Skip to main content

Irinotecan

  • Chapter
  • First Online:
  • 971 Accesses

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Irinotecan (Fig. 5.1 also called CPT-11 or 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin) is a semisynthetic analog of the natural alkaloid camptothecin. It was first approved in Japan in 1994 for small-cell lung cancer and hematologic malignancies, followed by approvals in France for the treatment of advanced colorectal cancer in 1995 [1]. Irinotecan was introduced in the US in 1996 and received a full U.S. Food and Drug Administration (FDA) approval for the treatment of colorectal cancer in 1998. Currently in the US, irinotecan is ­primarily utilized for patients with metastatic colorectal carcinoma whose disease has recurred or progressed following initial fluorouracil-based therapy. However, the drug has demonstrated efficacy in treating a wide variety of neoplasms and was approved for the use of treating lung and breast cancer in Japan [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. PRNewswire. Campto(R) (irinotecan/CPT-11) receives regulatory approval in France for treatment of advanced colorectal cancer May 19, 1995. http://www.thefreelibrary.com/CAMPTO(R) (irinotecan/CPT-11) receives regulatory approval in France...-a016884603

  2. Shigeoka, Y., Itoh, K., Igarashi, T., et al. (2001). Clinical effect of irinotecan in advanced and metastatic breast cancer patients previously treated with doxorubicin- and docetaxel-containing regimens. Japanese Journal of Clinical Oncology, 31, 370–374.

    Article  PubMed  CAS  Google Scholar 

  3. Masumoto, N., Nakano, S., Esaki, T., et al. (1995). Sequence-dependent modulation of anticancer drug activities by 7-ethyl-10-hydroxycamptothecin in an HST-1 human squamous carcinoma cell line. Anticancer Research, 15, 405–409.

    PubMed  CAS  Google Scholar 

  4. Matsuoka, H., Yano, K., Seo, Y., et al. (1995). Cytotoxicity of CPT-11 for gastrointestinal cancer cells cultured on fixed-contact-sensitive plates. Anti-Cancer Drugs, 6, 413–418.

    Article  PubMed  CAS  Google Scholar 

  5. Hare, C., Elion, G., Houghton, P., et al. (1997). Therapeutic efficacy of the topoisomerase I inhibitor 7-ethyl-10-(4-[1-piperidino]-1-piperidino)-carbonyloxy-camptothecin against pediatric and adult central nervous system tumor xenografts. Cancer Chemotherapy and Pharmacology, 39, 187–191.

    Article  PubMed  CAS  Google Scholar 

  6. Miki, T., Sawada, M., Nonomura, N., et al. (1997). Antitumor effect of CPT-11, a camptothecin derivative, on human testicular tumor xenografts in nude mice. European Urology, 31, 92–96.

    PubMed  CAS  Google Scholar 

  7. Jansen, W., Kolfschoten, G., Erkelens, C., Van Ark-Otte, J., Pinedo, H., & Boven, E. (1997). Anti-tumor activity of CPT-11 in experimental human ovarian cancer and human soft-tissue sarcoma. International Journal of Cancer, 73, 891–896.

    Article  CAS  Google Scholar 

  8. Fukuoka, M., Niitani, H., Suzuki, A., et al. (1992). A phase II study of CPT-11, a new derivative of camptothecin, for previously untreated non-small-cell lung cancer. Journal of Clinical Oncology, 10, 16–20.

    PubMed  CAS  Google Scholar 

  9. Masuda, N., Fukuoka, M., Kusunoki, Y., et al. (1992). CPT-11: A new derivative of camptothecin for the treatment of refractory or relapsed smallcell lung cancer. Journal of Clinical Oncology, 10, 1225–1229.

    PubMed  CAS  Google Scholar 

  10. Takeuchi, S., Dobashi, K., Fujimoto, S., et al. (1991). A late phase II study of CPT-11 on uterine cervical cancer and ovarian cancer. Research Groups of CPT-11 in gynecologic cancers. Gan To Kagaku Ryoho, 18, 1681–1689.

    PubMed  CAS  Google Scholar 

  11. Futatsuki, K., Wakui, A., Nakao, I., et al. (1994). Late phase II study of irinotecan hydrochloride (CPT-11) in advanced gastric cancer. CPT-11 Gastrointestinal Cancer Study Group. Gan To Kagaku Ryoho, 21, 1033–1038.

    PubMed  CAS  Google Scholar 

  12. Shimada, Y., Yoshino, M., Wakui, A., et al. (1993). Phase II study of CPT-11, a new camptothecin derivative, in metastatic colorectal cancer. CPT-11 Gastrointestinal Cancer Study Group. Journal of Clinical Oncology, 11, 909–913.

