Skip to main content

Micro-RNAs in Hematologic Malignancies

  • Chapter
  • First Online:
Hematopathology

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 1308 Accesses

Abstract

Micro-RNAs (miRNAs) are small noncoding RNAs with gene regulatory functions. Abnormal expression of miRNAs distinguishes normal from tumoral tissues in both solid and hematological malignancies. These aberrations parallel abnormal expression of miRNA target genes, which ultimately are responsible for the development of the malignant phenotype. Intriguingly, miRNAs expression levels are variable during normal hematopoiesis, revealing that their up/downregulation is required during the physiologic differentiation of the hematopoietic multipotent precursor. Therefore, variations in miRNA levels mirror abnormal expression of their target genes and are involved in the development of lymphomas and leukemias. This chapter will describe how miRNAs affect normal hematopoiesis and contribute to the genesis of hematological malignancies, and how they affect the prognosis, and harbor therapeutic implications for patients affected by lymphomas and leukemias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambros V, Lee RC. Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol. 2004;265:131–158.

    PubMed  CAS  Google Scholar 

  2. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cel1. 2004;116:281–297.

    CAS  Google Scholar 

  3. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–531.

    PubMed  CAS  Google Scholar 

  4. Plasterk RH. Micro RNAs in animal development. Cell. 2006;124:877–881.

    PubMed  CAS  Google Scholar 

  5. Pasquinelli AE, Hunter S, Bracht J. MicroRNAs: a developing story. Curr Opin Genet Dev. 2005;15:200–205.

    PubMed  CAS  Google Scholar 

  6. Carleton M, Cleary MA, Linsley PS. MicroRNAs and cell cycle regulation. Cell Cycle. 2007;6:2127–2132.

    PubMed  CAS  Google Scholar 

  7. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–4060.

    PubMed  CAS  Google Scholar 

  8. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10:1957–1966.

    PubMed  CAS  Google Scholar 

  9. Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell. 2004;16:861–865.

    PubMed  CAS  Google Scholar 

  10. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318:1931–1934.

    PubMed  CAS  Google Scholar 

  11. Calin GA, Cimmino A, Fabbri M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A. 2008;105:5166–5171.

    PubMed  CAS  Google Scholar 

  12. Vatolin S, Navaratne K, Weil RJ. A novel method to detect functional microRNA targets. J Mol Biol. 2006;358:983–996.

    PubMed  CAS  Google Scholar 

  13. Liu CG, Calin GA, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA. 2004;101:9740–9744.

    PubMed  CAS  Google Scholar 

  14. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838.

    PubMed  CAS  Google Scholar 

  15. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004;101:2999–3004.

    PubMed  CAS  Google Scholar 

  16. Fabbri M, Croce CM, and Calin GA. MicroRNAs in the ontogeny of leukemias and lymphomas. Leuk. Lymphoma. 2009;50:160–170.

    PubMed  CAS  Google Scholar 

  17. Garzon R, Fabbri M, Cimmino A, et al. MicroRNA expression and function in cancer. Trends Mol Med. 2006;12:580–587.

    PubMed  CAS  Google Scholar 

  18. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. 2009;10:704–714.

    CAS  Google Scholar 

  19. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat. Rev. 2006;6:857–866.

    CAS  Google Scholar 

  20. Pekarsky Y, Calin GA, Aqeilan R. Chronic lymphocytic leukemia: molecular genetics and animal models. Curr Top Microbiol Immunol. 2005;294:51–70.

    PubMed  CAS  Google Scholar 

  21. Barbarotto E, Schmittgen TD, Calin GA. MicroRNAs and cancer: profile, profile, profile. Int J Cancer. 2008;122:969–977.

    PubMed  CAS  Google Scholar 

  22. Khoshnaw SM, Green AR, Powe DG, et al. MicroRNA involvement in the pathogenesis and management of breast cancer. J Clin Pathol. 2009;62:422–428.

    PubMed  CAS  Google Scholar 

  23. Lowery AJ, Miller N, Devaney A, et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res. 2009;11:R27.

    PubMed  Google Scholar 

  24. Ortholan C, Puissegur MP, Ilie M, et al. MicroRNAs and lung cancer: new oncogenes and tumor suppressors, new prognostic factors and potential therapeutic targets. Curr Med Chem. 2009;16:1047–1061.

    PubMed  CAS  Google Scholar 

  25. Georgantas RW, Hildreth R, Morisot S, et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA. 2007;104:2750–2755.

    PubMed  CAS  Google Scholar 

  26. Garzon R, Pichiorri F, Palumbo, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 2007;26:4148–4157.

    PubMed  CAS  Google Scholar 

  27. Fazi F, Racanicchi S, Zardo G, et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell. 2007;12:457–466.

    PubMed  CAS  Google Scholar 

  28. Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008;451:1125–1129.

    PubMed  CAS  Google Scholar 

  29. Fontana L, Pelosi E, Greco P, et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol. 2007;9:775–787.

    PubMed  CAS  Google Scholar 

  30. Bruchova H, Yoon D, Agarwal AM, et al. Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol. 2007;35:1657–1667.

    PubMed  CAS  Google Scholar 

  31. Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA. 2005;102:18081–18086.

    PubMed  CAS  Google Scholar 

  32. O’Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008;205:585–594.

    PubMed  Google Scholar 

  33. Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA. 2006;103:5078–5083.

    PubMed  CAS  Google Scholar 

  34. Dore LC, Amigo JD, Dos Santos CO, et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci USA. 2008;105:3333–3338.

    PubMed  CAS  Google Scholar 

  35. Labbaye C, Spinello I, Quaranta MT, et al. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol. 2008;10:788–801.

    PubMed  CAS  Google Scholar 

  36. Pang L, Weiss MJ, and Poncz M Megakaryocyte biology and related disorders. J Clin Invest. 2005;115:3332–3338.

    PubMed  CAS  Google Scholar 

  37. Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–86.

    PubMed  CAS  Google Scholar 

  38. Neilson JR, Zheng GX, Burge CB, et al. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev. 2007;21:578–589.

    PubMed  CAS  Google Scholar 

  39. Nakayama T, Kasprowicz DJ, Yamashita M, et al. The generation of mature, single-positive thymocytes in vivo is dysregulated by CD69 blockade or overexpression. J Immunol. 2002;168:87–94.

    PubMed  CAS  Google Scholar 

  40. Zhou B, Wang S, Mayr C, et al. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA. 2007;104:7080–7085.

    PubMed  CAS  Google Scholar 

  41. Monticelli S, Ansel KM, Xiao C, et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol. 2005;6:R71.

    PubMed  Google Scholar 

  42. Xiao C, Calado DP, Galler G, et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell. 2007;131:146–159.

    PubMed  CAS  Google Scholar 

  43. Koralov SB, Muljo SA, Galler GR, et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell. 2008;132:860–874.

    PubMed  CAS  Google Scholar 

  44. Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132:875–886.

    PubMed  CAS  Google Scholar 

  45. Eis PS, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 2005;102:3627–3632.

    PubMed  CAS  Google Scholar 

  46. Tam W, Hughes SH, Hayward WS, et al. Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J Virol. 2002;76:4275–4286.

    PubMed  CAS  Google Scholar 

  47. Metzler M, Wilda M, Busch K, et al. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer. 2004;39:167–169.

    PubMed  CAS  Google Scholar 

  48. Kluiver J, Haralambieva E, de Jong D, et al. Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer. 2006;45:147–153.

    PubMed  CAS  Google Scholar 

  49. Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA. 2006;103:7024–7029.

    PubMed  CAS  Google Scholar 

  50. Costinean S, Sandhu SK, Pedersen IM, et al. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood. 2009;114:1374–1382.

    PubMed  CAS  Google Scholar 

  51. Thai TH, Calado DP, Casola S, et al. Regulation of the germinal center response by microRNA-155. Science. 2007;316:604–608.

    PubMed  CAS  Google Scholar 

  52. Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316:608–611.

    PubMed  CAS  Google Scholar 

  53. Lawrie CH, Soneji S, Marafioti T, et al. Microrna expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer. 2007;121:1156–1161.

    PubMed  CAS  Google Scholar 

  54. Roehle A, Hoefig KP, Repsilber D, et al. MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br J Haematol. 2008;142:732–744.

    PubMed  CAS  Google Scholar 

  55. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198:851–862.

    PubMed  CAS  Google Scholar 

  56. Rai D, Karanti S, Jung I, et al. Coordinated expression of microRNA-155 and predicted target genes in diffuse large B-cell lymphoma. Cancer Genet Cytogenet. 2008;181:8–15.

    PubMed  CAS  Google Scholar 

  57. Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell. 2008;133:217–222.

    PubMed  CAS  Google Scholar 

  58. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–833.

    PubMed  CAS  Google Scholar 

  59. Ota A, Tagawa H, Karnan S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004;64:3087–3095.

    PubMed  CAS  Google Scholar 

  60. Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol. 2008;9:405–414.

    PubMed  CAS  Google Scholar 

  61. O’Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–843.

    PubMed  Google Scholar 

  62. Leone G, DeGregori J, Sears R, et al. Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature. 1997;387:422–426.

    PubMed  CAS  Google Scholar 

  63. Landais S, Landry S, Legault P, et al. Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res. 2007;67:5699–5707.

    PubMed  CAS  Google Scholar 

  64. Petrocca F, Visone R, Onelli MR, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13:272–286.

    PubMed  CAS  Google Scholar 

  65. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–129.

    PubMed  CAS  Google Scholar 

  66. Akao Y, Nakagawa Y, Kitade Y, et al. Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci. 2007;98:1914–1920.

    PubMed  CAS  Google Scholar 

  67. Nishimoto S, Nishida E MAPK signalling: ERK5 versus ERK1/2. EMBO Rep. 2006;7:782–786.

    PubMed  CAS  Google Scholar 

  68. Navarro A, Gaya A, Martinez A, et al. MicroRNA expression profiling in classical Hodgkin lymphoma. Blood. 2007;111:2825–2832.

    PubMed  Google Scholar 

  69. Nie K, Gomez M, Landgraf P, et al. MicroRNA-mediated down-regulation of PRDM1/Blimp-1 in Hodgkin/Reed-Sternberg cells: a potential pathogenetic lesion in Hodgkin lymphomas. Am J Pathol. 2008;173:242–252.

    PubMed  CAS  Google Scholar 

  70. Pasqualucci L, Compagno M, Houldsworth J, et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J Exp Med. 2006;203:311–317.

    PubMed  CAS  Google Scholar 

  71. Van Vlierberghe P, De Weer A, Mestdagh P, et al. Comparison of miRNA profiles of microdissected Hodgkin/Reed-Sternberg cells and Hodgkin cell lines versus CD77+ B-cells reveals a distinct subset of differentially expressed miRNAs. Br J Haematol. 2009;147:686–690.

    PubMed  Google Scholar 

  72. Navarro A, Diaz T, Martinez A, et al. Regulation of JAK2 by miR-135a: prognostic impact in classic Hodgkin lymphoma. Blood. 2009;114:2945–2951.

    PubMed  CAS  Google Scholar 

  73. Kluiver J, Poppema S, de Jong D, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol. 2005;207:243–249.

    PubMed  CAS  Google Scholar 

  74. Cheson BD, Bennett JM, Grever M, et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood. 1996;15:4990–4997.

    Google Scholar 

  75. Bullrich F, Fujii H, Calin G, et al. Characterization of the 13q14 tumor suppressor locus in CLL: identification of ALT1, an alternative splice variant of the LEU2 gene. Cancer Res. 2001;61:6640–6648.

    PubMed  CAS  Google Scholar 

  76. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–15529.

    PubMed  CAS  Google Scholar 

  77. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102:13944–13949.

    PubMed  CAS  Google Scholar 

  78. Kitada S, Andersen J, Akar S, et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood. 1998;91:3379–3389.

    PubMed  CAS  Google Scholar 

  79. Bonci D, Coppola V, Musumeci M, et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008;14:1271–1277.

    PubMed  CAS  Google Scholar 

  80. Fabbri M, Ivan M, Cimmino A, et al. Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther. 2007;7:1009–1019.

    PubMed  CAS  Google Scholar 

  81. Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353:1793–1801.

    PubMed  CAS  Google Scholar 

  82. Scaglione BJ, Salerno E, Balan M, et al. Murine models of chronic lymphocytic leukaemia: role of microRNA-16 in the New Zealand Black mouse model. Br J Haematol. 2007;139:645–657.

    PubMed  CAS  Google Scholar 

  83. Raveche ES, Salerno E, Scaglione BJ, et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood. 2007;109:5079–5086.

    PubMed  CAS  Google Scholar 

  84. Pekarsky Y, Santanam U, Cimmino A, et al. Tcl1 expression in CLL is regulated by miR-29 and miR-181. Cancer Res. 2006;66:11590–11593.

    PubMed  CAS  Google Scholar 

  85. Stamatopoulos B, Meuleman N, Haibe-Kains B, et al. MicroRNA-29c and microRNA-223 downregulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. Blood. 2009;113:5237–5245.

    PubMed  CAS  Google Scholar 

  86. Marton S, Garcia MR, Robello C, et al. Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia. 2008;22:330–338.

    PubMed  CAS  Google Scholar 

  87. Venturini L, Battmer K, Castoldi M, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood. 2007;109:4399–4405.

    PubMed  CAS  Google Scholar 

  88. Bueno MJ, Perez de Castro I, Gomez de Cedron M, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008;13:496–506.

    PubMed  CAS  Google Scholar 

  89. Agirre X, Jimenez-Velasco A, San Jose-Eneriz E, et al. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res. 2008;6:1830–1840.

    PubMed  CAS  Google Scholar 

  90. Zanette DL, Rivadavia F, Molfetta GA, et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Brazilian J Med Biol Res. 2007;40:1435–1440.

    CAS  Google Scholar 

  91. Nagel S, Venturini L, Przybylski GK, et al. Activation of miR-17-92 by NK-like homeodomain proteins suppresses apoptosis via reduction of E2F1 in T-cell acute lymphoblastic leukemia. Leuk Lymphoma. 2009;50:101–108.

    PubMed  CAS  Google Scholar 

  92. Mi S, Lu J, Sun M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA. 2007;104:19971–19976.

    PubMed  CAS  Google Scholar 

  93. Roman-Gomez J, Agirre X, Jimenez-Velasco, et al. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol. 2009;27:1316–1322.

    PubMed  CAS  Google Scholar 

  94. Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res. 2009;69:4443–4453.

    PubMed  CAS  Google Scholar 

  95. Li X, Liu J, Zhou R, et al. Gene silencing of MIR22 in acute lymphoblastic leukaemia involves histone modifications independent of promoter DNA methylation. Br J Haematol. 2010;148:69–79.

    Google Scholar 

  96. Ju X, Li D, Shi Q, et al. Differential microRNA expression in childhood B-cell precursor acute lymphoblastic leukemia. Pediatr Hematol Oncol. 2009;26:1–10.

    PubMed  Google Scholar 

  97. Garzon R, Volinia S, Liu CG, et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 2008;111:3183–3189.

    PubMed  CAS  Google Scholar 

  98. Burnett AK. Current controversies: which patients with acute myeloid leukaemia should receive a bone marrow transplantation?–an adult treater’s view. Br J Haematol. 2002;118:357–364.

    PubMed  Google Scholar 

  99. Garzon R, Garofalo M, Martelli MP, et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA. 2008;105:3945–3950.

    PubMed  CAS  Google Scholar 

  100. Marcucci G, Radmacher MD, Maharry K, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358:1919–1928.

    PubMed  CAS  Google Scholar 

  101. Garzon R, Liu S, Fabbri M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene re-expression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 2009;113:6411–6418.

    PubMed  CAS  Google Scholar 

  102. Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA. 2007;104:15805–15810.

    PubMed  CAS  Google Scholar 

  103. Garzon R, Heaphy CE, Havelange V, et al. MicroRNA 29b functions in acute myeloid leukemia. Blood. 2009;114:5331–5341.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muller Fabbri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this chapter

Cite this chapter

Fabbri, M., Calin, G.A. (2011). Micro-RNAs in Hematologic Malignancies. In: Crisan, D. (eds) Hematopathology. Molecular and Translational Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-262-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-262-9_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-261-2

  • Online ISBN: 978-1-60761-262-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics