Skip to main content

Seizure Propensity and Brain Development: A Lesson from Animal Models

  • Chapter
  • First Online:
Mammalian Brain Development

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 961 Accesses

Abstract

Both clinical and animal studies suggest that seizure susceptibility is the highest during development. Data in immature rats using different seizure models show that ictal activity spreads faster in developing brain compared to adults. This may be related to immaturity of endogenous seizure controlling systems, multifocal seizure origin, or to a short refractory period following a seizure event in developing brain. Animal studies of cortical malformations as well as genetic models offer important clues for factors underlying neuronal hyperexcitability in the terrain of compromised brain.

Animal models also show that long-term seizure consequences have age-specific features. Seizure-induced changes in neurotransmitter receptors and ion channels, plasticity-related functional changes in neuronal networks, induction of neuromodulatory molecules such as inflammatory mediators, neurotrophins, neuropeptides are among the possible mechanisms, which define the immediate and long-term response of the developing brain to seizures. Further elucidation of these aspects and their role in ictogenesis and epileptogenesis using clinically relevant experimental models in developing rats is instrumental for the future translation of these findings into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hauser WA (1997) Incidence and prevalence. In: Engel J Jr, Pedley TA (eds) Epilepsy: a comprehensive textbook. Lippincott-Raven Publishers, Philadelphia, pp 47–57

    Google Scholar 

  2. Shinnar S, Pellock JM (2002) Update on the epidemiology and prognosis of pediatric epilepsy. J Child Neurol 17(Suppl 1):S4–S17

    PubMed  Google Scholar 

  3. Hauser WA, Kurland LT (1975) The epidemiology of epilepsy in Rochester, Minnesota, 1935 through 1967. Epilepsia 16:1–66

    PubMed  CAS  Google Scholar 

  4. Hauser WA (1990) Status epilepticus: epidemiologic considerations. Neurology 40:9–13

    PubMed  CAS  Google Scholar 

  5. Moshé SL, Shinnar S, Swann JW (1995) Partial (focal) seizures in developing brain. In: Schwarzkroin PA, Moshe SL, Noebels JL, Swann JW (eds) Brain development and epilepsy. Oxford University Press, New York, pp 34–65

    Google Scholar 

  6. Vernadakis A, Woodbury DM (1969) The developing animal as a model. Epilepsia 10:163–178

    PubMed  CAS  Google Scholar 

  7. Vernadakis A, Woodbury D (1969) Maturational factors in development of seizures. In: Jasper H, Ward A, Pope A (eds) Mechanisms of the epilepsies. Little, Brown and Co., Boston, pp 535–541

    Google Scholar 

  8. Cavalheiro EA, Silva DF, Turski WA, Calderazzo-Filho LS, Bortolotto ZA, Turski L (1987) The susceptibility of rats to pilocarpine-induced seizures is age-dependent. Brain Res 465:43–58

    PubMed  CAS  Google Scholar 

  9. Moshé SL, Albala BJ, Ackermann RF, Engel JJ (1983) Increased seizure susceptibility of the immature brain. Dev Brain Res 7:81–85

    Google Scholar 

  10. Moshé SL (1989) Ontogeny of seizures and substantia nigra modulation. In: Kellaway P, Noebels JF (eds) Problems and concepts in developmental neurophysiology. Johns Hopkins, Baltimore, pp 247–262

    Google Scholar 

  11. Schwartzkroin PA (1984) Epileptogenesis in the immature CNS. In: Schwartzkroin PA, Wheal HV (eds) Electrophysiology of epilepsy. Academic, London, pp 389–412

    Google Scholar 

  12. Velíšková J, Velíšek L, Mareš P, Rokyta R, Budko KP (1991) Bicuculline-induced neocortical epileptiform foci and the effects of 6-hydroxydopamine in developing rats. Brain Res Bull 26:693–698

    PubMed  Google Scholar 

  13. Velíšková J (2006) Behavioral characterization of seizures in rats. In: Pitkanen A, Schwartzkroin PA, Moshé SL (eds) Models of seizures and epilepsy. Elsevier, San Diego, pp 601–611

    Google Scholar 

  14. Mareš P, Schickerová R (1980) Seizures elicited by subcutaneous injection of metrazol during ontogenesis in rats. Act Nerv Super (Praha) 22:264–268

    Google Scholar 

  15. Velíšková J, Velíšek L, Mareš P (1988) Epileptic phenomena produced by kainic acid in laboratory rats during ontogenesis. Physiol Bohemoslov 37:395–405

    PubMed  Google Scholar 

  16. Baram TZ, Snead OC III (1990) Bicuculline induced seizures in infant rats: ontogeny of behavioral and electrocortical phenomena. Dev Brain Res 57:291–295

    CAS  Google Scholar 

  17. Zouhar A, Mareš P, Lišková-Bernášková K, Mudrochová M (1989) Motor and electrocorticographic epileptic activity induced by bicuculline in developing rats. Epilepsia 30:501–510

    PubMed  CAS  Google Scholar 

  18. Remler MP, Marcussen WH (1985) Bicuculline methiodide in the blood-brain barrier-epileptogen model of epilepsy. Epilepsia 26:69–73

    PubMed  CAS  Google Scholar 

  19. Mareš P, Chino M, Kubová H, Mathern P, Veliký M (2000) Convulsant action of systemically administered glutamate and bicuculline methiodide in immature rats. Epilepsy Res 42:183–189

    PubMed  Google Scholar 

  20. Joo F (1987) Current aspects of the development of the blood-brain barrier. Int J Dev Neurosci 5:369–372

    PubMed  CAS  Google Scholar 

  21. Velíšek L (2006) Model of chemically-induced acute seizures. In: Pitkanen A, Schwartzkroin PA, Moshé SL (eds) Models of seizures and epilepsy. Elsevier, San Diego, pp 127–152

    Google Scholar 

  22. Schoepp DD, Gamble AY, Salhoff CR, Johnson BG, Ornstein PL (1990) Excitatory amino acid-induced convulsions in neonatal rats mediated by distinct receptor subtypes. Eur J Pharmacol 182:421–427

    PubMed  CAS  Google Scholar 

  23. Mareš P, Folbergrová J, Langmeier M, Haugvicová R, Kubová H (1997) Convulsant action of D, L-homocysteic acid and its stereoisomers in immature rats. Epilepsia 38:767–776

    PubMed  Google Scholar 

  24. Mareš P, Folbergrová J, Kubová H (2004) Excitatory aminoacids and epileptic seizures in immature brain. Physiol Res 53(Suppl 1):S115–S124

    PubMed  Google Scholar 

  25. Nadler JV, Perry BW, Cotman CW (1978) Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271:676–677

    PubMed  CAS  Google Scholar 

  26. Rizzi M, Perego C, Aliprandi M et al (2003) Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol Dis 14:494–503

    PubMed  CAS  Google Scholar 

  27. Cherubini E, DeFeo MR, Mecarelli O, Ricci GF (1983) Behavioral and electrographic patterns induced by systemic administration of kainic acid in developing rats. Dev Brain Res 9:69–77

    CAS  Google Scholar 

  28. Albala BJ, Moshé SL, Okada R (1984) Kainic-acid-induced seizures: a developmental study. Dev Brain Res 13:139–148

    CAS  Google Scholar 

  29. Frush DP, Giacchino JL, McNamara JO (1986) Evidence implicating dentate granule cells in development of entorhinal kindling. Exp Neurol 92:92–101

    PubMed  CAS  Google Scholar 

  30. Grimes LM, Earnhardt TS, Mitchell CL, Tilson HA, Hong JS (1990) Granule cells in the ventral, but not dorsal, dentate gyrus are essential for kainic acid-induced wet dog shakes. Brain Res 514:167–170

    PubMed  CAS  Google Scholar 

  31. Velíšek L, Jehle K, Asche S, Velíšková J (2007) Model of infantile spasms induced by N-methyl-D-aspartic acid in prenatally impaired brain. Ann Neurol 61:109–119

    PubMed  Google Scholar 

  32. Mareš P, Velíšek L (1992) N-methyl-D-aspartate (NMDA)-induced seizures in developing rats. Brain Res Dev Brain Res 65:185–189

    PubMed  Google Scholar 

  33. Olsen RW (1981) The GABA postsynaptic membrane receptor-ionophore complex. Site of action of convulsant and anticonvulsant drugs. Mol Cell Biochem 39:261–279

    PubMed  CAS  Google Scholar 

  34. Wakamori M, Ikemoto Y, Akaike N (1991) Effects of two volatile anesthetics and a volatile convulsant on the excitatory and inhibitory amino acid responses in dissociated CNS neurons of the rat. J Neurophysiol 66:2014–2021

    PubMed  CAS  Google Scholar 

  35. Velíšková J (1999) Age related mechanisms involved in the control of seizures. In: Nehlig A, Motte J, Moshé SL, Plouin P (eds) Childhood epilepsies and brain development. John Libbey, London, pp 39–51

    Google Scholar 

  36. Browning RA, Nelson DK (1986) Modification of electroshock and pentylenetetrazol seizure patterns in rats after precollicular transections. Exp Neurol 93:546–556

    PubMed  CAS  Google Scholar 

  37. Browning RA (1985) Role of the brain-stem reticular formation in tonic-clonic seizures: lesion and pharmacological studies. Fed Proc 44:2425–2431

    PubMed  CAS  Google Scholar 

  38. Velíšková J, Moshé SL (2006) Update on the role of substantia nigra pars reticulata in the regulation of seizures. Epilepsy Curr 6:83–87

    PubMed  Google Scholar 

  39. Iadarola MJ, Gale K (1981) Cellular compartments of GABA in brain and their relationship to anticonvulsant activity. Mol Cell Biochem 39:305–330

    PubMed  CAS  Google Scholar 

  40. Depaulis A, Vergnes M, Marescaux C (1994) Endogenous control of epilepsy: the nigral inhibitory system. Prog Neurobiol 42:33–52

    PubMed  CAS  Google Scholar 

  41. Pazdernik TL, Cross RS, Giesler M, Samson FE, Nelson SR (1985) Changes in local cerebral glucose utilization induced by convulsants. Neuroscience 14:823–835

    PubMed  CAS  Google Scholar 

  42. Engel J Jr, Wolfson L, Brown L (1978) Anatomical correlates of electrical and behavioral events related to amygdaloid kindling. Ann Neurol 3:538–544

    PubMed  Google Scholar 

  43. Ben-Ari Y, Riche D, Tremblay E, Charton G (1981) Alterations in local glucose consumption following systemic administration of kainic acid, bicuculline or metrazol. Eur Neurol 20:173–175

    PubMed  CAS  Google Scholar 

  44. Lothman EW, Collins RC (1981) Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res 218:299–318

    PubMed  CAS  Google Scholar 

  45. Velíšková J, Miller AM, Nunes ML, Brown LL (2005) Regional neural activity within the substantia nigra during peri-ictal flurothyl generalized seizure stages. Neurobiol Dis 20:752–759

    PubMed  Google Scholar 

  46. Ackermann RF, Moshé SL, Albala BJ (1989) Restriction of enhanced 14C–2-deoxyglucose utilization to rhinencephalic structures in immature amygdala-kindled rats. Exp Neurol 104:73–81

    PubMed  CAS  Google Scholar 

  47. Sperber EF, Brown LL, Moshé SL (1992) Functional mapping of different seizure states in the immature rat using 14C–2-deoxyglucose. Epilepsia 33:44

    Google Scholar 

  48. Pereira de Vasconcelos A, el Hamdi G, Vert P, Nehlig A (1992) An experimental model of generalized seizures for the measurement of local cerebral glucose utilization in the immature rat. II mapping of the brain metabolism using quantitative [14C]-2-deoxyglucose technique. Dev Brain Res 69:243–259

    CAS  Google Scholar 

  49. Velíšek L, Mikolášová R, Mareš P (1989) Effects of ketamine on metrazol-induced seizures during ontogenesis in rats. Pharmacol Biochem Behav 32:405–410

    PubMed  Google Scholar 

  50. Velíšek L, Kusá R, Kulovaná M, Mareš P (1990) Excitatory amino acid antagonists and pentylenetetrazol-induced seizures during ontogenesis. I. The effects of 2-amino-7-phosphonoheptanoate. Life Sci 46:1349–1357

    PubMed  Google Scholar 

  51. Velíšek L, Verešová S, Pobišová H, Mareš P (1991) Excitatory amino acid antagonists and pentylenetetrazol-induced seizures during ontogenesis. II. The effects of MK-801. Psychopharmacology (Berl) 104:510–514

    Google Scholar 

  52. Priel MR, dos Santos NF, Cavalheiro EA (1996) Developmental aspects of the pilocarpine model of epilepsy. Epilepsy Res 26:115–121

    PubMed  CAS  Google Scholar 

  53. Coyle JT, Enna SJ (1976) Neurochemical aspects of the ontogenesis of GABAnergic neurons in the rat brain. Brain Res 111:119–133

    PubMed  CAS  Google Scholar 

  54. Marchi N, Oby E, Batra A et al (2007) In vivo and in vitro effects of pilocarpine: relevance to ictogenesis. Epilepsia 48:1934–1946

    PubMed  CAS  Google Scholar 

  55. Uva L, Librizzi L, Marchi N et al (2008) Acute induction of epileptiform discharges by pilocarpine in the in vitro isolated guinea-pig brain requires enhancement of blood-brain barrier permeability. Neuroscience 151:303–312

    PubMed  CAS  Google Scholar 

  56. Patel S, Meldrum BS, Fine A (1988) Susceptibility to pilocarpine-induced seizures in rats increases with age. Behav Brain Res 31:165–167

    PubMed  CAS  Google Scholar 

  57. Dubé C, Boyet S, Marescaux C, Nehlig A (2000) Progressive metabolic changes underlying the chronic reorganization of brain circuits during the silent phase of the lithium-pilocarpine model of epilepsy in the immature and adult rat. Exp Neurol 162:146–157

    PubMed  Google Scholar 

  58. Dubé C, Boyet S, Marescaux C, Nehlig A (2001) Relationship between neuronal loss and interictal glucose metabolism during the chronic phase of the lithium-pilocarpine model of epilepsy in the immature and adult rat. Exp Neurol 167:227–241

    PubMed  Google Scholar 

  59. Fernandes MJ, Dube C, Boyet S, Marescaux C, Nehlig A (1999) Correlation between hypermetabolism and neuronal damage during status epilepticus induced by lithium and pilocarpine in immature and adult rats. J Cereb Blood Flow Metab 19:195–209

    PubMed  CAS  Google Scholar 

  60. Hirsch E, Baram TZ, Snead OC III (1992) Ontogenic study of lithium-pilocarpine-induced status epilepticus in rats. Brain Res 583:120–126

    PubMed  CAS  Google Scholar 

  61. Sankar R, Shin DH, Liu H, Mazarati A, Pereira de Vasconcelos A, Wasterlain CG (1998) Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J Neurosci 18:8382–8393

    PubMed  CAS  Google Scholar 

  62. Wood JD, Peesker SJ (1971) Sequential lowering and raising of brain gamma-aminobutyric acid levels by isonicotinic acid hydrazide. Can J Physiol Pharmacol 49:780–781

    PubMed  CAS  Google Scholar 

  63. Wood JD, Abrahams DE (1971) The comparative effects of various hydrazides on -aminobutyric acid and its metabolism. J Neurochem 18:1017–1025

    PubMed  CAS  Google Scholar 

  64. Wu JY, Roberts E (1974) Properties of brain L-glutamate decarboxylase: inhibition studies. J Neurochem 23:759–767

    PubMed  CAS  Google Scholar 

  65. Mareš P, Trojan S (1991) Ontogenetic development of isonicotinehydrazide-induced seizures in rats. Brain Dev 13:121–125

    PubMed  Google Scholar 

  66. Mareš P, Kubová H, Zouhar A, Folbergrová J, Koryntová H, Staňková L (1993) Motor and electrocorticographic epileptic activity induced by 3-mercaptopropionic acid in immature rats. Epilepsy Res 16:11–18

    PubMed  Google Scholar 

  67. Roberts E (1974) Gamma-aminobutyric acid and nervous system function – a perspective. Biochem Pharmacol 23:2637–2649

    PubMed  CAS  Google Scholar 

  68. Erlander MG, Tobin AJ (1991) The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res 16:215–226

    PubMed  CAS  Google Scholar 

  69. Baram TZ, Hirsch E, Schultz L (1993) Short-interval amygdala kindling in neonatal rats. Brain Res Dev Brain Res 73:79–83

    PubMed  CAS  Google Scholar 

  70. Moshé SL (1981) The effects of age on the kindling phenomenon. Dev Psychobiol 14:75–81

    PubMed  Google Scholar 

  71. Moshé SL, Albala BJ (1983) Maturational changes in postictal refractoriness and seizure susceptibility in developing rats. Ann Neurol 13:552–557

    PubMed  Google Scholar 

  72. Haas K, Sperber EF, Moshé SL (1990) Kindling in developing animals: expression of severe seizures and enhanced development of bilateral foci. Dev Brain Res 56:275–280

    CAS  Google Scholar 

  73. Haas KZ, Sperber EF, Moshé SL (1992) Kindling in developing animals: interactions between ipsilateral foci. Dev Brain Res 68:140–143

    CAS  Google Scholar 

  74. Pinel JPJ, Rovner LI (1978) Experimental epileptogenesis: kindling induced epilepsy in rats. Exp Neurol 58:190–202

    PubMed  CAS  Google Scholar 

  75. Burchfiel JL, Applegate CD, Konkol RJ (1986) Kindling antagonism: a role for norepinephrine in seizure suppression. In: Wada JA (ed) Kindling 3. Raven, New York, pp 213–229

    Google Scholar 

  76. Shinnar S, Berg AT, Moshe SL et al (1990) Risk of seizure recurrence following a first unprovoked seizure in childhood: a prospective study. Pediatrics 85:1076–1085

    PubMed  CAS  Google Scholar 

  77. Verity CM, Butler NR, Golding J (1985) Febrile convulsions in a national cohort followed up from birth. I – Prevalence and recurrence in the first five years of life. Br Med J (Clin Res Ed) 290:1307–1310

    CAS  Google Scholar 

  78. Fishman MA (1979) Febrile seizures: the treatment controversy. J Pediatr 94:177–184

    PubMed  CAS  Google Scholar 

  79. Baram TZ, Gerth A, Schultz L (1997) Febrile seizures: an appropriate-aged model suitable for long-term studies. Brain Res Dev Brain Res 98:265–270

    PubMed  CAS  Google Scholar 

  80. Hjeresen DL, Diaz J (1988) Ontogeny of susceptibility to experimental febrile seizures in rats. Dev Psychobiol 21:261–275

    PubMed  CAS  Google Scholar 

  81. Morimoto T, Nagao H, Sano N, Takahashi M, Matsuda H (1990) Hyperthermia-induced seizures with a servo system: neurophysiological roles of age, temperature elevation rate and regional GABA content in the rat. Brain Dev 12:279–283

    PubMed  CAS  Google Scholar 

  82. Olson JE, Scher MS, Holtzman D (1984) Effects of anticonvulsants on hyperthermia-induced seizures in the rat pup. Epilepsia 25:96–99

    PubMed  CAS  Google Scholar 

  83. Alling C (1985) Biochemical maturation of the brain and the concept of vulnerable periods. In: Rydberg UEA (ed) Alcohol and the developing brain. Raven, New York, pp 5–10

    Google Scholar 

  84. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83

    PubMed  CAS  Google Scholar 

  85. Romijn HJ, Hofman MA, Gramsbergen A (1991) At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev 26:61–67

    PubMed  CAS  Google Scholar 

  86. Baram T (2002) Animal models for febrile seizures. In: Baram T (ed) Febrile seizures. Academic, San Diego, pp 189–201

    Google Scholar 

  87. Dubé CM, Baram TZ (2006) Complex febrile seizures – An animal model in rodents. In: Pitkanen A, Schwartzkroin PA, Moshé SL (eds) Models of seizures and epilepsy. Elsevier, San Diego, pp 333–340

    Google Scholar 

  88. Holtzman D, Obana K, Olson J (1981) Hyperthermia-induced seizures in the rat pup: a model for febrile convulsions in children. Science 213:1034–1036

    PubMed  CAS  Google Scholar 

  89. Chisholm J, Kellogg C, Franck JE (1985) Developmental hyperthermic seizures alter adult hippocampal benzodiazepine binding and morphology. Epilepsia 26:151–157

    PubMed  CAS  Google Scholar 

  90. Zhao DY, Wu XR, Pei YQ, Zuo QH (1985) Long-term effects of febrile convulsion on seizure susceptibility in P77PMC rat – resistant to acoustic stimuli but susceptible to kainate-induced seizures. Exp Neurol 88:688–695

    PubMed  CAS  Google Scholar 

  91. Carratala F, Moya M (1991) Febrile convulsions induced by microwaves and the alteration in behavior of albino mouse OF1. Biol Neonate 60:62–68

    PubMed  CAS  Google Scholar 

  92. Gilbert M, Cain D (1985) A single neonatal pentylenetetrazol or hyperthermia convulsion increases kindling susceptibility in the adult rat. Dev Brain Res 22:169–180

    Google Scholar 

  93. Jiang W, Duong TM, de Lanerolle NC (1999) The neuropathology of hyperthermic seizures in the rat. Epilepsia 40:5–19

    PubMed  CAS  Google Scholar 

  94. Klauenberg BJ, Sparber SB (1984) A kindling-like effect induced by repeated exposure to heated water in rats. Epilepsia 25:292–301

    PubMed  CAS  Google Scholar 

  95. Palmer GC, Borrelli AR, Hudzik TJ, Sparber S (1998) Acute heat stress model of seizures in weanling rats: influence of prototypic anti-seizure compounds. Epilepsy Res 30:203–217

    PubMed  CAS  Google Scholar 

  96. Germano IM, Sperber EF, Moshé SL (1996) Molecular and experimental aspects of neuronal migration disorders. In: Guerrini R, Andermann F, Canapichi R (eds) Dysplasias of cerebral cortex and epilepsy. Lipponcott-Raven, New York, pp 473–488

    Google Scholar 

  97. Sarkisian MR, Rattan S, D’Mello SR, LoTurco JJ (1999) Characterization of seizures in the flathead rat: a new genetic model of epilepsy in early postnatal development. Epilepsia 40:394–400

    PubMed  CAS  Google Scholar 

  98. Tancredi V, D’Arcangelo G, Zona C, Siniscalchi A, Avoli M (1992) Induction of epileptiform activity by temperature elevation in hippocampal slices from young rats: an in vitro model for febrile seizures? Epilepsia 33:228–234

    PubMed  CAS  Google Scholar 

  99. Dubé C, Chen K, Eghbal-Ahmadi M, Brunson K, Soltesz I, Baram TZ (2000) Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann Neurol 47:336–344

    PubMed  Google Scholar 

  100. Jensen FE, Baram TZ (2000) Developmental seizures induced by common early-life insults: short- and long-term effects on seizure susceptibility. Ment Retard Dev Disabil Res Rev 6:253–257

    PubMed  CAS  Google Scholar 

  101. Dubé C, Yu H, Nalcioglu O, Baram TZ (2004) Serial MRI after experimental febrile seizures: altered T2 signal without neuronal death. Ann Neurol 56:709–714

    PubMed  Google Scholar 

  102. Toth Z, Yan XX, Haftoglou S, Ribak CE, Baram TZ (1998) Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J Neurosci 18:4285–4294

    PubMed  CAS  Google Scholar 

  103. Dubé C, Vezzani A, Behrens M, Bartfai T, Baram TZ (2005) Interleukin-1beta contributes to the generation of experimental febrile seizures. Ann Neurol 57:152–155

    PubMed  Google Scholar 

  104. Heida JG, Boisse L, Pittman QJ (2004) Lipopolysaccharide-induced febrile convulsions in the rat: short-term sequelae. Epilepsia 45:1317–1329

    PubMed  Google Scholar 

  105. Heida JG, Teskey GC, Pittman QJ (2005) Febrile convulsions induced by the combination of lipopolysaccharide and low-dose kainic acid enhance seizure susceptibility, not epileptogenesis, in rats. Epilepsia 46:1898–1905

    PubMed  Google Scholar 

  106. Schwartzkroin PA, Roper SN, Wenzel HJ (2004) Cortical dysplasia and epilepsy: animal models. Adv Exp Med Biol 548:145–174

    PubMed  CAS  Google Scholar 

  107. Bassanini S, Hallene K, Battaglia G et al (2007) Early cerebrovascular and parenchymal events following prenatal exposure to the putative neurotoxin methylazoxymethanol. Neurobiol Dis 26:481–495

    PubMed  CAS  Google Scholar 

  108. Ashwell K (1987) Direct and indirect effects on the lateral geniculate nucleus neurons of prenatal exposure to methylazoxymethanol acetate. Brain Res 432:199–214

    PubMed  CAS  Google Scholar 

  109. Baraban SC, Schwartzkroin PA (1996) Flurothyl seizure susceptibility in rats following prenatal methylazoxymethanol treatment. Epilepsy Res 23:189–194

    PubMed  CAS  Google Scholar 

  110. Battaglia G, Bassanini S (2006) MAM and other “lesion” models of developmental epilepsy. In: Pitkanen A, Schwartzkroin PA, Moshé SL (eds) Models of seizures and epilepsy. Elsevier, San Diego, pp 305–313

    Google Scholar 

  111. Castro PA, Cooper EC, Lowenstein DH, Baraban SC (2001) Hippocampal heterotopia lack functional Kv4.2 potassium channels in the methylazoxymethanol model of cortical malformations and epilepsy. J Neurosci 21:6626–6634

    PubMed  CAS  Google Scholar 

  112. Chevassus-Au-Louis N, Congar P, Represa A, Ben-Ari Y, Gaiarsa JL (1998) Neuronal migration disorders: heterotopic neocortical neurons in CA1 provide a bridge between the hippocampus and the neocortex. Proc Natl Acad Sci USA 95:10263–10268

    PubMed  CAS  Google Scholar 

  113. Chevassus-Au-Louis N, Rafiki A, Jorquera I, Ben-Ari Y, Represa A (1998) Neocortex in the hippocampus: an anatomical and functional study of CA1 heterotopias after prenatal treatment with methylazoxymethanol in rats. J Comp Neurol 394:520–536

    PubMed  CAS  Google Scholar 

  114. Colacitti C, Sancini G, DeBiasi S et al (1999) Prenatal methylazoxymethanol treatment in rats produces brain abnormalities with morphological similarities to human developmental brain dysgeneses. J Neuropathol Exp Neurol 58:92–106

    PubMed  CAS  Google Scholar 

  115. Germano IM, Sperber EF (1998) Transplacentally induced neuronal migration disorders: an animal model for the study of the epilepsies. J Neurosci Res 51:473–488

    PubMed  CAS  Google Scholar 

  116. Sancini G, Franceschetti S, Battaglia G et al (1998) Dysplastic neocortex and subcortical heterotopias in methylazoxymethanol-treated rats: an intracellular study of identified pyramidal neurones. Neurosci Lett 246:181–185

    PubMed  CAS  Google Scholar 

  117. Battaglia G, Arcelli P, Granata T et al (1996) Neuronal migration disorders and epilepsy: a morphological analysis of three surgically treated patients. Epilepsy Res 26:49–58

    PubMed  CAS  Google Scholar 

  118. Battaglia G, Granata T, Farina L, D’Incerti L, Franceschetti S, Avanzini G (1997) Periventricular nodular heterotopia: epileptogenic findings. Epilepsia 38:1173–1182

    PubMed  CAS  Google Scholar 

  119. Germano IM, Sperber EF, Ahuja S, Moshé SL (1998) Evidence of enhanced kindling and hippocampal neuronal injury in immature rats with neuronal migration disorders. Epilepsia 39:1253–1260

    PubMed  CAS  Google Scholar 

  120. Germano IM, Zhang YF, Sperber EF, Moshé SL (1996) Neuronal migration disorders increase susceptibility to hyperthermia-induced seizures in developing rats. Epilepsia 37:902–910

    PubMed  CAS  Google Scholar 

  121. de Feo MR, Mecarelli O, Ricci GF (1995) Seizure susceptibility in immature rats with microencephaly induced by prenatal exposure to methylazoxymethanol acetate. Pharmacol Res 31:109–114

    PubMed  CAS  Google Scholar 

  122. Marin-Padilla M (1999) Developmental neuropathology and impact of perinatal brain damage. III: gray matter lesions of the neocortex. J Neuropathol Exp Neurol 58:407–429

    PubMed  CAS  Google Scholar 

  123. Marin-Padilla M, Tsai RJ, King MA, Roper SN (2003) Altered corticogenesis and neuronal morphology in irradiation-induced cortical dysplasia: a Golgi-Cox study. J Neuropathol Exp Neurol 62:1129–1143

    PubMed  Google Scholar 

  124. Lin D, Roper SN (2006) In utero irradiation as a model of cortical dysplasia. In: Pitkanen A, Schwartzkroin PA, Moshé SL (eds) Models of seizures and epilepsy. Elsevier, San Diego, pp 315–322

    Google Scholar 

  125. Deukmedjian AJ, King MA, Cuda C, Roper SN (2004) The GABAergic system of the developing neocortex has a reduced capacity to recover from in utero injury in experimental cortical dysplasia. J Neuropathol Exp Neurol 63:1265–1273

    PubMed  CAS  Google Scholar 

  126. Kellinghaus C, Kunieda T, Ying Z, Pan A, Luders HO, Najm IM (2004) Severity of histopathologic abnormalities and in vivo epileptogenicity in the in utero radiation model of rats is dose dependent. Epilepsia 45:583–591

    PubMed  Google Scholar 

  127. Kondo S, Najm I, Kunieda T, Perryman S, Yacubova K, Luders HO (2001) Electroencephalographic characterization of an adult rat model of radiation-induced cortical dysplasia. Epilepsia 42:1221–1227

    PubMed  CAS  Google Scholar 

  128. Roper SN, Gilmore RL, Houser CR (1995) Experimentally induced disorders of neuronal migration produce an increased propensity for electrographic seizures in rats. Epilepsy Res 21:205–219

    PubMed  CAS  Google Scholar 

  129. Zhu WJ, Roper SN (2000) Reduced inhibition in an animal model of cortical dysplasia. J Neurosci 20:8925–8931

    PubMed  CAS  Google Scholar 

  130. Jacobs KM, Gutnick MJ, Prince DA (1996) Hyperexcitability in a model of cortical maldevelopment. Cereb Cortex 6:514–523

    PubMed  CAS  Google Scholar 

  131. Jacobs KM, Kharazia VN, Prince DA (1999) Mechanisms underlying epileptogenesis in cortical malformations. Epilepsy Res 36:165–188

    PubMed  CAS  Google Scholar 

  132. Luhmann HJ, Raabe K (1996) Characterization of neuronal migration disorders in neocortical structures: I. Expression of epileptiform activity in an animal model. Epilepsy Res 26:67–74

    PubMed  CAS  Google Scholar 

  133. Scantlebury MH, Ouellet PL, Psarropoulou C, Carmant L (2004) Freeze lesion-induced focal cortical dysplasia predisposes to atypical hyperthermic seizures in the immature rat. Epilepsia 45:592–600

    PubMed  Google Scholar 

  134. Redecker C, Luhmann HJ, Hagemann G, Fritschy JM, Witte OW (2000) Differential downregulation of GABAA receptor subunits in widespread brain regions in the freeze-lesion model of focal cortical malformations. J Neurosci 20:5045–5053

    PubMed  CAS  Google Scholar 

  135. Zilles K, Qu M, Schleicher A, Luhmann HJ (1998) Characterization of neuronal migration disorders in neocortical structures: quantitative receptor autoradiography of ionotropic glutamate, GABA(A) and GABA(B) receptors. Eur J Neurosci 10:3095–3106

    PubMed  CAS  Google Scholar 

  136. Palmini A, Gambardella A, Andermann F et al (1995) Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol 37:476–487

    PubMed  CAS  Google Scholar 

  137. Luhman HJ (2006) The cortical freeze lesion model. In: Pitkanen A, Schwartzkroin PA, Moshé SL (eds) Models of seizures and epilepsy. Elsevier, San Diego, pp 295–303

    Google Scholar 

  138. Kraemer M, Roth-Haerer A, Bruehl C, Luhmann HJ, Witte OW (2001) Metabolic and electrophysiological alterations in an animal model of neocortical neuronal migration disorder. Neuroreport 12:2001–2006

    PubMed  CAS  Google Scholar 

  139. Marret S, Mukendi R, Gadisseux JF, Gressens P, Evrard P (1995) Effect of ibotenate on brain development: an excitotoxic mouse model of microgyria and posthypoxic-like lesions. J Neuropathol Exp Neurol 54:358–370

    PubMed  CAS  Google Scholar 

  140. Redecker C, Hagemann G, Witte OW, Marret S, Evrard P, Gressens P (1998) Long-term evolution of excitotoxic cortical dysgenesis induced in the developing rat brain. Brain Res Dev Brain Res 109:109–113

    PubMed  CAS  Google Scholar 

  141. Redecker C, Lutzenburg M, Gressens P, Evrard P, Witte OW, Hagemann G (1998) Excitability changes and glucose metabolism in experimentally induced focal cortical dysplasias. Cereb Cortex 8:623–634

    PubMed  CAS  Google Scholar 

  142. Sarkisian MR, Li W, Di Cunto F, D’Mello SR, LoTurco JJ (2002) Citron-kinase, a protein essential to cytokinesis in neuronal progenitors, is deleted in the flathead mutant rat. J Neurosci 22:RC217

    PubMed  Google Scholar 

  143. LoTurco JJ, Sarkisian MR, Cosker L, Bai J (2003) Citron kinase is a regulator of mitosis and neurogenic cytokinesis in the neocortical ventricular zone. Cereb Cortex 13:588–591

    PubMed  Google Scholar 

  144. Roberts MR, Bittman K, Li WW et al (2000) The flathead mutation causes CNS-specific developmental abnormalities and apoptosis. J Neurosci 20:2295–2306

    PubMed  CAS  Google Scholar 

  145. Ramos R (2006) Models with spontaneous seizures and developmental disruption of genetic etiology. In: Pitkanen A, Schwartzkroin PA, Moshé SL (eds) Models of seizures and epilepsy. Elsevier, San Diego, pp 249–259

    Google Scholar 

  146. Yeung RS, Katsetos CD, Klein-Szanto A (1997) Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. Am J Pathol 151:1477–1486

    PubMed  CAS  Google Scholar 

  147. Mizuguchi M, Takashima S, Yamanouchi H, Nakazato Y, Mitani H, Hino O (2000) Novel cerebral lesions in the Eker rat model of tuberous sclerosis: cortical tuber and anaplastic ganglioglioma. J Neuropathol Exp Neurol 59:188–196

    PubMed  CAS  Google Scholar 

  148. Tschuluun N, Wenzel HJ, Schwartzkroin PA (2007) Irradiation exacerbates cortical cytopathology in the Eker rat model of tuberous sclerosis complex, but does not induce hyperexcitability. Epilepsy Res 73:53–64

    PubMed  Google Scholar 

  149. Waltereit R, Welzl H, Dichgans J, Lipp HP, Schmidt WJ, Weller M (2006) Enhanced episodic-like memory and kindling epilepsy in a rat model of tuberous sclerosis. J Neurochem 96:407–413

    PubMed  CAS  Google Scholar 

  150. von der Brelie C, Waltereit R, Zhang L, Beck H, Kirschstein T (2006) Impaired synaptic plasticity in a rat model of tuberous sclerosis. Eur J Neurosci 23:686–692

    PubMed  Google Scholar 

  151. Acampora D, Mazan S, Avantaggiato V et al (1996) Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nat Genet 14:218–222

    PubMed  CAS  Google Scholar 

  152. Weimann JM, Zhang YA, Levin ME, Devine WP, Brulet P, McConnell SK (1999) Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24:819–831

    PubMed  CAS  Google Scholar 

  153. Cipelletti B, Avanzini G, Vitellaro-Zuccarello L et al (2002) Morphological organization of somatosensory cortex in Otx1(-/-) mice. Neuroscience 115:657–667

    PubMed  CAS  Google Scholar 

  154. Pringle AK, Iannotti F, Wilde GJ, Chad JE, Seeley PJ, Sundstrom LE (1997) Neuroprotection by both NMDA and non-NMDA receptor antagonists in in vitro ischemia. Brain Res 755:36–46

    PubMed  CAS  Google Scholar 

  155. Wenzel HJ, Robbins CA, Tsai LH, Schwartzkroin PA (2001) Abnormal morphological and functional organization of the hippocampus in a p35 mutant model of cortical dysplasia associated with spontaneous seizures. J Neurosci 21:983–998

    PubMed  CAS  Google Scholar 

  156. Patel LS, Wenzel HJ, Schwartzkroin PA (2004) Physiological and morphological characterization of dentate granule cells in the p35 knock-out mouse hippocampus: evidence for an epileptic circuit. J Neurosci 24:9005–9014

    PubMed  CAS  Google Scholar 

  157. Meikle L, Talos DM, Onda H et al (2007) A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 27:5546–5558

    PubMed  CAS  Google Scholar 

  158. van Luijtelaar EL, Coenen AM (1986) Two types of electrocortical paroxysms in an inbred strain of rats. Neurosci Lett 70:393–397

    PubMed  CAS  Google Scholar 

  159. Vergnes M, Marescaux C, Micheletti G et al (1982) Spontaneous paroxysmal electroclinical patterns in rat: a model of generalized non-convulsive epilepsy. Neurosci Lett 33:97–101

    PubMed  CAS  Google Scholar 

  160. Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C (1998) Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 55:27–57

    PubMed  CAS  Google Scholar 

  161. Depaulis A (2006) Genetic models of absence epilepsy in the rats. In: Pitkanen A, Schwartzkroin PA, Moshé SL (eds) Models of seizures and epilepsy. Elsevier, San Diego, pp 233–248

    Google Scholar 

  162. Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter JM (1986) Ontogeny of spontaneous petit mal-like seizures in Wistar rats. Dev Brain Res 30:85–87

    Google Scholar 

  163. Coenen AM, Van Luijtelaar EL (1987) The WAG/Rij rat model for absence epilepsy: age and sex factors. Epilepsy Res 1:297–301

    PubMed  CAS  Google Scholar 

  164. Marescaux C, Vergnes M, Depaulis A (1992) Genetic absence epilepsy in rats from Strasbourg – A review. J Neural Transm [Suppl] 35:37–69

    CAS  Google Scholar 

  165. Peeters BW, Kerbusch JM, Coenen AM, Vossen JM, van Luijtelaar EL (1992) Genetics of spike-wave discharges in the electroencephalogram (EEG) of the WAG/Rij inbred rat strain: a classical mendelian crossbreeding study. Behav Genet 22:361–368

    PubMed  CAS  Google Scholar 

  166. Gauguier D, van Luijtelaar G, Bihoreau MT et al (2004) Chromosomal mapping of genetic loci controlling absence epilepsy phenotypes in the WAG/Rij rat. Epilepsia 45:908–915

    PubMed  CAS  Google Scholar 

  167. Rudolf G, Therese Bihoreau M, Godfrey FR et al (2004) Polygenic control of idiopathic generalized epilepsy phenotypes in the genetic absence rats from Strasbourg (GAERS). Epilepsia 45:301–308

    PubMed  Google Scholar 

  168. Fletcher CF, Lutz CM, O’Sullivan TN et al (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87:607–617

    PubMed  CAS  Google Scholar 

  169. Burgess DL, Jones JM, Meisler MH, Noebels JL (1997) Mutation of the Ca2+ channel beta subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell 88:385–392

    PubMed  CAS  Google Scholar 

  170. Brodbeck J, Davies A, Courtney JM et al (2002) The ducky mutation in Cacna2d2 results in altered Purkinje cell morphology and is associated with the expression of a truncated alpha 2 delta-2 protein with abnormal function. J Biol Chem 277:7684–7693

    PubMed  CAS  Google Scholar 

  171. Letts VA, Felix R, Biddlecome GH et al (1998) The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. Nat Genet 19:340–347

    PubMed  CAS  Google Scholar 

  172. Cox GA, Lutz CM, Yang CL et al (1997) Sodium/hydrogen exchanger gene defect in slow-wave epilepsy mutant mice. Cell 91:139–148

    PubMed  CAS  Google Scholar 

  173. Kantheti P, Diaz ME, Peden AE et al (2003) Genetic and phenotypic analysis of the mouse mutant mh2J, an Ap3d allele caused by IAP element insertion. Mamm Genome 14:157–167

    PubMed  CAS  Google Scholar 

  174. Hess EJ, Collins KA, Copeland NG, Jenkins NA, Wilson MC (1994) Deletion map of the coloboma (Cm) locus on mouse chromosome 2. Genomics 21:257–261

    PubMed  CAS  Google Scholar 

  175. Noebels JL (2006) Spontaneous epileptic mutations in the mouse. In: Pitkanen A, Schwartzkroin PA, Moshé SL (eds) Models of seizures and epilepsy. Academic, San Diego, pp 223–232

    Google Scholar 

  176. Ludwig A, Budde T, Stieber J et al (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 22:216–224

    PubMed  CAS  Google Scholar 

  177. Song I, Kim D, Choi S, Sun M, Kim Y, Shin HS (2004) Role of the alpha1G T-type calcium channel in spontaneous absence seizures in mutant mice. J Neurosci 24:5249–5257

    PubMed  CAS  Google Scholar 

  178. Hempelmann A, Taylor KP, Heils A et al (2006) Exploration of the genetic architecture of idiopathic generalized epilepsies. Epilepsia 47:1682–1690

    PubMed  CAS  Google Scholar 

  179. Robinson R, Taske N, Sander T et al (2002) Linkage analysis between childhood absence epilepsy and genes encoding GABAA and GABAB receptors, voltage-dependent calcium channels, and the ECA1 region on chromosome 8q. Epilepsy Res 48:169–179

    PubMed  CAS  Google Scholar 

  180. Urak L, Feucht M, Fathi N, Hornik K, Fuchs K (2006) A GABRB3 promoter haplotype associated with childhood absence epilepsy impairs transcriptional activity. Hum Mol Genet 15:2533–2541

    PubMed  CAS  Google Scholar 

  181. Chen Y, Lu J, Pan H et al (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54:239–243

    PubMed  CAS  Google Scholar 

  182. Chioza B, Everett K, Aschauer H et al (2006) Evaluation of CACNA1H in European patients with childhood absence epilepsy. Epilepsy Res 69:177–181

    PubMed  CAS  Google Scholar 

  183. Liang J, Zhang Y, Wang J et al (2006) New variants in the CACNA1H gene identified in childhood absence epilepsy. Neurosci Lett 406:27–32

    PubMed  CAS  Google Scholar 

  184. Liang J, Zhang Y, Chen Y et al (2007) Common polymorphisms in the CACNA1H gene associated with childhood absence epilepsy in Chinese Han population. Ann Hum Genet 71:325–335

    PubMed  CAS  Google Scholar 

  185. Heron SE, Khosravani H, Varela D et al (2007) Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol 62:560–568

    PubMed  CAS  Google Scholar 

  186. Everett KV, Chioza B, Aicardi J et al (2007) Linkage and association analysis of CACNG3 in childhood absence epilepsy. Eur J Hum Genet 15:463–472

    PubMed  CAS  Google Scholar 

  187. Everett K, Chioza B, Aicardi J et al (2007) Linkage and mutational analysis of CLCN2 in childhood absence epilepsy. Epilepsy Res 75:145–153

    PubMed  CAS  Google Scholar 

  188. Meisler MH, Kearney J, Ottman R, Escayg A (2001) Identification of epilepsy genes in human and mouse. Annu Rev Genet 35:567–588

    PubMed  CAS  Google Scholar 

  189. Haut SR, Velíšková J, Moshé SL (2004) Susceptibility of immature and adult brains to seizure effects. Lancet Neurol 3:608–617

    PubMed  Google Scholar 

  190. Pitkanen A, Sutula TP (2002) Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol 1:173–181

    PubMed  Google Scholar 

  191. Swann JW, Moshé SL (1997) Developmental issues in animal models. In: Engel J Jr, Pedley TA (eds) Epilepsy: a comprehensive textbook. Lippincott-Raven Publishers, Philadelphia, pp 467–480

    Google Scholar 

  192. Wasterlain CG (1978) Neonatal seizures and brain growth. Neuropadiatrie 9:213–228

    PubMed  CAS  Google Scholar 

  193. Sperber EF, Haas KZ, Romero MT, Stanton PK (1999) Flurothyl status epilepticus in developing rats: behavioral, electrographic histological and electrophysiological studies. Brain Res Dev Brain Res 116:59–68

    PubMed  CAS  Google Scholar 

  194. Nehlig A, de Vasconselos AP (1996) The model of pentylenetetrazol-induced status epilepticus in the immature rat: short- and long-term effects. Epilepsy Res 26:93–103

    PubMed  CAS  Google Scholar 

  195. Stafstrom CE, Sasaki-Adams DM (2003) NMDA-induced seizures in developing rats cause long-term learning impairment and increased seizure susceptibility. Epilepsy Res 53:129–137

    PubMed  CAS  Google Scholar 

  196. Ben-Ari Y, Tremblay E, Berger M, Nitecka L (1984) Kainic acid seizure syndrome and binding sites in developing rats. Brain Res 316:284–288

    PubMed  CAS  Google Scholar 

  197. Haas KZ, Sperber EF, Opanashuk LA, Stanton PK, Moshé SL (2001) Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. Hippocampus 11:615–625

    PubMed  CAS  Google Scholar 

  198. Stafstrom CE, Thompson JL, Holmes GL (1992) Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Dev Brain Res 65:227–236

    CAS  Google Scholar 

  199. Tremblay E, Nitecka L, Berger ML, Ben-Ari Y (1984) Maturation of kainic acid seizure-brain damage syndrome in the rat. I. Clinical, electrographic and metabolic observations. Neuroscience 13:1051–1072

    PubMed  CAS  Google Scholar 

  200. Sperber EF, Haas KZ, Stanton PK, Moshe SL (1991) Resistance of the immature hippocampus to seizure-induced synaptic reorganization. Dev Brain Res 60:88–93

    CAS  Google Scholar 

  201. Yang Y, Tandon P, Liu Z, Sarkisian MR, Stafstrom CE, Holmes GL (1998) Synaptic reorganization following kainic acid-induced seizures during development. Dev Brain Res 107:169–177

    CAS  Google Scholar 

  202. Tandon P, Yang Y, Das K, Holmes GL, Stafstrom CE (1999) Neuroprotective effects of brain-derived neurotrophic factor in seizures during development. Neuroscience 91:293–303

    PubMed  CAS  Google Scholar 

  203. Patel M, Li QY (2003) Age dependence of seizure-induced oxidative stress. Neuroscience 118:431–437

    PubMed  CAS  Google Scholar 

  204. Sullivan PG, Dube C, Dorenbos K, Steward O, Baram TZ (2003) Mitochondrial uncoupling protein-2 protects the immature brain from excitotoxic neuronal death. Ann Neurol 53:711–717

    PubMed  CAS  Google Scholar 

  205. Sankar R, Shin DH, Wasterlain CG (1997) GABA metabolism during status epilepticus in the developing rat brain. Dev Brain Res 98:60–64

    CAS  Google Scholar 

  206. Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA (1998) Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med 4:1166–1172

    PubMed  CAS  Google Scholar 

  207. Zhang G, Raol Y, Hsu F-C, Coulter D, Brooks-Kayal A (2004) Effects of status epilepticus on hippocampal GABAA receptors are age-dependent. Neuroscience 125:299–303

    PubMed  CAS  Google Scholar 

  208. Kubová H, Druga R, Lukasiuk K et al (2001) Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. J Neurosci 21:3593–3599

    PubMed  Google Scholar 

  209. Thompson K, Holm AM, Schousboe A, Popper P, Micevych P, Wasterlain C (1998) Hippocampal stimulation produces neuronal death in the immature brain. Neuroscience 82:337–348

    PubMed  CAS  Google Scholar 

  210. Ribak CE, Baram TZ (1996) Selective death of hippocampal CA3 pyramidal cells with mossy fiber afferents after CRH-induced status epilepticus in infant rats. Brain Res Dev Brain Res 91:245–251

    PubMed  CAS  Google Scholar 

  211. Baram TZ, Ribak CE (1995) Peptide-induced infant status epilepticus causes neuronal death and synaptic reorganization. Neuroreport 6:277–280

    PubMed  CAS  Google Scholar 

  212. Avishai-Eliner S, Brunson KL, Sandman CA, Baram TZ (2002) Stressed-out, or in (utero)? Trends Neurosci 25:518–524

    PubMed  CAS  Google Scholar 

  213. Baram TZ, Schultz L (1991) Corticotropin-releasing hormone is a rapid and potent convulsant in the infant rat. Brain Res Dev Brain Res 61:97–101

    PubMed  CAS  Google Scholar 

  214. Sankar R, Shin D, Mazarati AM, Liu H, Wasterlain CG (1999) Ontogeny of self-sustaining status epilepticus. Dev Neurosci 21:345–351

    PubMed  CAS  Google Scholar 

  215. Koh S, Storey TW, Santos TC, Mian AY, Cole AJ (1999) Early-life seizures in rats increase susceptibility to seizure-induced brain injury in adulthood. Neurology 53:915–921

    PubMed  CAS  Google Scholar 

  216. Giorgi FS, Malhotra S, Hasson H, Velíšková J, Rosenbaum DM, Moshé SL (2005) Effects of status epilepticus early in life on susceptibility to ischemic injury in adulthood. Epilepsia 46:490–498

    PubMed  Google Scholar 

  217. Sperk G (1994) Kainic acid seizures in the rat. Prog Neurobiol 42:1–32

    PubMed  CAS  Google Scholar 

  218. Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA (1989) Cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 3:154–171

    PubMed  CAS  Google Scholar 

  219. Kubová H, Mareš P, Suchomelová L, Brožek G, Druga R, Pitkanen A (2004) Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur J Neurosci 19:3255–3265

    PubMed  Google Scholar 

  220. Suchomelová L, Baldwin RA, Kubová H, Thompson KW, Sankar R, Wasterlain CG (2006) Treatment of experimental status epilepticus in immature rats: dissociation between anticonvulsant and antiepileptogenic effects. Pediatr Res 59:237–243

    PubMed  Google Scholar 

  221. dos Santos NF, Arida RM, Filho EM, Priel MR, Cavalheiro EA (2000) Epileptogenesis in immature rats following recurrent status epilepticus. Brain Res Brain Res Rev 32:269–276

    PubMed  CAS  Google Scholar 

  222. Holmes GL (1997) Epilepsy in the developing brain: lessons from the laboratory and clinic. Epilepsia 38:12–30

    PubMed  CAS  Google Scholar 

  223. Moshé SL, Velísek L, Holmes GL (1994) Developmental aspects of experimental seizures. In: Genton P, Hirsch E, Malafosse A, Marescaux C (eds) International workshop on idiopathic generalized epilepsies: clinical, experimental and genetic aspects. John Libbey, London, pp 51–64

    Google Scholar 

  224. Swann JW, Lee CL, Smith KL, Hrachovy RA (2000) Developmental neuroplasticity and epilepsy. Epilepsia 41:1078–1079

    PubMed  CAS  Google Scholar 

  225. Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87:1215–1284

    PubMed  CAS  Google Scholar 

  226. Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12:2685–2705

    PubMed  CAS  Google Scholar 

  227. Rakic P, Bourgeois J, Eckenhoff M, Zecevic N, Goldman-Rakic P (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232:232–235

    PubMed  CAS  Google Scholar 

  228. Swann JW, Pierson MG, Smith KL, Lee CL (1999) Developmental neuroplasticity: roles in early life seizures and chronic epilepsy. Adv Neurol 79:203–216

    PubMed  CAS  Google Scholar 

  229. Insel TR, Miller RP, Gelhard RE (1990) The ontogeny of excitatory amino acid receptors in rat forebrain – I. N-methyl-D-aspartate receptors and quisqualate receptors. Neuroscience 35:31–43

    PubMed  CAS  Google Scholar 

  230. Miller LP, Johnson AE, Gelhard RE, Insel TR (1990) The ontogeny of excitatory amino acid receptors in the rat forebrain-II. Kainic acid receptors. Neuroscience 35:45–51

    PubMed  CAS  Google Scholar 

  231. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540

    PubMed  CAS  Google Scholar 

  232. Flint AC, Maisch US, Weishaupt JH, Kriegstein AR, Monyer H (1997) NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci 17:2469–2476

    PubMed  CAS  Google Scholar 

  233. Williams K, Russell SL, Shen YM, Molinoff PB (1993) Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron 10:267–278

    PubMed  CAS  Google Scholar 

  234. Pellegrini-Giampietro D, Bennett M, Zukin R (1991) Differential expression of three glutamate receptor genes in developing rat brain: an in situ hybridization study. Proc Natl Acad Sci USA 88:4157–4161

    PubMed  CAS  Google Scholar 

  235. Mueller AL, Taube JS, Schwartzkroin PA (1984) Development of hyperpolarizing inhibitory postsynaptic potentials and hyperpolarizing response to gamma-aminobutyric acid in rabbit hippocampus studied in vitro. J Neurosci 4:860–867

    PubMed  CAS  Google Scholar 

  236. Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol (Lond) 416:303–325

    CAS  Google Scholar 

  237. Tyzio R, Holmes GL, Ben-Ari Y, Khazipov R (2007) Timing of the developmental switch in GABA(A) mediated signaling from excitation to inhibition in CA3 rat hippocampus using gramicidin perforated patch and extracellular recordings. Epilepsia 48(Suppl 5):96–105

    PubMed  CAS  Google Scholar 

  238. Kyrozis A, Chudomel O, Moshé SL, Galanopoulou AS (2006) Sex-dependent maturation of GABA(A) receptor-mediated synaptic events in rat substantia nigra reticulata. Neurosci Lett 398:1–5

    PubMed  CAS  Google Scholar 

  239. Heida JG, Pittman QJ (2005) Causal links between brain cytokines and experimental febrile convulsions in the rat. Epilepsia 46:1906–1913

    PubMed  CAS  Google Scholar 

  240. Vezzani A, Baram TZ (2007) New roles for interleukin-1 Beta in the mechanisms of epilepsy. Epilepsy Curr 7:45–50

    PubMed  Google Scholar 

  241. Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46:1724–1743

    PubMed  CAS  Google Scholar 

  242. Viviani B, Bartesaghi S, Gardoni F et al (2003) Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 23:8692–8700

    PubMed  CAS  Google Scholar 

  243. Beattie EC, Stellwagen D, Morishita W et al (2002) Control of synaptic strength by glial TNFalpha. Science 295:2282–2285

    PubMed  CAS  Google Scholar 

  244. Viviani B, Gardoni F, Marinovich M (2007) Cytokines and neuronal ion channels in health and disease. Int Rev Neurobiol 82:247–263

    PubMed  CAS  Google Scholar 

  245. Ye ZC, Sontheimer H (1996) Cytokine modulation of glial glutamate uptake: a possible involvement of nitric oxide. Neuroreport 7:2181–2185

    PubMed  CAS  Google Scholar 

  246. Tian GF, Azmi H, Takano T et al (2005) An astrocytic basis of epilepsy. Nat Med 11:973–981

    PubMed  CAS  Google Scholar 

  247. Fellin T, Gomez-Gonzalo M, Gobbo S, Carmignoto G, Haydon PG (2006) Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. J Neurosci 26:9312–9322

    PubMed  CAS  Google Scholar 

  248. Bezzi P, Domercq M, Brambilla L et al (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710

    PubMed  CAS  Google Scholar 

  249. Sankar R, Rho JM (2007) Do seizures affect the developing brain? Lessons from the laboratory. J Child Neurol 22:21S–29S

    PubMed  Google Scholar 

  250. Bender RA, Baram TZ (2007) Epileptogenesis in the developing brain: what can we learn from animal models? Epilepsia 48(Suppl 5):2–6

    PubMed  Google Scholar 

  251. Brewster A, Bender RA, Chen Y, Dubé C, Eghbal-Ahmadi M, Baram TZ (2002) Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J Neurosci 22:4591–4599

    PubMed  CAS  Google Scholar 

  252. Brewster AL, Bernard JA, Gall CM, Baram TZ (2005) Formation of heteromeric hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in the hippocampus is regulated by developmental seizures. Neurobiol Dis 19:200–207

    PubMed  CAS  Google Scholar 

  253. Chen K, Baram TZ, Soltesz I (1999) Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 5:888–894

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by grants from Fondazione Monzino (A.V.), EPICURE LSH-CT-2006-037315 (A.V.), Negri Weizmann Programme (A.V.), NIH/NINDS NS056093 (J.V.), and INSERM U666 (A.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Vezzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Velíšková, J., Vezzani, A., Nehlig, A. (2009). Seizure Propensity and Brain Development: A Lesson from Animal Models. In: Janigro, D. (eds) Mammalian Brain Development. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60761-287-2_5

Download citation

Publish with us

Policies and ethics