    PubMed  CAS  Google Scholar 

  13. Sakata, Y., Shimada, Y., Yoshino, M., et al. (1994). A late phase II study of CPT-11, irinotecan hydrochloride, in patients with advanced pancreatic cancer. CPT-11 Study Group on Gastrointestinal Cancer. Gan To Kagaku Ryoho, 21, 1039–1046.

    PubMed  CAS  Google Scholar 

  14. Taguchi, T., Tominaga, T., Ogawa, M., Ishida, T., Morimoto, K., & Ogawa, N. (1994). A late phase II study of CPT-11 (irinotecan) in advanced breast cancer. CPT-11 Study Group on Breast Cancer. Gan To Kagaku Ryoho, 21, 1017–1024.

    PubMed  CAS  Google Scholar 

  15. Ohno, R., Okada, K., Masaoka, T., et al. (1990). An early phase II study of CPT-11: A new derivative of camptothecin, for the treatment of leukemia and lymphoma. Journal of Clinical Oncology, 8, 1907–1912.

    PubMed  CAS  Google Scholar 

  16. Ota, K., Ohno, R., Shirakawa, S., et al. (1994). Late phase II clinical study of irinotecan hydrochloride (CPT-11) in the treatment of malignant lymphoma and acute leukemia. The CPT-11 Research Group for Hematological Malignancies. Gan To Kagaku Ryoho, 21, 1047–1055.

    PubMed  CAS  Google Scholar 

  17. Wagener, D., Verdonk, H., Dirix, L., et al. (1995). Phase II trial of CPT-11 in patients with advanced pancreatic cancer, an EORTC early clinical trials group study. Annals of Oncology, 6, 129–132.

    PubMed  CAS  Google Scholar 

  18. Verschraegen, C. F., Levy, T., Kudelka, A. P., et al. (1997). Phase II study of irinotecan in prior chemotherapy-treated squamous cell carcinoma of the cervix. Journal of Clinical Oncology, 15, 625–631.

    PubMed  CAS  Google Scholar 

  19. Shimada, Y., Rougier, P., & Pitot, H. (1996). Efficacy of CPT-11 (irinotecan) as a single agent in metastatic colorectal cancer. European Journal of Cancer, 32A(Suppl. 3), S13–S17.

    Article  PubMed  CAS  Google Scholar 

  20. Pitot, H. C., Wender, D. B., O’Connell, M. J., et al. (1997). Phase II trial of irinotecan in patients with metastatic colorectal carcinoma. Journal of Clinical Oncology, 15, 2910–2919.

    PubMed  CAS  Google Scholar 

  21. Rothenberg, M. (1998). Efficacy and toxicity of irinotecan in patients with colorectal cancer. Seminars in Oncology, 25(5 Suppl. 11), 39–46.

    PubMed  CAS  Google Scholar 

  22. Rothenberg, M. L., Eckardt, J. R., Kuhn, J. G., et al. (1996). Phase II trial of irinotecan in patients with progressive or rapidly recurrent colorectal cancer. Journal of Clinical Oncology, 14, 1128–1135.

    PubMed  CAS  Google Scholar 

  23. Rougier, P., Bugat, R., Douillard, J. Y., et al. (1997). Phase II study of irinotecan in the treatment of advanced colorectal cancer in chemotherapy-naive patients and patients pretreated with fluorouracil-based chemotherapy. Journal of Clinical Oncology, 15, 251–260.

    PubMed  CAS  Google Scholar 

  24. Engstrom, P., Arnoletti, J. P., & Benson, A., et al.(2010). NCCN colon cancer practice ­guidelines in oncology – v.1.2010. Oncology (Williston Park), 1. http://www.nccn.org/­professionals/physician_gls/PDF/colon.pdf

  25. Douillard, J. Y., Cunningham, D., Roth, A. D., et al. (2000). Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: A multicentre randomised trial. Lancet, 355, 1041.

    Article  PubMed  CAS  Google Scholar 

  26. Ducreux, M., Ychou, M., Seitz, J. F., et al. (1999). Irinotecan combined with bolus fluorouracil, continuous infusion fluorouracil, and high-dose leucovorin every two weeks (LV5FU2 regimen): A clinical dose-finding and pharmacokinetic study in patients with pretreated metastatic colorectal cancer. Journal of Clinical Oncology, 17, 2901.

    PubMed  CAS  Google Scholar 

  27. Mitry, E., Douillard, J. Y., Van Cutsem, E., et al. (2004). Predictive factors of survival in patients with advanced colorectal cancer: An individual data analysis of 602 patients included in irinotecan phase III trials. Annals of Oncology, 15, 1013–1017.

    Article  PubMed  CAS  Google Scholar 

  28. Saltz, L. B., Cox, J. V., Blanke, C., et al. (2000). Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. The New England Journal of Medicine, 343, 905–914.

