Skip to main content

The Na + /Ca 2+ Exchanger: A Target for Therapeutic Intervention in Cerebral Ischemia

  • Chapter
  • First Online:
New Strategies in Stroke Intervention

Abstract

The Na+/Ca2+ exchanger (NCX) belongs to the superfamily of Ca2+/cation antiporter (CaCA) membrane proteins comprising the following members: (1) the NCX family, which exchanges three Na+ ions for one Ca2+ ion (Reeves and Hale, 1984; Fujioka et al., 2000; Kang and Hilgemann, 2004); (2) the Na+/Ca2+ exchanger K+-dependent family (NCKX), which exchanges four Na+ for one Ca2+ plus one K+ ion [1, 2]; (3) the bacterial family which probably promotes Ca2+/H+ exchange (YRBG) [3]; (4) the nonbacterial Ca2+/H+ exchange family (CAX), which is also the Ca2+ exchanger of yeast vacuoles [4]; and (5) the Ca2+/cation exchanger family (CCX), which contains the partially characterized molecule previously called Na+/Ca2+–Li+ exchanger (NCLX or NCKX6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schnetkamp PP. Na-Ca or Na-Ca-K exchange in rod photoreceptors. Prog Biophys Mol Biol 54: 1–29, 1989.

    Article  PubMed  CAS  Google Scholar 

  2. Lytton J. How many sodium ions does it take to turn an exchanger? J Physiol 545: 335, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. Cunningham KW and Fink GR. Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol Cell Biol 16: 2226–2237, 1996.

    PubMed  CAS  Google Scholar 

  4. Pozos TC, Sekler I, and Cyert MS. The product of HUM1, a novel yeast gene, is required for vacuolar Ca2+/H+ exchange and is related to mammalian Na+/Ca2+ exchangers. Mol Cell Biol 16: 3730–3741, 1996.

    PubMed  CAS  Google Scholar 

  5. Annunziato L, Pignataro G, and Di Renzo GF. Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol Rev 56: 633–654, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Philipson KD and Nicoll DA. Sodium-calcium exchange: a molecular perspective. Annu Rev Physiol 62: 111–133, 2000.

    Article  PubMed  CAS  Google Scholar 

  7. Philipson KD, Nicoll DA, Ottolia M, Quednau BD, Reuter H, John S, and Qiu Z. The Na+/Ca2+ exchange molecule: an overview. Ann N Y Acad Sci 976: 1–10, 2002.

    Article  PubMed  CAS  Google Scholar 

  8. Nicoll DA, Longoni S, and Philipson KD. Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250: 562–565, 1990.

    Article  PubMed  CAS  Google Scholar 

  9. Li Z, Matsuoka S, Hryshko LV, Nicoll DA, Bersohn MM, Burke EP, Lifton RP, and Philipson KD. Cloning of the NCX2 isoform of the plasma membrane Na+-Ca2+ exchanger. J Biol Chem 269: 17434–17439, 1994.

    PubMed  CAS  Google Scholar 

  10. Nicoll DA, Quednau BD, Qui Z, Xia YR, Lusis AJ, and Philipson KD. Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J Biol Chem 271: 24914–24921, 1996.

    Article  PubMed  CAS  Google Scholar 

  11. Kraev A, Chumakov I, and Carafoli E. The organization of the human gene NCX1 encoding the sodium-calcium exchanger. Genomics 37: 105–112, 1996.

    Article  PubMed  CAS  Google Scholar 

  12. Lee SL, Yu AS, and Lytton J. Tissue-specific expression of Na+-Ca2+ exchanger isoforms. J Biol Chem 269: 14849–14852, 1994.

    PubMed  CAS  Google Scholar 

  13. Nicholas SB, Yang W, Lee SL, Zhu H, Philipson KD, and Lytton J. Alternative promoters and cardiac muscle cell-specific expression of the Na+/Ca2+ exchanger gene. Am J Physiol 274: H217–H232, 1998.

    PubMed  CAS  Google Scholar 

  14. Scheller T, Kraev A, Skinner S, and Carafoli E. Cloning of the multipartite promoter of the sodium-calcium exchanger gene NCX1 and characterization of its activity in vascular smooth muscle cells. J Biol Chem 273: 7643–7649, 1998.

    Article  PubMed  CAS  Google Scholar 

  15. Sehgal A, Patil N, and Chao M. A constitutive promoter directs expression of the nerve growth factor receptor gene. Mol Cell Biol 8: 3160–3167, 1988.

    PubMed  CAS  Google Scholar 

  16. Li L, Guerini D, and Carafoli E. Calcineurin controls the transcription of Na+/Ca2+ exchanger isoforms in developing cerebellar neurons. J Biol Chem 275: 20903–20910, 2000.

    Article  PubMed  CAS  Google Scholar 

  17. Boscia F, Gala R, Pignataro G, de Bartolomeis A, Cicale M, Ambesi-Impiombato A, Di Renzo G, and Annunziato L. Permanent focal brain ischemia induces isoform-dependent changes in the pattern of Na+/Ca2+ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions. J Cereb Blood Flow Metab 26: 502–517, 2006.

    Article  PubMed  CAS  Google Scholar 

  18. Hossmann KA. Excitotoxic mechanisms in focal ischemia. Adv Neurol 71: 69–74, 1996.

    PubMed  CAS  Google Scholar 

  19. Gabellini N, Bortoluzzi S, Danieli GA, and Carafoli E. Control of the Na+/Ca2+ exchanger 3 promoter by cyclic adenosine monophosphate and Ca2+ in differentiating neurons. J Neurochem 84: 282–293, 2003.

    Article  PubMed  CAS  Google Scholar 

  20. Gabellini N. Transcriptional regulation by cAMP and Ca2+ links the Na+/Ca2+ exchanger 3 to memory and sensory pathways. Mol Neurobiol 30: 91–116, 2004.

    Article  PubMed  CAS  Google Scholar 

  21. Sugiura S, Kitagawa K, Omura-Matsuoka E, Sasaki T, Tanaka S, Yagita Y, Matsushita K, Storm DR, and Hori M. CRE-mediated gene transcription in the peri-infarct area after focal cerebral ischemia in mice. J Neurosci Res 75: 401–407, 2004.

    Article  PubMed  CAS  Google Scholar 

  22. Gomez-Villafuertes R, Torres B, Barrio J, Savignac M, Gabellini N, Rizzato F, Pintado B, Gutierrez-Adan A, Mellstrom B, Carafoli E, and Naranjo JR. Downstream regulatory element antagonist modulator regulates Ca2+ homeostasis and viability in cerebellar neurons. J Neurosci 25: 10822–10830, 2005.

    Article  PubMed  CAS  Google Scholar 

  23. Nicoll DA, Ottolia M, Lu L, Lu Y, and Philipson KD. A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J Biol Chem 274: 910–917, 1999.

    Article  PubMed  CAS  Google Scholar 

  24. Nicoll DA, Hryshko LV, Matsuoka S, Frank JS, and Philipson KD. Mutation of amino acid residues in the putative transmembrane segments of the cardiac sarcolemmal Na+-Ca2+ exchanger. J Biol Chem 271: 13385–13391, 1996.

    Article  PubMed  CAS  Google Scholar 

  25. Ottolia M, Nicoll DA, and Philipson KD. Mutational analysis of the alpha-1 repeat of the cardiac Na+-Ca2+ exchanger. J Biol Chem 280: 1061–1069, 2005.

    Article  PubMed  CAS  Google Scholar 

  26. Hilge M, Aelen J, and Vuister GW. Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol Cell 22: 15–25, 2006.

    Article  PubMed  CAS  Google Scholar 

  27. Maack C, Ganesan A, Sidor A, and O'Rourke B. Cardiac sodium-calcium exchanger is regulated by allosteric calcium and exchanger inhibitory peptide at distinct sites. Circ Res 96: 91–99, 2005.

    Article  PubMed  CAS  Google Scholar 

  28. Matsuoka S, Nicoll DA, He Z, and Philipson KD. Regulation of cardiac Na+-Ca2+ exchanger by the endogenous XIP region. J Gen Physiol 109: 273–286, 1997.

    Article  PubMed  CAS  Google Scholar 

  29. Li Z, Nicoll DA, Collins A, Hilgemann DW, Filoteo AG, Penniston JT, Weiss JN, Tomich JM, and Philipson KD. Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+ exchanger. J Biol Chem 266: 1014–1020, 1991.

    PubMed  CAS  Google Scholar 

  30. Pignataro G, Tortiglione A, Scorziello A, Giaccio L, Secondo A, Severino B, Santagada V, Caliendo G, Amoroso S, Di Renzo G, and Annunziato L. Evidence for a protective role played by the Na+/Ca2+ exchanger in cerebral ischemia induced by middle cerebral artery occlusion in male rats. Neuropharmacology 46: 439–448, 2004.

    Article  PubMed  CAS  Google Scholar 

  31. Santacruz-Toloza L, Ottolia M, Nicoll DA, and Philipson KD. Functional analysis of a disulfide bond in the cardiac Na+-Ca2+ exchanger. J Biol Chem 275: 182–188, 2000.

    Article  PubMed  CAS  Google Scholar 

  32. Walz T, Hirai T, Murata K, Heymann JB, Mitsuoka K, Fujiyoshi Y, Smith BL, Agre P, and Engel A. The three-dimensional structure of aquaporin-1. Nature 387: 624–627, 1997.

    Article  PubMed  CAS  Google Scholar 

  33. Ottolia M, John S, Qiu Z, and Philipson KD. Split Na+-Ca2+ exchangers. Implications for function and expression. J Biol Chem 276: 19603–19609, 2001.

    Article  PubMed  CAS  Google Scholar 

  34. Quednau BD, Nicoll DA, and Philipson KD. Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am J Physiol 272: C1250–C1261, 1997.

    PubMed  CAS  Google Scholar 

  35. Yu SP and Choi DW. Na+-Ca2+ exchange currents in cortical neurons: concomitant forward and reverse operation and effect of glutamate. Eur J Neurosci 9: 1273–1281, 1997.

    Article  PubMed  CAS  Google Scholar 

  36. Canitano A, Papa M, Boscia F, Castaldo P, Sellitti S, Taglialatela M, and Annunziato L. Brain distribution of the Na+/Ca2+ exchanger-encoding genes NCX1, NCX2, and NCX3 and their related proteins in the central nervous system. Ann N Y Acad Sci 976: 394–404, 2002.

    Article  PubMed  CAS  Google Scholar 

  37. Papa M, Canitano A, Boscia F, Castaldo P, Sellitti S, Porzig H, Taglialatela M, and Annunziato L. Differential expression of the Na+-Ca2+ exchanger transcripts and proteins in rat brain regions. J Comp Neurol 461: 31–48, 2003.

    Article  PubMed  CAS  Google Scholar 

  38. Reeves JP and Hale CC. The stoichiometry of the cardiac sodium-calcium exchange system. J Biol Chem 259: 7733–7739, 1984.

    PubMed  CAS  Google Scholar 

  39. Kang TM and Hilgemann DW. Multiple transport modes of the cardiac Na+/Ca2+ exchanger. Nature 427: 544–548, 2004.

    Article  PubMed  CAS  Google Scholar 

  40. Hilgemann DW, Nicoll DA, and Philipson KD. Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature 352: 715–718, 1991.

    Article  PubMed  CAS  Google Scholar 

  41. Blaustein MP and Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev 79: 763–854, 1999.

    PubMed  CAS  Google Scholar 

  42. Secondo A, Staiano RI, Scorziello A, Sirabella R, Boscia F, Adornetto A, Valsecchi V, Molinaro P, Canzoniero LM, Di Renzo G, and Annunziato L. BHK cells transfected with NCX3 are more resistant to hypoxia followed by reoxygenation than those transfected with NCX1 and NCX2: Possible relationship with mitochondrial membrane potential. Cell Calcium 42: 521–535, 2007.

    Article  PubMed  CAS  Google Scholar 

  43. Linck B, Qiu Z, He Z, Tong Q, Hilgemann DW, and Philipson KD. Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3). Am J Physiol 274: C415–C423, 1998.

    PubMed  CAS  Google Scholar 

  44. Juhaszova M, Shimizu H, Borin ML, Yip RK, Santiago EM, Lindenmayer GE, and Blaustein MP. Localization of the Na+-Ca2+ exchanger in vascular smooth muscle, and in neurons and astrocytes. Ann N Y Acad Sci 779: 318–335, 1996.

    Article  PubMed  CAS  Google Scholar 

  45. Finkbeiner SM. Glial calcium. Glia 9: 83–104, 1993.

    Article  PubMed  CAS  Google Scholar 

  46. Goldman WF, Yarowsky PJ, Juhaszova M, Krueger BK, and Blaustein MP. Sodium/calcium exchange in rat cortical astrocytes. J Neurosci 14: 5834–5843, 1994.

    PubMed  CAS  Google Scholar 

  47. Holgado A and Beauge L. Effects of external monovalent cations on Na+-Ca2+ exchange in cultured rat glial cells. Ann N Y Acad Sci 779: 279–281, 1996.

    Article  PubMed  CAS  Google Scholar 

  48. Takuma K, Matsuda T, Hashimoto H, Asano S, and Baba A. Cultured rat astrocytes possess Na+-Ca2+ exchanger. Glia 12: 336–342, 1994.

    Article  PubMed  CAS  Google Scholar 

  49. Reuter H, Henderson SA, Han T, Matsuda T, Baba A, Ross RS, Goldhaber JI, and Philipson KD. Knockout mice for pharmacological screening: testing the specificity of Na+-Ca2+ exchange inhibitors. Circ Res 91: 90–92, 2002.

    Article  PubMed  CAS  Google Scholar 

  50. Jeon D, Yang YM, Jeong MJ, Philipson KD, Rhim H, and Shin HS. Enhanced learning and memory in mice lacking Na+/Ca2+ exchanger 2. Neuron 38: 965–976, 2003.

    Article  PubMed  CAS  Google Scholar 

  51. Sokolow S, Manto M, Gailly P, Molgo J, Vandebrouck C, Vanderwinden JM, Herchuelz A, and Schurmans S. Impaired neuromuscular transmission and skeletal muscle fiber necrosis in mice lacking Na/Ca exchanger 3. J Clin Invest 113: 265–273, 2004.

    PubMed  CAS  Google Scholar 

  52. Cragoe EJ Jr., Woltersdorf OW, Jr, Bicking JB, Kwong SF, and Jones JH. Pyrazine diuretics. II. N-amidino-3-amino-5-substituted 6-halopyrazinecarboxamides. J Med Chem 10: 66–75, 1967.

    Article  PubMed  CAS  Google Scholar 

  53. Baker PF and Blaustein MP. Sodium-dependent uptake of calcium by crab nerve. Biochim Biophys Acta 150: 167–170, 1968.

    Article  PubMed  CAS  Google Scholar 

  54. Sharikabad MN, Cragoe EJ Jr., and Brors O. Inhibition by 5-N-(4-chlorobenzyl)-2', 4'-dimethylbenzamil of Na+/Ca2+ exchange and L-type Ca2+ channels in isolated cardiomyocytes. Pharmacol Toxicol 80: 57–61, 1997.

    Article  PubMed  CAS  Google Scholar 

  55. Tewes F, Munnier E, Antoon B, Ngaboni Okassa L, Cohen-Jonathan S, Marchais H, Douziech-Eyrolles L, Souce M, Dubois P, and Chourpa I. Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods. Eur J Pharm Biopharm 66: 488–492, 2007.

    Article  PubMed  CAS  Google Scholar 

  56. Taglialatela M, Amoroso S, Canzoniero LM, Di Renzo GF, and Annunziato L. Membrane events and ionic processes involved in dopamine release from tuberoinfundibular neurons. II. Effect of the inhibition of the Na+-Ca++ exchange by amiloride. J Pharmacol Exp Ther 246: 689–694, 1988.

    PubMed  CAS  Google Scholar 

  57. Taglialatela M, Canzoniero LM, Cragoe EJ, Jr, Di Renzo G, and Annunziato L. Na+-Ca2+ exchange activity in central nerve endings. II. Relationship between pharmacological blockade by amiloride analogues and dopamine release from tuberoinfundibular hypothalamic neurons. Mol Pharmacol 38: 393–400, 1990.

    PubMed  CAS  Google Scholar 

  58. Amoroso S, Taglialatela M, Canzoniero LM, Cragoe EJ, Jr, di Renzo G, and Annunziato L. Possible involvement of Ca++ ions, protein kinase C and Na+-H+ antiporter in insulin-induced endogenous dopamine release from tuberoinfundibular neurons. Life Sci 46: 885–894, 1990.

    Article  PubMed  CAS  Google Scholar 

  59. Watano T, Kimura J, Morita T, and Nakanishi H. A novel antagonist, No. 7943, of the Na+/Ca2+ exchange current in guinea-pig cardiac ventricular cells. Br J Pharmacol 119: 555–563, 1996.

    PubMed  CAS  Google Scholar 

  60. Iwamoto T and Shigekawa M. Differential inhibition of Na+/Ca2+ exchanger isoforms by divalent cations and isothiourea derivative. Am J Physiol 275: C423–C430, 1998.

    PubMed  CAS  Google Scholar 

  61. Iwamoto T, Watano T, and Shigekawa M. A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX1. J Biol Chem 271: 22391–22397, 1996.

    Article  PubMed  CAS  Google Scholar 

  62. Sobolevsky AI and Khodorov BI. Blockade of NMDA channels in acutely isolated rat hippocampal neurons by the Na+/Ca2+ exchange inhibitor KB-R7943. Neuropharmacology 38: 1235–1242, 1999.

    Article  PubMed  CAS  Google Scholar 

  63. Liang GH, Kim JA, Seol GH, Choi S, and Suh SH. The Na+/Ca(2+) exchanger inhibitor KB-R7943 activates large-conductance Ca2+-activated K+ channels in endothelial and vascular smooth muscle cells. Eur J Pharmacol 582: 35–41, 2008.

    Article  PubMed  CAS  Google Scholar 

  64. Li Y, Woo V, and Bose R. Platelet hyperactivity and abnormal Ca2+ homeostasis in diabetes mellitus. Am J Physiol Heart Circ Physiol 280: H1480–H1489, 2001.

    PubMed  CAS  Google Scholar 

  65. Amoroso S, Tortiglione A, Secondo A, Catalano A, Montagnani S, Di Renzo G, and Annunziato L. Sodium nitroprusside prevents chemical hypoxia-induced cell death through iron ions stimulating the activity of the Na+-Ca2+ exchanger in C6 glioma cells. J Neurochem 74: 1505–1513, 2000.

    Article  PubMed  CAS  Google Scholar 

  66. Secondo A, Staiano IR, Scorziello A, Sirabella R, Boscia F, Adornetto A, Canzoniero LM, Di Renzo G, and Annunziato L. The Na+/Ca2+ exchanger isoform 3 (NCX3) but not isoform 2 (NCX2) and 1 (NCX1) singly transfected in BHK cells plays a protective role in a model of in vitro hypoxia. Ann N Y Acad Sci 1099: 481–485, 2007.

    Article  PubMed  CAS  Google Scholar 

  67. Formisano L, Saggese M, Secondo A, Sirabella R, Vito P, Valsecchi V, Molinaro P, Di Renzo G, and Annunziato L. The two isoforms of the Na+/Ca2+ exchanger, NCX1 and NCX3, constitute novel additional targets for the prosurvival action of Akt/protein kinase B pathway. Mol Pharmacol 73: 727–737, 2008.

    Article  PubMed  CAS  Google Scholar 

  68. Tortiglione A, Picconi B, Barone I, Centonze D, Rossi S, Costa C, Di Filippo M, Tozzi A, Tantucci M, Bernardi G, Annunziato L, and Calabresi P. Na+/Ca2+ exchanger maintains ionic homeostasis in the peri-infarct area. Stroke 38: 1614–1620, 2007.

    Article  PubMed  CAS  Google Scholar 

  69. Yamashita J, Kita S, Iwamoto T, Ogata M, Takaoka M, Tazawa N, Nishikawa M, Wakimoto K, Shigekawa M, Komuro I, and Matsumura Y. Attenuation of ischemia/reperfusion-induced renal injury in mice deficient in Na+/Ca2+ exchanger. J Pharmacol Exp Ther 304: 284–293, 2003.

    Article  PubMed  CAS  Google Scholar 

  70. Slodzinski MK, Juhaszova M, and Blaustein MP. Antisense inhibition of Na+/Ca2+ exchange in primary cultured arterial myocytes. Am J Physiol 269: C1340–C1345, 1995.

    PubMed  CAS  Google Scholar 

  71. Pignataro G, Gala R, Cuomo O, Tortiglione A, Giaccio L, Castaldo P, Sirabella R, Matrone C, Canitano A, Amoroso S, Di Renzo G, and Annunziato L. Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke 35: 2566–2570, 2004.

    Article  PubMed  CAS  Google Scholar 

  72. Reeves JP, Bailey CA, and Hale CC. Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem 261: 4948–4955, 1986.

    PubMed  CAS  Google Scholar 

  73. Molinaro P, Cuomo O, Pignataro G, Boscia F, Sirabella R, Pannaccione A, Secondo A, Scorziello A, Adornetto A, Gala R, Viggiano D, Sokolow S, Herchuelz A, Schurmans S, Di Renzo G, and Annunziato L. Targeted disruption of Na+/Ca2+ exchanger 3 (NCX3) gene leads to a worsening of ischemic brain damage. J Neurosci 28: 1179–1184, 2008.

    Article  PubMed  CAS  Google Scholar 

  74. Condrescu M, Gardner JP, Chernaya G, Aceto JF, Kroupis C, and Reeves JP. ATP-dependent regulation of sodium-calcium exchange in Chinese hamster ovary cells transfected with the bovine cardiac sodium-calcium exchanger. J Biol Chem 270: 9137–9146, 1995.

    Article  PubMed  CAS  Google Scholar 

  75. Sirabella R, Secondo A, Pannaccione A, Scorziello A, Valsecchi V, Adornetto A, Bilo L, Di Renzo G, and Annunziato L. Anoxia-incuced NF-kB-dependent upregulation of NCX1 contributes to Ca2+ refilling into endoplasmic reticulum in cortical neurons. Stroke 40: 922–929, 2009.

    Article  PubMed  CAS  Google Scholar 

  76. Matsuda T, Arakawa N, Takuma K, Kishida Y, Kawasaki Y, Sakaue M, Takahashi K, Takahashi T, Suzuki T, Ota T, Hamano-Takahashi A, Onishi M, Tanaka Y, Kameo K, and Baba A. SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J Pharmacol Exp Ther 298: 249–256, 2001.

    PubMed  CAS  Google Scholar 

  77. Luo J, Wang Y, Chen X, Chen H, Kintner DB, Shull GE, Philipson KD, and Sun D. Increased tolerance to ischemic neuronal damage by knockdown of Na+-Ca2+ exchanger isoform 1. Ann N Y Acad Sci 1099: 292–305, 2007.

    Article  PubMed  CAS  Google Scholar 

  78. Jeon D, Chu K, Jung KH, Kim M, Yoon BW, Lee CJ, Oh U, and Shin HS. Na+/Ca2+ exchanger 2 is neuroprotective by exporting Ca2+ during a transient focal cerebral ischemia in the mouse. Cell Calcium 43: 482–491, 2008.

    Article  PubMed  CAS  Google Scholar 

  79. Rochat B and Audus KL. Drug disposition and targeting. Transport across the blood-brain barrier. Pharm Biotechnol 12: 181–200, 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Annunziato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Annunziato, L. et al. (2009). The Na + /Ca 2+ Exchanger: A Target for Therapeutic Intervention in Cerebral Ischemia . In: Annunziato, L. (eds) New Strategies in Stroke Intervention. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60761-280-3_5

Download citation

Publish with us

Policies and ethics