Google Scholar 

  7. van der Aa EM, Peereboom-Stegeman JH, Noordhoek J, Gribnau FW, Russel FG (1998) Mechanisms of drug transfer across the human placenta. Pharm World Sci 20:139–148

    Article  PubMed  Google Scholar 

  8. Mihaly GW, Morgan DJ, Marshall AW, Smallwood RA, Cockbain S, MacLellan D, Hardy KJ (1982) Placental transfer of ranitidine during steady-state infusions of maternal and fetal sheep. J Pharm Sci 71:1008–1010

    Article  PubMed  CAS  Google Scholar 

  9. Mihaly GW, Morgan DJ (1983) Placental drug transfer: effects of gestational age and species. Pharmacol Ther 23:253–266

    Article  PubMed  CAS  Google Scholar 

  10. Reynoso EE, Shepherd FA, Messner HA, Farquharson HA, Garvey MB, Baker MA (1987) Acute leukemia during pregnancy: the Toronto Leukemia Study Group experience with long-term follow-up of children exposed in utero to chemotherapeutic agents. J Clin Oncol 5:1098–1106

    PubMed  CAS  Google Scholar 

  11. Dye JF, Jablenska R, Donnelly JL, Lawrence L, Leach L, Clark P, Firth JA (2001) Phenotype of the endothelium in the human term placenta. Placenta 22:32–43

    Article  PubMed  CAS  Google Scholar 

  12. St Pierre MV, Serrano MA, Macias RI, Dubs U, Hoechli M, Lauper U, Meier PJ, Marin JJ (2000) Expression of members of the multidrug resistance protein family in human term placenta. Am J Physiol Regul Integr Comp Physiol 279:R1495–R1503

    PubMed  CAS  Google Scholar 

  13. Patel P, Weerasekera N, Hitchins M, Boyd CA, Johnston DG, Williamson C (2003) Semi quantitative expression analysis of MDR3, FIC1, BSEP, OATP-A, OATP-C, OATP-D, OATP-E and NTCP gene transcripts in 1st and 3rd trimester human placenta. Placenta 24:39–44

    Article  PubMed  CAS  Google Scholar 

  14. Pastrakuljic A, Derewlany LO, Koren G (1999) Maternal cocaine use and cigarette smoking in pregnancy in relation to amino acid transport and fetal growth. Placenta 20:499–512

    Article  PubMed  CAS  Google Scholar 

  15. Hakkola J, Pelkonen O, Pasanen M, Raunio H (1998) Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity. Crit Rev Toxicol 28:35–72

    Article  PubMed  CAS  Google Scholar 

  16. Paakki P, Stockmann H, Kantola M, Wagner P, Lauper U, Huch R, Elovaara E, Kirkinen P, Pasanen M (2000) Maternal drug abuse and human term placental xenobiotic and steroid metabolizing enzymes in vitro. Environ Health Perspect 108:141–145

    Article  PubMed  CAS  Google Scholar 

  17. Pasanen M (1999) The expression and regulation of drug metabolism in human placenta. Adv Drug Deliv Rev 38:81–97

    Article  PubMed  CAS  Google Scholar 

  18. Uszynski M (1992) Heparin neutralization by an extract of the human placenta: measurements and the concept of placental barrier to heparin. Gynecol Obstet Invest 33:205–208

    Article  PubMed  CAS  Google Scholar 

  19. Atalla A, Maser E (2001) Characterization of enzymes participating in carbonyl reduction of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in human placenta. Chem Biol Interact 130–132:737–748

    Article  PubMed  Google Scholar 

  20. Pasanen M, Pelkonen O (1994) The expression and environmental regulation of P450 enzymes in human placenta. Crit Rev Toxicol 24:211–229

    Article  PubMed  CAS  Google Scholar 

  21. Marin JJ, Briz O, Serrano MA (2004) A review on the molecular mechanisms involved in the placental barrier for drugs. Curr Drug Deliv 1:275–289

    Article  PubMed  CAS  Google Scholar 

  22. Parman T, Chen G, Wells PG (1998) Free radical intermediates of phenytoin and related teratogens. Prostaglandin H synthase-catalyzed bioactivation, electron paramagnetic resonance spectrometry, and photochemical product analysis. J Biol Chem 273:25079–25088

    Article  PubMed  CAS  Google Scholar 

  23. Azarbayjani F, Danielsson BR (1998) Pharmacologically induced embryonic dysrhythmia and episodes of hypoxia followed by reoxygenation: a common teratogenic mechanism for antiepileptic drugs? Teratology 57:117–126

    Article  PubMed  CAS  Google Scholar 

  24. Bauer B, Hartz AM, Fricker G, Miller DS (2005) Modulation of p-glycoprotein transport function at the blood-brain barrier. Exp Biol Med (Maywood) 230:118–127

    CAS  Google Scholar 

  25. Ushigome F, Takanaga H, Matsuo H, Yanai S, Tsukimori K, Nakano H, Uchiumi T, Nakamura T, Kuwano M, Ohtani H, Sawada Y (2000) Human placental transport of vinblastine, vincristine, digoxin and progesterone: contribution of P-glycoprotein. Eur J Pharmacol 408:1–10

    Article  PubMed  CAS  Google Scholar 

  26. Dickinson RG, Fowler DW, Kluck RM (1989) Maternofetal transfer of phenytoin, p-hydroxy-phenytoin and p-hydroxy-phenytoin-glucuronide in the perfused human placenta. Clin Exp Pharmacol Physiol 16:789–797

    Article  PubMed  CAS  Google Scholar 

  27. Hill MD, Abramson FP (1988) The significance of plasma protein binding on the fetal/maternal distribution of drugs at steady-state. Clin Pharmacokinet 14:156–170

    Article  PubMed  CAS  Google Scholar 

  28. Ward RM (1993) Drug therapy of the fetus. J Clin Pharmacol 33:780–789

    PubMed  CAS  Google Scholar 

  29. Gedeon C, Koren G (2006) Designing pregnancy centered medications: drugs which do not cross the human placenta. Placenta 27:861–868

    Article  PubMed  CAS  Google Scholar 

  30. Pacifici GM, Nottoli R (1995) Placental transfer of drugs administered to the mother. Clin Pharmacokinet 28:235–269

    Article  PubMed  CAS  Google Scholar 

  31. Folkart GR, Dancis J, Money WL (1960) Transfer of carbohydrates across guinea pig placenta. Am J Obstet Gynecol 80:221–223

    PubMed  CAS  Google Scholar 

  32. Hahn T, Desoye G (1996) Ontogeny of glucose transport systems in the placenta and its progenitor tissues. Early Pregnancy 2:168–182

    PubMed  CAS  Google Scholar 

  33. Moe AJ (1995) Placental amino acid transport. Am J Physiol 268:C1321–C1331

    PubMed  CAS  Google Scholar 

  34. Bissonnette JM (1981) Placental transport of carbohydrates. Mead Johnson Symp Perinat Dev Med 18:21–23

    PubMed  CAS  Google Scholar 

  35. Unadkat JD, Dahlin A, Vijay S (2004) Placental drug transporters. Curr Drug Metab 5:125–131

    Article  PubMed  CAS  Google Scholar 

  36. Fricker G, Miller DS (2002) Relevance of multidrug resistance proteins for intestinal drug absorption in vitro and in vivo. Pharmacol Toxicol 90:5–13

    Article  PubMed  CAS  Google Scholar 

  37. Lankas GR, Wise LD, Cartwright ME, Pippert T, Umbenhauer DR (1998) Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reprod Toxicol 12:457–463

    Article  PubMed  CAS  Google Scholar 

  38. Smit JW, Huisman MT, van Tellingen O, Wiltshire HR, Schinkel AH (1999) Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. J Clin Invest 104:1441–1447

    Article  PubMed  CAS  Google Scholar 

  39. Borst P, Evers R, Kool M, Wijnholds J (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92:1295–1302

    Article  PubMed  CAS  Google Scholar 

  40. Pascolo L, Fernetti C, Pirulli D, Crovella S, Amoroso A, Tiribelli C (2003) Effects of maturation on RNA transcription and protein expression of four MRP genes in human placenta and in BeWo cells. Biochem Biophys Res Commun 303:259–265

    Article  PubMed  CAS  Google Scholar 

  41. Leazer TM, Klaassen CD (2003) The presence of xenobiotic transporters in rat placenta. Drug Metab Dispos 31:153–167

    Article  PubMed  CAS  Google Scholar 

  42. Scheffer GL, Kool M, Heijn M, de Haas M, Pijnenborg AC, Wijnholds J, van Helvoort A, de Jong MC, Hooijberg JH, Mol CA, van der Linden M, de Vree JM, van der Valk P, Elferink RP, Borst P, Scheper RJ (2000) Specific detection of multidrug resistance proteins MRP1, MRP2, MRP3, MRP5, and MDR3 P-glycoprotein with a panel of monoclonal antibodies. Cancer Res 60:5269–5277

    PubMed  CAS  Google Scholar 

  43. Litman T, Jensen U, Hansen A, Covitz KM, Zhan Z, Fetsch P, Abati A, Hansen PR, Horn T, Skovsgaard T, Bates SE (2002) Use of peptide antibodies to probe for the mitoxantrone resistance-associated protein MXR/BCRP/ABCP/ABCG2. Biochim Biophys Acta 1565:6–16

    Article  PubMed  CAS  Google Scholar 

  44. Langmann T, Mauerer R, Zahn A, Moehle C, Probst M, Stremmel W, Schmitz G (2003) Real-time reverse transcription-PCR expression profiling of the complete human ATP-binding cassette transporter superfamily in various tissues. Clin Chem 49:230–238

    Article  PubMed  CAS  Google Scholar 

  45. Shang T, Uihlein AV, Van Asten J, Kalyanaraman B, Hillard CJ (2003) 1-Methyl-4-phenylpyridinium accumulates in cerebellar granule neurons via organic cation transporter 3. J Neurochem 85:358–367

    Article  PubMed  CAS  Google Scholar 

  46. Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C, Barlow DP (2001) Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol Cell Biol 21:4188–4196

    Article  PubMed  CAS  Google Scholar 

  47. Verhaagh S, Barlow DP, Zwart R (2001) The extraneuronal monoamine transporter Slc22a3/Orct3 co-localizes with the Maoa metabolizing enzyme in mouse placenta. Mech Dev 100:127–130

    Article  PubMed  CAS  Google Scholar 

  48. Barros LF, Yudilevich DL, Jarvis SM, Beaumont N, Young JD, Baldwin SA (1995) Immunolocalisation of nucleoside transporters in human placental trophoblast and endothelial cells: evidence for multiple transporter isoforms. Pflugers Arch 429:394–399

    Article  PubMed  CAS  Google Scholar 

  49. Ward JL, Sherali A, Mo ZP, Tse CM (2000) Kinetic and pharmacological properties of cloned human equilibrative nucleoside transporters, ENT1 and ENT2, stably expressed in nucleoside transporter-deficient PK15 cells. Ent2 exhibits a low affinity for guanosine and cytidine but a high affinity for inosine. J Biol Chem 275:8375–8381

    Article  PubMed  CAS  Google Scholar 

  50. Griffith DA, Jarvis SM (1996) Nucleoside and nucleobase transport systems of mammalian cells. Biochim Biophys Acta 1286:153–181

    PubMed  CAS  Google Scholar 

  51. Friedrich A, Prasad PD, Freyer D, Ganapathy V, Brust P (2003) Molecular cloning and functional characterization of the OCTN2 transporter at the RBE4 cells, an in vitro model of the blood-brain barrier. Brain Res 968:69–79

    Article  PubMed  CAS  Google Scholar 

  52. Margolis G, Kilham L (1978) Cerebellar, epidermal, and dental defects induced by ribavirin in perinatal hamsters and rats. Exp Mol Pathol 29:44–54

    Article  PubMed  CAS  Google Scholar 

  53. Wu X, George RL, Huang W, Wang H, Conway SJ, Leibach FH, Ganapathy V (2000) Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim Biophys Acta 1466:315–327

    Article  PubMed  CAS  Google Scholar 

  54. Horiuchi M, Kobayashi K, Yamaguchi S, Shimizu N, Koizumi T, Nikaido H, Hayakawa J, Kuwajima M, Saheki T (1994) Primary defect of juvenile visceral steatosis (jvs) mouse with systemic carnitine deficiency is probably in renal carnitine transport system. Biochim Biophys Acta 1226:25–30

    PubMed  CAS  Google Scholar 

  55. Ohashi R, Tamai I, Yabuuchi H, Nezu JI, Oku A, Sai Y, Shimane M, Tsuji A (1999) Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther 291:778–784

    PubMed  CAS  Google Scholar 

  56. Wessler I, Roth E, Deutsch C, Brockerhoff P, Bittinger F, Kirkpatrick CJ, Kilbinger H (2001) Release of non-neuronal acetylcholine from the isolated human placenta is mediated by organic cation transporters. Br J Pharmacol 134:951–956

    Article  PubMed  CAS  Google Scholar 

  57. Chen SS, Perucca E, Lee JN, Richens A (1982) Serum protein binding and free concentration of phenytoin and phenobarbitone in pregnancy. Br J Clin Pharmacol 13:547–552

    PubMed  CAS  Google Scholar 

  58. Mucklow JC (1986) The fate of drugs in pregnancy. Clin Obstet Gynaecol 13:161–175

    PubMed  CAS  Google Scholar 

  59. Economides D, Braithwaite J (1994) Smoking, pregnancy and the fetus. J R Soc Health 114:198–201

    Article  PubMed  CAS  Google Scholar 

  60. Sastry BV (1991) Placental toxicology: tobacco smoke, abused drugs, multiple chemical interactions, and placental function. Reprod Fertil Dev 3:355–372

    Article  PubMed  CAS  Google Scholar 

  61. Ostrea EM Jr (1999) Testing for exposure to illicit drugs and other agents in the neonate: a review of laboratory methods and the role of meconium analysis. Curr Probl Pediatr 29:37–56

    PubMed  Google Scholar 

  62. VanBlerk GA, Majerus TC, Myers RA (1980) Teratogenic potential of some psychopharmacologic drugs: a brief review. Int J Gynaecol Obstet 17:399–402

    PubMed  CAS  Google Scholar 

  63. Ostrea EM Jr, Hernandez JD, Bielawski DM, Kan JM, Leonardo GM, Abela MB, Church MW, Hannigan JH, Janisse JJ, Ager JW, Sokol RJ (2006) Fatty acid ethyl esters in meconium: are they biomarkers of fetal alcohol exposure and effect? Alcohol Clin Exp Res 30:1152–1159

    Article  PubMed  CAS  Google Scholar 

  64. Whyatt RM, Barr DB (2001) Measurement of organophosphate metabolites in postpartum meconium as a potential biomarker of prenatal exposure: a validation study. Environ Health Perspect 109:417–420

    Article  PubMed  CAS  Google Scholar 

  65. Little BB, VanBeveren TT (1996) Placental transfer of selected substances of abuse. Semin Perinatol 20:147–153

    Article  PubMed  CAS  Google Scholar 

  66. Barr DB, Wang RY, Needham LL (2005) Biologic monitoring of exposure to environmental chemicals throughout the life stages: requirements and issues for consideration for the National Children’s Study. Environ Health Perspect 113:1083–1091

    Article  PubMed  CAS  Google Scholar 

  67. Rodier PM (1994) Vulnerable periods and processes during central nervous system development. Environ Health Perspect 102(Suppl 2):121–124

    Article  PubMed  Google Scholar 

  68. Abbott N (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200:527

    Article  Google Scholar 

  69. Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25:5–23

    Article  PubMed  Google Scholar 

  70. Sinha C, Agrawal AK, Islam F, Seth K, Chaturvedi RK, Shukla S, Seth PK (2004) Mosquito repellent (pyrethroid-based) induced dysfunction of blood-brain barrier permeability in developing brain. Int J Dev Neurosci 22:31–37

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Marchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ghosh, C., Marchi, N. (2009). Drug Permeation Across the Fetal Maternal Barrier. In: Janigro, D. (eds) Mammalian Brain Development. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60761-287-2_8

Download citation

Publish with us

Policies and ethics