    Article  PubMed  CAS  Google Scholar 

  29. Guichard, S., Cussac, D., Hennebelle, I., Bugat, R., & Canal, P. (1997). Sequence-dependent activity of the irinotecan-5FU combination in human colon-cancer model HT-29 in vitro and in vivo. International Journal of Cancer, 73, 729–734.

    Article  CAS  Google Scholar 

  30. Cunningham, D., Humblet, Y., Siena, S., et al. (2004). Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. The New England Journal of Medicine, 351, 337–345.

    Article  PubMed  CAS  Google Scholar 

  31. Masuda, N., Fukuoka, M., Kudoh, S., et al. (1993). Phase I and pharmacologic study of ­irinotecan in combination with cisplatin for advanced lung cancer. British Journal of Cancer, 68, 777–782.

    Article  PubMed  CAS  Google Scholar 

  32. Rothenberg, M. L., Kuhn, J. G., Burris, H. A. III, et al. (1993). Phase I and pharmacokinetic trial of weekly CPT-11. Journal of Clinical Oncology, 11, 2194–2204.

    PubMed  CAS  Google Scholar 

  33. Rowinsky, E. K., Grochow, L. B., Ettinger, D. S., et al. (1994). Phase I and pharmacological study of the novel topoisomerase I inhibitor 7-Ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11) administered as a ninety-minute infusion every 3 weeks. Cancer Research, 54, 427–436.

    PubMed  CAS  Google Scholar 

  34. de Forni, M., Bugat, R., Chabot, G. G., et al. (1994). Phase I and pharmacokinetic study of the camptothecin derivative irinotecan, administered on a weekly schedule in cancer patients. Cancer Research, 54, 4347–4354.

    PubMed  CAS  Google Scholar 

  35. Catimel, G., Chabot, G., Guastalla, J., et al. (1995). Phase I and pharmacokinetic study of irinotecan (CPT-11) administered daily for three consecutive days every three weeks in patients with advanced solid tumors. Annals of Oncology, 6, 133–140.

    PubMed  CAS  Google Scholar 

  36. Haaz, M. C., Rivory, L., Riche, C., Vernillet, L., & Robert, J. (1998). Metabolism of irinotecan (CPT-11) by human hepatic microsomes: Participation of cytochrome P-450 3A and drug interactions. Cancer Research, 58, 468–472.

    PubMed  CAS  Google Scholar 

  37. Rivory, L. P., Riou, J. F., Haaz, M. C., et al. (1996). Identification and properties of a major plasma metabolite of irinotecan (CPT-11) isolated from the plasma of patients. Cancer Research, 56, 3689–3694.

    PubMed  CAS  Google Scholar 

  38. Dodds, H. M., Haaz, M. C., Riou, J. F., Robert, J., & Rivory, L. P. (1998). Identification of a new metabolite of CPT-11 (irinotecan): Pharmacological properties and activation to SN-38. The Journal of Pharmacology and Experimental Therapeutics, 286, 578–583.

    PubMed  CAS  Google Scholar 

  39. Sai, K., Kaniwa, N., Ozawa, S., & Sawada, J. I. (2001). A new metabolite of irinotecan in which formation is mediated by human hepatic cytochrome P-450 3a4. Drug Metabolism and Disposition, 29, 1505–1513.

    PubMed  CAS  Google Scholar 

  40. Lokiec, F., du Sorbier, B. M., & Sanderink, G. J. (1996). Irinotecan (CPT-11) metabolites in human bile and urine. Clinical Cancer Research, 2, 1943–1949.

    PubMed  CAS  Google Scholar 

  41. Hanioka, N., Ozawa, S., Jinno, H., et al. (2002). Interaction of irinotecan (CPT-11) and its active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38) with human cytochrome P450 enzymes. Drug Metabolism and Disposition, 30, 391–396.

    Article  PubMed  CAS  Google Scholar 

  42. Danks, M. K., Morton, C. L., Pawlik, C. A., & Potter, P. M. (1998). Overexpression of a rabbit liver carboxylesterase sensitizes human tumor cells to CPT-11. Cancer Research, 58, 20–22.

    PubMed  CAS  Google Scholar 

  43. Rivory, L. P., Bowles, M. R., Robert, J., & Pond, S. M. (1996). Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by human liver carboxylesterase. Biochemical Pharmacology, 52, 1103.

    Article  PubMed  CAS  Google Scholar 

  44. Iyer, L., King, C., Whitington, P., et al. (1998). Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. The Journal of Clinical Investigation, 101, 847–854.

    Article  PubMed  CAS  Google Scholar 

  45. Rivory, L., & Robert, J. (1995). Identification and kinetics of a beta-glucuronide metabolite of SN-38 in human plasma after administration of the camptothecin derivative irinotecan. Cancer Chemotherapy and Pharmacology, 36, 176–179.

    Article  PubMed  CAS  Google Scholar 

  46. Luo, F. R., Paranjpe, P. V., Guo, A., Rubin, E., & Sinko, P. (2002). Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells overexpressing efflux transporters Pgp, cMOAT, and MRP1. Drug Metabolism and Disposition, 30, 763–770.

    Article  PubMed  CAS  Google Scholar 

  47. Katayama, R., Koike, S., Sato, S., Sugimoto, Y., Tsuruo, T., & Fujita, N. (2009). Dofequidar fumarate sensitizes cancer stem-like side population cells to chemotherapeutic drugs by inhibiting ABCG2/BCRP-mediated drug export. Cancer Science, 100, 2060–2068.

    Article  PubMed  CAS  Google Scholar 

  48. Chu, X. Y., Kato, Y., Niinuma, K., Sudo, K. I., Hakusui, H., & Sugiyama, Y. (1997). Multispecific organic anion transporter is responsible for the biliary excretion of the camptothecin derivative iinrotecan and its metabolites in rats. The Journal of Pharmacology and Experimental Therapeutics, 281, 304–314.

    PubMed  CAS  Google Scholar 

  49. Chu, X. Y., Kato, Y., & Sugiyama, Y. (1997). Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats. Cancer Research, 57, 1934–1938.

    PubMed  CAS  Google Scholar 

  50. Koike, K., Kawabe, T., Tanaka, T., et al. (1997). A canalicular multispecific organic anion transporter (cMOAT) antisense cDNA enhances drug sensitivity in human hepatic cancer cells. Cancer Research, 57, 5475–5479.

    PubMed  CAS  Google Scholar 

  51. Gupta, E., Mick, R., Ramirez, J., et al. (1997). Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients. Journal of Clinical Oncology, 15, 1502–1510.

    PubMed  CAS  Google Scholar 

  52. Miya, T., Goya, T., Fujii, H., et al. (2001). Factors affecting the pharmacokinetics of CPT-11: The body mass index, age and sex are independent predictors of pharmacokinetic parameters of CPT-11. Investigational New Drugs, 19, 61–67.

    Article  PubMed  CAS  Google Scholar 

  53. Slichenmyer, W., & Von Hoff, D. (1990). New natural products in cancer chemotherapy. Journal of Clinical Pharmacology, 30, 770–788.

    PubMed  CAS  Google Scholar 

  54. Fuchs, C. S., Moore, M. R., Harker, G., Villa, L., Rinaldi, D., & Hecht, J. R. (2003). Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. Journal of Clinical Oncology, 21, 807–814.

    Article  PubMed  CAS  Google Scholar 

  55. Tam, V., Rask, S., Koru-Sengul, T., & Dhesy-Thind, S. (2009). Generalizability of toxicity data from oncology clinical trials to clinical practice: Toxicity of irinotecan-based regimens in patients with metastatic colorectal cancer. Current Oncology, 16, 13–20.

    PubMed  CAS  Google Scholar 

  56. Falcone, A., Ricci, S., Brunetti, I., et al. (2007). Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: The Gruppo Oncologico Nord Ovest. Journal of Clinical Oncology, 25, 1670–1676.

    Article  PubMed  CAS  Google Scholar 

  57. Araki, E., Ishikawa, M., Ligo, M., Koide, T., Itabashi, M., & Hoshi, A. (1993). Relationship between development of diarrhea and the concentration of SN-38, an active metabolite of CPT-11, in the intestine and the blood plasma of athymic mice following intraperitoneal administration of CPT-11. Japanese Journal of Cancer Research, 84, 697–702.

    PubMed  CAS  Google Scholar 

  58. Gupta, E., Lestingi, T. M., Mick, R., Ramirez, J., Vokes, E. E., & Ratain, M. J. (1994). Metabolic fate of irinotecan in humans: Correlation of glucuronidation with diarrhea. Cancer Research, 54, 3723–3725.

    PubMed  CAS  Google Scholar 

  59. Takasuna, K., Hagiwara, T., Hirohashi, M., et al. (1996). Involvement of {beta}-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Research, 56, 3752–3757.

    PubMed  CAS  Google Scholar 

  60. Abigerges, D., Armand, J. P., Chabot, G. G., et al. (1994). Irinotecan (CPT-11) high-dose escalation using intensive high-dose loperamide to control diarrhea. Journal of the National Cancer Institute, 86, 446–449.

    Article  PubMed  CAS  Google Scholar 

  61. Eng, C. (2009). Toxic effects and their management: Daily clinical challenges in the treatment of colorectal cancer. Nature Reviews. Clinical Oncology, 6, 207.

    Article  PubMed  CAS  Google Scholar 

  62. Sipsas, N., Bodey, G., & Kontoyiannis, D. (2005). Perspectives for the management of febrile neutropenic patients with cancer in the 21st century. Cancer, 103, 1103–1113.

    Article  PubMed  Google Scholar 

  63. Crawford, J., Allen, J., Armitage, J., et al. (2010). NCCN Myeloid growth factors practice guidelines in oncology – v.1.2010. Oncology (Williston Park), 1. http://www.nccn.org/-professionals/physician_gls/PDF/myeloid_growth.pdf

  64. Nemunaitis, J., Cox, J., Meyer, W., Courtney, A., & Mues, G. (1997). Irinotecan hydrochloride (CPT-11) resistance identified by K-ras mutation in patients with progressive colon cancer after treatment with 5-fluorouracil (5-FU). American Journal of Clinical Oncology, 20, 527–529.

    Article  PubMed  CAS  Google Scholar 

  65. McLeod, H. L., & Keith, W. (1996). Variation in topoisomerase I gene copy number as a mechanism for intrinsic drug sensitivity. British Journal of Cancer, 74, 508–512.

    Article  PubMed  CAS  Google Scholar 

  66. Fukuoka, K., Adachi, J., Nishio, K., et al. (1997). p16INK4 expression is associated with the increased sensitivity of human non-small cell lung cancer cells to DNA topoisomerase I inhibitors. Japanese Journal of Cancer Research, 88, 1009–1016.

    PubMed  CAS  Google Scholar 

  67. Singh, A., Tong, A., Ognoskie, N., Meyer, W., & Nemunaitis, J. (1998). Improved survival in patients with advanced colorectal carcinoma failing 5-fluorouracil who received irinotecan hydrochloride and have high intratumor C-fos expression. American Journal of Clinical Oncology, 21, 466–469.

    Article  PubMed  CAS  Google Scholar 

  68. Jansen, W., Hulscher, T., van Ark-Otte, J., Giaccone, G., Pinedo, H., & Boven, E. (1998). CPT-11 sensitivity in relation to the expression of P170-glycoprotein and multidrug resistance-associated protein. British Journal of Cancer, 77, 359–365.

    Article  PubMed  CAS  Google Scholar 

  69. Girard, H., Lévesque, E., Bellemare, J., Journault, K., Caillier, B., & Guillemette, C. (2007). Genetic diversity at the UGT1 locus is amplified by a novel 3′ alternative splicing mechanism leading to nine additional UGT1A proteins that act as regulators of glucuronidation activity. Pharmacogenetics and Genomics, 17, 1077–1089.

    Article  PubMed  CAS  Google Scholar 

  70. Strassburg, C., Kalthoff, S., & Ehmer, U. (2008). Variability and function of family 1 uridine-5′-diphosphate glucuronosyltransferases (UGT1A). Critical Reviews in Clinical Laboratory Sciences, 45, 485–530.

    Article  PubMed  CAS  Google Scholar 

  71. Wasserman, E., Myara, A., Lokiec, F., et al. (1997). Severe CPT-11 toxicity in patients with Gilbert’s syndrome: Two case reports. Annals of Oncology, 8, 1049–1051.

    Article  PubMed  CAS  Google Scholar 

  72. Ando, Y., Saka, H., Asai, G., Sugiura, S., Shimokata, K., & Kamataki, T. (1998). UGT1A1 genotypes and glucuronidation of SN-38, the active metabolite of irinotecan. Annals of Oncology, 9, 845–847.

    Article  PubMed  CAS  Google Scholar 

  73. Bosma, P. J., Chowdhury, J. R., Bakker, C., et al. (1995). The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. The New England Journal of Medicine, 333, 71–1175.

    Article  Google Scholar 

  74. Beutler, E., Gelbart, T., & Demina, A. (1998). Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: A balanced polymorphism for regulation of bilirubin metabolism. Proceedings of the National Academy of Sciences of the United States of America, 95, 8170–8174.

    Article  PubMed  CAS  Google Scholar 

  75. Akaba, K., Kimura, T., Sasaki, A., et al. (1998). Neonatal hyperbilirubinemia and mutation of the bilirubin uridine diphosphate-glucuronosyltransferase gene: A common missense mutation among Japanese, Koreans and Chinese. Biochemistry and Molecular Biology International, 46, 21–26.

    PubMed  CAS  Google Scholar 

  76. Ando, Y., Fujita, K., Sasaki, Y., & Hasegawa, Y. (2007). UGT1AI*6 and UGT1A1*27 for individualized irinotecan chemotherapy. Current Opinion in Molecular Therapeutics, 9, 258–262.

    PubMed  CAS  Google Scholar 

  77. Jinno, H., Tanaka-Kagawa, T., Hanioka, N., et al. (2003). Glucuronidation of 7-Ethyl-10-hydroxycamptothecin (SN-38), an active metabolite of irinotecan (CPT-11), by human UGT1A1 variants, G71R, P229Q, and Y486D. Drug Metabolism and Disposition, 31, 108–113.

    Article  PubMed  CAS  Google Scholar 

  78. Iyer, L., Hall, D., Das, S., et al. (1999). Phenotype-genotype correlation of in vitro SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. Clinical Pharmacology and Therapeutics, 65, 576–582.

    Article  PubMed  CAS  Google Scholar 

  79. Iyer, L., Das, S., Janisch, L., et al. (2002). UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. The Pharmacogenomics Journal, 2, 43–47.

    Article  PubMed  CAS  Google Scholar 

  80. Innocenti, F., & Ratain, M. J. (2006). Pharmacogenetics of irinotecan: Clinical perspectives on the utility of genotyping. Pharmacogenomics, 7, 1211–1221.

    Article  PubMed  CAS  Google Scholar 

  81. Innocenti, F., Undevia, S., Iyer, L., et al. (2004). Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. Journal of Clinical Oncology, 22, 1382–1388.

    Article  PubMed  CAS  Google Scholar 

  82. Hoskins, J., Goldberg, R., Qu, P., Ibrahim, J., & McLeod, H. (2007). UGT1A1*28 genotype and irinotecan-induced neutropenia: Dose matters. Journal of the National Cancer Institute, 99, 1290–1295.

    Article  PubMed  CAS  Google Scholar 

  83. Bomgaars, L. R., Bernstein, M., Krailo, M., et al. (2007). Phase II trial of irinotecan in children with refractory solid tumors: A children’s oncology group study. Journal of Clinical Oncology, 25, 4622–4627.

    Article  PubMed  CAS  Google Scholar 

  84. Stewart, C. F., Panetta, J. C., O’Shaughnessy, M. A., et al. (2007). UGT1A1 Promoter genotype correlates with SN-38 pharmacokinetics, but not severe toxicity in patients receiving low-dose irinotecan. Journal of Clinical Oncology, 25, 2594–2600.

    Article  PubMed  CAS  Google Scholar 

  85. Toffoli, G., Cecchin, E., Gasparini, G., et al. (2010). Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. Journal of Clinical Oncology, 28, 866–871.

    Article  PubMed  CAS  Google Scholar 

  86. Carlini, L., Meropol, N., Bever, J., et al. (2005). UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clinical Cancer Research, 11, 1226–1236.

    PubMed  CAS  Google Scholar 

  87. Han, J., Lim, H., Shin, E., et al. (2006). Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. Journal of Clinical Oncology, 24, 2237–2244.

    Article  PubMed  CAS  Google Scholar 

  88. Innocenti, F., Liu, W., Chen, P., Desai, A., Das, S., & Ratain, M. (2005). Haplotypes of variants in the UDP-glucuronosyltransferase1A9 and 1A1 genes. Pharmacogenetics and Genomics, 15, 295–301.

    Article  PubMed  CAS  Google Scholar 

  89. de Jong, F., Scott-Horton, T., Kroetz, D., et al. (2007). Irinotecan-induced diarrhea: Functional significance of the polymorphic ABCC2 transporter protein. Clinical Pharmacology and Therapeutics, 81, 42–49.

    Article  PubMed  CAS  Google Scholar 

  90. Sai, K., Kaniwa, N., Itoda, M., et al. (2003). Haplotype analysis of ABCB1/MDR1 blocks in a Japanese population reveals genotype-dependent renal clearance of irinotecan. Pharmacogenetics, 13, 741–757.

    Article  PubMed  CAS  Google Scholar 

  91. Zhou, Q., Sparreboom, A., Tan, E., et al. (2005). Pharmacogenetic profiling across the irinotecan pathway in Asian patients with cancer. British Journal of Clinical Pharmacology, 59, 415–424.

    Article  PubMed  CAS  Google Scholar 

  92. Mathijssen, R. H. J., Marsh, S., Karlsson, M. O., et al. (2003). Irinotecan pathway genotype analysis to predict pharmacokinetics. Clinical Cancer Research, 9, 3246–3253.

    PubMed  CAS  Google Scholar 

  93. Rosner, G. L., Panetta, J. C., Innocenti, F., & Ratain, M. J. (2008). Pharmacogenetic pathway analysis of irinotecan. Clinical Pharmacology and Therapeutics, 84, 393.

    Article  PubMed  CAS  Google Scholar 

  94. Nozawa, T., Minami, H., Sugiura, S., Tsuji, A., & Tamai, I. (2005). Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: In vitro evidence and effect of single nucleotide polymorphisms. Drug Metabolism and Disposition, 33, 434–439.

    Article  PubMed  CAS  Google Scholar 

  95. Xiang, X., Jada, S., Li, H., et al. (2006). Pharmacogenetics of SLCO1B1 gene and the impact of *1b and *15 haplotypes on irinotecan disposition in Asian cancer patients. Pharmacogenetics and Genomics, 16, 683–691.

    Article  PubMed  CAS  Google Scholar 

  96. Han, J., Lim, H., Shin, E., et al. (2008). Influence of the organic anion-transporting polypeptide 1B1 (OATP1B1) polymorphisms on irinotecan-pharmacokinetics and clinical outcome of patients with advanced non-small cell lung cancer. Lung Cancer (Amsterdam, Netherlands), 69, 69–75.

    Google Scholar 

  97. Takane, H., Kawamoto, K., Sasaki, T., et al. (2009). Life-threatening toxicities in a patient with UGT1A1*6/*28 and SLCO1B1*15/*15 genotypes after irinotecan-based chemotherapy. Cancer Chemotherapy and Pharmacology, 63, 1165–1169.

    Article  PubMed  Google Scholar 

  98. Han, J., Lim, H., Park, Y., Lee, S., & Lee, J. (2009). Integrated pharmacogenetic prediction of irinotecan pharmacokinetics and toxicity in patients with advanced non-small cell lung cancer. Lung Cancer (Amsterdam, Netherlands), 63, 115–120.

    Google Scholar 

  99. Innocenti, F., Kroetz, D. L., Schuetz, E., et al. (2009). Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. Journal of Clinical Oncology, 27, 2604–2614.

    Article  PubMed  CAS  Google Scholar 

  100. Sai, K., Saito, Y., Maekawa, K., et al. (2010). Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients. Cancer Chemotherapy and Pharmacology, 66, 95–105.

    Article  PubMed  CAS  Google Scholar 

  101. Onoue, M., Terada, T., Kobayashi, M., et al. (2009). UGT1A1*6 polymorphism is most predictive of severe neutropenia induced by irinotecan in Japanese cancer patients. International Journal of Clinical Oncology/Japan Society of Clinical Oncology, 14, 136–142.

    Article  PubMed  CAS  Google Scholar 

  102. Han, J. Y., Lee, G. K., Yoo, S. Y., et al. (2009). Association of SUMO1 and UBC9 genotypes with tumor response in non-small-cell lung cancer treated with irinotecan-based chemotherapy. The Pharmacogenomics Journal, 10, 86–93.

    Article  PubMed  CAS  Google Scholar 

  103. Hoskins, J., Rosner, G., Ratain, M. J., McLeod, H. L., & Innocenti, F. (2009). Pharmacodynamic genes do not influence risk of neutropenia in cancer patients treated with moderately high-dose irinotecan. Pharmacogenomics, 10, 1139–1146.

    Article  PubMed  CAS  Google Scholar 

  104. Hoskins, J. M., Marcuello, E., Altes, A., et al. (2008). Irinotecan pharmacogenetics: Influence of pharmacodynamic genes. Clinical Cancer Research, 14, 1788–1796.

    Article  PubMed  CAS  Google Scholar 

  105. Hall, D., Ybazeta, G., Destro-Bisol, G., Petzl-Erler, M., & Di Rienzo, A. (1999). Variability at the uridine diphosphate glucuronosyltransferase 1A1 promoter in human populations and primates. Pharmacogenetics, 9, 591–599.

    Article  PubMed  CAS  Google Scholar 

  106. Innocenti, F., Vokes, E. E., & Ratain, M. J. (2006). Irinogenetics: What is the right star? Journal of Clinical Oncology, 24, 2221–2224.

    Article  PubMed  CAS  Google Scholar 

  107. Innocenti, F., Grimsley, C., Das, S., et al. (2002). Haplotype structure of the UDP-glucuronosyltransferase 1A1 promoter in different ethnic groups. Pharmacogenetics, 12, 725–733.

    Article  PubMed  CAS  Google Scholar 

  108. Fujita, K., Ando, Y., Nagashima, F., et al. (2007). Genetic linkage of UGT1A7 and UGT1A9 polymorphisms to UGT1A1*6 is associated with reduced activity for SN-38 in Japanese patients with cancer. Cancer Chemotherapy and Pharmacology, 60, 515–522.

    Article  PubMed  CAS  Google Scholar 

  109. Pacheco, P., Brilhante, M., Ballart, C., et al. (2009). UGT1A1, UGT1A6 and UGT1A7 genetic analysis: Repercussion for irinotecan pharmacogenetics in the São Miguel Island Population (Azores, Portugal). Molecular Diagnosis & Therapy, 13, 261–268.

    CAS  Google Scholar 

  110. Cecchin, E., Innocenti, F., D’Andrea, M., et al. (2009). Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin, and irinotecan. Journal of Clinical Oncology, 27, 2457–2465.

    Article  PubMed  CAS  Google Scholar 

  111. Sanoff, H. K., Sargent, D. J., Green, E. M., McLeod, H. L., & Goldberg, R. M. (2009). Racial differences in advanced colorectal cancer outcomes and pharmacogenetics: A subgroup analysis of a large randomized clinical trial. Journal of Clinical Oncology, 27, 4109–4115.

    Article  PubMed  CAS  Google Scholar 

  112. Huang, R. S., & Ratain, M. J. (2009). Pharmacogenetics and pharmacogenomics of anticancer agents. CA: A Cancer Journal for Clinicians, 59, 42–55.

    Article  Google Scholar 

  113. Hasegawa, Y., Sarashina, T., Ando, M., et al. (2004). Rapid detection of UGT1A1 gene polymorphisms by newly developed Invader assay. Clinical Chemistry, 50, 1479–1480.

    Article  PubMed  CAS  Google Scholar 

  114. Maitland, M., Vasisht, K., & Ratain, M. (2006). TPMT, UGT1A1 and DPYD: Genotyping to ensure safer cancer therapy? Trends in Pharmacological Sciences, 27, 432–437.

    Article  PubMed  CAS  Google Scholar 

  115. Ratain, M. J. (2006). From bedside to bench to bedside to clinical practice: An odyssey with irinotecan. Clinical Cancer Research, 12, 1658–1660.

    Article  PubMed  Google Scholar 

  116. Meyerhardt, J., Kwok, A., Ratain, M., McGovren, J., & Fuchs, C. (2004). Relationship of baseline serum bilirubin to efficacy and toxicity of single-agent irinotecan in patients with metastatic colorectal cancer. Journal of Clinical Oncology, 22, 1439–1446.

    Article  PubMed  CAS  Google Scholar 

  117. Baudhuin, L., Highsmith, W., Skierka, J., Holtegaard, L., Moore, B., & O’Kane, D. (2007). Comparison of three methods for genotyping the UGT1A1 (TA)n repeat polymorphism. Clinical Biochemistry, 40, 710–717.

    Article  PubMed  CAS  Google Scholar 

  118. O’Dwyer, P. J., & Catalano, R. B. (2006). Uridine diphosphate glucuronosyltransferase (UGT) 1A1 and irinotecan: Practical pharmacogenomics arrives in cancer therapy. Journal of Clinical Oncology, 24, 4534–4538.

    Article  PubMed  CAS  Google Scholar 

  119. Gardiner, S., & Begg, E. (2005). Pharmacogenetic testing for drug metabolizing enzymes: Is it happening in practice? Pharmacogenetics and Genomics, 15, 365–369.

    Article  PubMed  CAS  Google Scholar 

  120. Corkindale, D., Ward, H., & McKinnon, R. (2007). Low adoption of pharmacogenetic testing: An exploration and explanation of the reasons in Australia. Personalized Medicine, 4, 191–199.

    Article  CAS  Google Scholar 

  121. Wu, A. H., Babic, N., & Yeo, K. T. J. (2009). Implementation of pharmacogenomics into the clinical practice of therapeutics: Issues for the clinician and the laboratorian. Personalized Medicine, 6, 315–327.

    Article  CAS  Google Scholar 

  122. Liu, C., Chen, P., Chiou, T., et al. (2008). UGT1A1*28 polymorphism predicts ­irinotecan-induced severe toxicities without affecting treatment outcome and survival in patients with metastatic colorectal carcinoma. Cancer, 112, 1932–1940.

    Article  PubMed  CAS  Google Scholar 

  123. Haga, S., Thummel, K., & Burke, W. (2006). Adding pharmacogenetics information to drug labels: Lessons learned. Pharmacogenetics and Genomics, 16, 847–854.

    Article  PubMed  CAS  Google Scholar 

  124. Walther, A., Johnstone, E., Swanton, C., Midgley, R., Tomlinson, I., & Kerr, D. (2009). Genetic prognostic and predictive markers in colorectal cancer. Nature Reviews. Cancer, 9, 489.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Ryan Munoz for critical review of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stephanie Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Huang, R.S., Innocenti, F., Ratain, M.J. (2011). Irinotecan. In: Wu, A., Yeo, KT. (eds) Pharmacogenomic Testing in Current Clinical Practice. Molecular and Translational Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-283-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-283-4_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-282-7

  • Online ISBN: 978-1-60761-283-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics