Skip to main content

Diagnosis and Classification of the BCR-ABL1-Negative Myeloproliferative Neoplasms

  • Chapter
  • First Online:
  • 865 Accesses

Part of the book series: Contemporary Hematology ((CH))

Abstract

The myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by dysregulated proliferation and expansion of one or more of the myeloid lineages (erythroid, granulocytic, megakaryocytic, monocytic/macrophage, or mast cell). This dysregulation is thought to be a consequence of genetic abnormalities at the level of stem/progenitor cells. Most of the cases are initially diagnosed in a proliferative phase when maturation of the neoplastic cells in the bone marrow is effective and numbers of granulocytes, erythrocytes, and/or platelets in the peripheral blood are increased. Although their onset is often insidious, each MPN has the potential to progress to bone marrow failure due to myelofibrosis, ineffective hematopoiesis, and/or transformation to acute leukemia. Acute leukemia is defined as 20% or more blasts in the peripheral blood and/or bone marrow or by the appearance of a myeloid sarcoma in extramedullary tissue. In some patients, the initial proliferative stage is not apparent or is of very short duration, and the MPN is first recognized in a progressed stage. At diagnosis, splenomegaly and hepatomegaly are common and often become more prominent during the disease course. The organomegaly is caused by sequestration of excess blood cells in the spleen and liver, extramedullary hematopoiesis, or both.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–51.

    Article  PubMed  CAS  Google Scholar 

  2. Berlin NI. Diagnosis and classification of the polycythemias. Semin Hematol 1975; 12: 339–51.

    PubMed  CAS  Google Scholar 

  3. Murphy S. Therapeutic dilemmas: balancing the risks of bleeding, thrombosis, and leukemic transformation in myeloproliferative disorders (MPD). Thromb Haemost 1997; 78: 622–6.

    PubMed  CAS  Google Scholar 

  4. Thiele J, Kvasnicka HM. Chronic myeloproliferative disorders with thrombocythemia: a comparative study of two classification systems (PVSG, WHO) on 839 patients. Ann Hematol 2003; 82: 148–52.

    PubMed  CAS  Google Scholar 

  5. Thiele J, Kvasnicka HM, Vardiman J. Bone marrow histopathology in the diagnosis of chronic myeloproliferative disorders: a forgotten pearl. Best Pract Res Clin Haematol 2006; 19: 413–37.

    Article  PubMed  CAS  Google Scholar 

  6. De Keersmaecker K, Cools J. Chronic myeloproliferative disorders: a tyrosine kinase tale. Leukemia 2006; 20: 200–5.

    Article  PubMed  CAS  Google Scholar 

  7. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–8.

    Article  PubMed  CAS  Google Scholar 

  8. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–61.

    PubMed  CAS  Google Scholar 

  9. Kralovics R, Stockton DW, Prchal JT. Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood 2003; 102: 3793–6.

    Article  PubMed  CAS  Google Scholar 

  10. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–97.

    Article  PubMed  CAS  Google Scholar 

  11. Jones AV, Kreil S, Zoi K, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005; 106: 2162–8.

    Article  PubMed  CAS  Google Scholar 

  12. Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356: 459–68.

    Article  PubMed  CAS  Google Scholar 

  13. Beer PA, Campbell PJ, Scott LM, et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 2008; 112: 141–9.

    Article  PubMed  CAS  Google Scholar 

  14. Vannucchi AM, Antonioli E, Guglielmelli P, et al. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia. Blood 2008; 112: 844–7.

    Article  PubMed  CAS  Google Scholar 

  15. Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–6.

    Article  PubMed  CAS  Google Scholar 

  16. Guglielmelli P, Pancrazzi A, Bergamaschi G, et al. Anaemia characterises patients with myelofibrosis harbouring Mpl mutation. Br J Haematol 2007; 137: 244–7.

    Article  PubMed  CAS  Google Scholar 

  17. Longley BJ, Tyrrell L, Lu SZ, et al. Somatic c-KIT activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat Genet 1996; 12: 312–4.

    Article  PubMed  CAS  Google Scholar 

  18. Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77: 307–16.

    Article  PubMed  CAS  Google Scholar 

  19. Cools J, DeAngelo DJ, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003; 348: 1201–14.

    Article  PubMed  CAS  Google Scholar 

  20. Abruzzo LV, Jaffe ES, Cotelingam JD, et al. T-cell lymphoblastic lymphoma with eosinophilia associated with subsequent myeloid malignancy. Am J Surg Pathol 1992; 16: 236–45.

    Article  PubMed  CAS  Google Scholar 

  21. Macdonald D, Reiter A, Cross NC. The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol 2002; 107: 101–7.

    Article  PubMed  CAS  Google Scholar 

  22. Spivak JL. Polycythemia vera: myths, mechanisms, and management. Blood 2002; 100: 4272–90.

    Article  PubMed  CAS  Google Scholar 

  23. Vardiman J, Brunning RD, Arber DA. Introduction and overview of the classification of the myeloid neoplasms. In: Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of Tumours of Hematopoietic and Lymphoid Tissues. 4th ed. IARC: Lyon, France, 2008: pp 18–30.

    Google Scholar 

  24. Thiele J, Kvasnicka HM, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica 2005; 90: 1128–32.

    PubMed  Google Scholar 

  25. Hollowell JG, van Assendelft OW, Gunter EW, et al. Hematological and iron-related analytes–reference data for persons aged 1 year and over: United States, 1988–94. Vital Health Stat 11 2005: 1–156.

    Google Scholar 

  26. Thiele J, Kvasnicka HM, Orazi A, Tefferi A, Birgegard G. Polycythemia vera In: Swerdlow SH, Campo E, Harris NL, et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. IARC: Lyon, France, 2008: pp 40–43.

    Google Scholar 

  27. Polycythemia vera: the natural history of 1213 patients followed for 20 years. Gruppo Italiano Studio Policitemia. Ann Intern Med 1995; 123: 656–64.

    Google Scholar 

  28. Percy MJ, Scott LM, Erber WN, et al. The frequency of JAK2 exon 12 mutations in idiopathic erythrocytosis patients with low serum erythropoietin levels. Haematologica 2007; 92: 1607–14.

    Article  PubMed  CAS  Google Scholar 

  29. Reilly JT. Pathogenetic insight and prognostic information from standard and molecular cytogenetic studies in the BCR-ABL-negative myeloproliferative neoplasms (MPNs). Leukemia 2008; 22: 1818–27.

    Article  PubMed  CAS  Google Scholar 

  30. Wang X, LeBlanc A, Gruenstein S, et al. Clonal analyses define the relationships between chromosomal abnormalities and JAK2V617F in patients with Ph-negative myeloproliferative neoplasms. Exp Hematol 2009; 37: 1194–200.

    Article  PubMed  CAS  Google Scholar 

  31. Najean Y, Dresch C, Rain JD. The very-long-term course of polycythaemia: a complement to the previously published data of the Polycythaemia Vera Study Group. Br J Haematol 1994; 86: 233–5.

    Article  PubMed  CAS  Google Scholar 

  32. Alvarez-Larran A, Bellosillo B, Martinez-Aviles L, et al. Postpolycythaemic myelofibrosis: frequency and risk factors for this complication in 116 patients. Br J Haematol 2009; 146: 504–9.

    Article  PubMed  CAS  Google Scholar 

  33. Vannucchi AM, Antonioli E, Guglielmelli P, et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 2007; 110: 840–6.

    Article  PubMed  CAS  Google Scholar 

  34. Finazzi G, Caruso V, Marchioli R, et al. Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood 2005; 105: 2664–70.

    Article  PubMed  CAS  Google Scholar 

  35. Passamonti F, Rumi E, Arcaini L, et al. Leukemic transformation of polycythemia vera: a single center study of 23 patients. Cancer 2005; 104: 1032–6.

    Article  PubMed  Google Scholar 

  36. Gordeuk VR, Stockton DW, Prchal JT. Congenital polycythemias/erythrocytoses. Haematologica 2005; 90: 109–16.

    PubMed  CAS  Google Scholar 

  37. Patnaik MM, Tefferi A. The complete evaluation of erythrocytosis: congenital and acquired. Leukemia 2009; 23: 834–44.

    Article  PubMed  CAS  Google Scholar 

  38. Klco JM, Vij R, Kreisel FH, Hassan A, Frater JL. Molecular pathology of myeloproliferative neoplasms. Am J Clin Pathol 2010;133: 602–15.

    Article  PubMed  Google Scholar 

  39. Lataillade JJ, Pierre-Louis O, Hasselbalch HC, et al. Does primary myelofibrosis involve a defective stem cell niche? From concept to evidence. Blood 2008; 112: 3026–35.

    Article  PubMed  CAS  Google Scholar 

  40. Bock O, Muth M, Theophile K, et al. Identification of new target molecules PTK2, TGFBR2 and CD9 overexpressed during advanced bone marrow remodelling in primary myelofibrosis. Br J Haematol 2009; 146: 510–20.

    Article  PubMed  CAS  Google Scholar 

  41. Ho CL, Lasho TL, Butterfield JH, Tefferi A. Global cytokine analysis in myeloproliferative disorders. Leuk Res 2007; 31: 1389–92.

    Article  PubMed  CAS  Google Scholar 

  42. Varricchio L, Mancini A, Migliaccio AR. Pathological interactions between hematopoietic stem cells and their niche revealed by mouse models of primary myelofibrosis. Expert Rev Hematol 2009; 2: 315–34.

    Article  PubMed  CAS  Google Scholar 

  43. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010;115: 1703–8.

    Article  PubMed  CAS  Google Scholar 

  44. Thiele J, Kvasnicka HM, Boeltken B, et al. Initial (prefibrotic) stages of idiopathic (primary) myelofibrosis (IMF) - a clinicopathological study. Leukemia 1999; 13: 1741–8.

    Article  PubMed  CAS  Google Scholar 

  45. Tefferi A. Myelofibrosis with myeloid metaplasia. N Engl J Med 2000; 342: 1255–65.

    Article  PubMed  CAS  Google Scholar 

  46. Cervantes F, Pereira A, Marti JM, Feliu E, Rozman C. Bone marrow lymphoid nodules in myeloproliferative disorders: association with the nonmyelosclerotic phases of idiopathic myelofibrosis and immunological significance. Br J Haematol 1988; 70: 279–82.

    Article  PubMed  CAS  Google Scholar 

  47. Reeder TL, Bailey RJ, Dewald GW, Tefferi A. Both B and T lymphocytes may be clonally involved in myelofibrosis with myeloid metaplasia. Blood 2003; 101: 1981–3.

    Article  PubMed  CAS  Google Scholar 

  48. Thiele J, Kvasnicka HM, Tefferi A, et al. Primary myelofibrosis. In: Swerdlow SH, Campo E, Harris NL, et al. (eds). WHO Classification of Tumours of Hematopoietic and Lymphoid Tissues. 4th ed. IARC: Lyon, France, 2008: pp 44–47.

    Google Scholar 

  49. Wolf BC, Banks PM, Mann RB, Neiman RS. Splenic hematopoiesis in polycythemia vera. A morphologic and immunohistologic study. Am J Clin Pathol 1988; 89: 69–75.

    PubMed  CAS  Google Scholar 

  50. Hussein K, Bock O, Theophile K, et al. JAK2(V617F) allele burden discriminates essential thrombocythemia from a subset of prefibrotic-stage primary myelofibrosis. Exp Hematol 2009; 37: 1186–93 e7.

    Article  PubMed  CAS  Google Scholar 

  51. Tefferi A, Pardanani A, Lim KH, et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 2009; 23: 905–11.

    Article  PubMed  CAS  Google Scholar 

  52. Tam CS, Abruzzo LV, Lin KI, et al. The role of cytogenetic abnormalities as a prognostic marker in primary myelofibrosis: applicability at the time of diagnosis and later during disease course. Blood 2009; 113: 4171–8.

    Article  PubMed  CAS  Google Scholar 

  53. Hussein K, Pardanani AD, Van Dyke DL, Hanson CA, Tefferi A. International Prognostic Scoring System-independent cytogenetic risk categorization in primary myelofibrosis. Blood 115: 496–9.

    Google Scholar 

  54. Hidaka T, Shide K, Shimoda H, et al. The impact of cytogenetic abnormalities on the prognosis of primary myelofibrosis: a prospective survey of 202 cases in Japan. Eur J Haematol 2009; 83: 328–33.

    Article  PubMed  Google Scholar 

  55. Mesa RA, Li CY, Ketterling RP, et al. Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood 2005; 105: 973–7.

    Article  PubMed  CAS  Google Scholar 

  56. Boveri E, Passamonti F, Rumi E, et al. Bone marrow microvessel density in chronic myeloproliferative disorders: a study of 115 patients with clinicopathological and molecular correlations. Br J Haematol 2008; 140: 162–8.

    PubMed  Google Scholar 

  57. Hussein K, Van Dyke DL, Tefferi A. Conventional cytogenetics in myelofibrosis: literature review and discussion. Eur J Haematol 2009; 82: 329–38.

    Article  PubMed  Google Scholar 

  58. Kvasnicka HM, Thiele J. The impact of clinicopathological studies on staging and survival in essential thrombocythemia, chronic idiopathic myelofibrosis, and polycythemia rubra vera. Semin Thromb Hemost 2006; 32: 362–71.

    Article  PubMed  Google Scholar 

  59. Orazi A, O’Malley DP, Jiang J, et al. Acute panmyelosis with myelofibrosis: an entity distinct from acute megakaryoblastic leukemia. Mod Pathol 2005; 18: 603–14.

    Article  PubMed  Google Scholar 

  60. Steensma DP, Hanson CA, Letendre L, Tefferi A. Myelodysplasia with fibrosis: a distinct entity? Leuk Res 2001; 25: 829–38.

    Article  PubMed  CAS  Google Scholar 

  61. Pullarkat V, Bass RD, Gong JZ, Feinstein DI, Brynes RK. Primary autoimmune myelofibrosis: definition of a distinct clinicopathologic syndrome. Am J Hematol 2003; 72: 8–12.

    Article  PubMed  Google Scholar 

  62. Thiele J, Kvasnicka HM, Orazi A, Tefferi A, Gisslinger H. Essential thrombocythaemia. In: Swerdlow SH, Campo E, Harris NL, et al. (eds). WHO Classification of Tumours of Hematopoietic and Lymphoid Tissues. 4th ed. IARC: Lyon, France, 2008: pp 48–50.

    Google Scholar 

  63. Kaushansky K. Historical review: megakaryopoiesis and thrombopoiesis. Blood 2008; 111: 981–6.

    Article  PubMed  CAS  Google Scholar 

  64. Hussein K, Bock O, Theophile K, et al. JAK2 (V617F) allele burden discriminates essential thrombocythemia from a subset of prefibrotic-stage primary myelofibrosis. Exp Hematol. 2009; 37: 1186–93.

    Article  PubMed  CAS  Google Scholar 

  65. Scott LM, Scott MA, Campbell PJ, Green AR. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood 2006; 108: 2435–7.

    Article  PubMed  CAS  Google Scholar 

  66. Jensen MK, de Nully Brown P, Nielsen OJ, Hasselbalch HC. Incidence, clinical features and outcome of essential thrombocythaemia in a well defined geographical area. Eur J Haematol 2000; 65: 132–9.

    Article  PubMed  CAS  Google Scholar 

  67. Finazzi G, Harrison C. Essential thrombocythemia. Semin Hematol 2005; 42: 230–8.

    Article  PubMed  CAS  Google Scholar 

  68. Gisslinger H. Update on diagnosis and management of essential thrombocythemia. Semin Thromb Hemost 2006; 32: 430–6.

    Article  PubMed  Google Scholar 

  69. Mesa RA, Hanson CA, Li CY, et al. Diagnostic and prognostic value of bone marrow angiogenesis and megakaryocyte c-Mpl expression in essential thrombo­cythemia. Blood 2002; 99: 4131–7.

    Article  PubMed  CAS  Google Scholar 

  70. Steensma DP, Tefferi A. Cytogenetic and molecular genetic aspects of essential thrombocythemia. Acta Haematol 2002; 108: 55–65.

    Article  PubMed  CAS  Google Scholar 

  71. Elliott MA, Tefferi A. Thrombosis and haemorrhage in polycythemia vera and essential thrombocythemia. Br J Haematol. 2005; 128: 275–290.

    Article  PubMed  Google Scholar 

  72. Cervantes F, Alvarez-Larran A, Talarn C, Gomez M, Montserrat E. Myelofibrosis with myeloid metaplasia following essential thrombocythaemia: actuarial probability, presenting characteristics and evolution in a series of 195 patients. Br J Haematol 2002; 118: 786–90.

    Article  PubMed  Google Scholar 

  73. Kvasnicka HM, Bain BJ, Thiele J, et al. Myeloproliferative neoplasm, unclassifiable. In: Swerdlow SH, Campo E, Harris NL, et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. IARC: Lyon, France, 2008: pp 64–65.

    Google Scholar 

  74. Malcovati L, Della Porta MG, Pietra D, et al. Molecular and clinical features of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Blood 2009; 114: 3538–45.

    Article  PubMed  CAS  Google Scholar 

  75. Bain BJ, Brunning RD, Vardiman J, Thiele J. Chronic neutrophilic leukaemia. In: Swerdlow SH, Campo E, Harris NL, et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. IARC: Lyon, France, 2008: pp 38–39.

    Google Scholar 

  76. Bohm J, Kock S, Schaefer HE, Fisch P. Evidence of clonality in chronic neutrophilic leukaemia. J Clin Pathol 2003; 56: 292–5.

    Article  PubMed  CAS  Google Scholar 

  77. Yanagisawa K, Ohminami H, Sato M, et al. Neoplastic involvement of granulocytic lineage, not granulocytic-monocytic, monocytic, or erythrocytic lineage, in a patient with chronic neutrophilic leukemia. Am J Hematol 1998; 57: 221–4.

    Article  PubMed  CAS  Google Scholar 

  78. Mc Lornan DP, Percy MJ, Jones AV, Cross NC, Mc Mullin MF. Chronic neutrophilic leukemia with an associated V617F JAK2 tyrosine kinase mutation. Haematologica 2005; 90: 1696–7.

    PubMed  CAS  Google Scholar 

  79. Kako S, Kanda Y, Sato T, et al. Early relapse of JAK2 V617F-positive chronic neutrophilic leukemia with central nervous system infiltration after unrelated bone marrow transplantation. Am J Hematol 2007; 82: 386–90.

    Article  PubMed  CAS  Google Scholar 

  80. Elliott MA, Hanson CA, Dewald GW, et al. WHO-defined chronic neutrophilic leukemia: a long-term analysis of 12 cases and a critical review of the literature. Leukemia 2005; 19: 313–7.

    Article  PubMed  CAS  Google Scholar 

  81. Shigekiyo T, Miyagi J, Chohraku M, et al. Bleeding tendency in chronic neutrophilic leukemia. Int J Hematol 2008; 88: 240–2.

    Article  PubMed  Google Scholar 

  82. Abdel-Wahab O, Manshouri T, Patel J, et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res. 2010; 70: 447–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Kathryn Hale from Scientific Publications at the University of Texas M.D. Anderson Cancer Center for her editorial review of the manuscript and La Kisha Rodgers for her secretarial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Vardiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bueso-Ramos, C.E., Vardiman, J.W. (2011). Diagnosis and Classification of the BCR-ABL1-Negative Myeloproliferative Neoplasms. In: Verstovsek, S., Tefferi, A. (eds) Myeloproliferative Neoplasms. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-266-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-266-7_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-265-0

  • Online ISBN: 978-1-60761-266-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics