Skip to main content

Molecular Progression of Prostate Cancer: Androgens and Estrogens

  • Chapter
  • First Online:
Management of Prostate Cancer

Part of the book series: Current Clinical Urology ((CCU))

  • 1480 Accesses

Abstract

Androgens are responsible for the growth of the normal prostate gland and play an essential role in the development and progression of prostate cancer. Accordingly, androgen deprivation provides a favorable initial clinical response for the majority of patients with advanced prostate cancers. However, tumors invariably recur as a lethal phenotype known as castrate-resistant disease. The androgen receptor (AR) is a nuclear transcription factor, which binds androgens in the cell cytoplasm, translocates to the nucleus, and assembles as a protein complex that regulates target gene expression. As such, the AR has been a prime target for androgen deprivation therapies. Interestingly, however, the AR maintains a critical role in the survival of castrate-resistant tumors, likely through a variety of mechanisms including receptor overexpression, mutation, splice variation, alternative ligand activation, coactivator modification, as well as the intratumoral production of androgens. Meanwhile, the impact of estrogens and the estrogen receptor in prostate cancer development and treatment continues to be defined. Here, we review current concepts regarding the role of the sex-steroid hormone axis in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tindall DJ, Dehn SM. Regulation of androgen receptor signaling in prostate cancer. Expt Rev Anticancer Ther. 2005;5:63–74.

    Google Scholar 

  2. Lamb DJ, Weigel NL, Marcelli M. Androgen receptors and their biology. Vitam Horm. 2001;62:199–230.

    PubMed  CAS  Google Scholar 

  3. Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev. 1997;18:306–60.

    PubMed  CAS  Google Scholar 

  4. Shang Y, Myers M, Brown M. Formation of the androgen receptor transcription complex. Mol Cell. 2002;9:601–10.

    PubMed  CAS  Google Scholar 

  5. Naar AM, Lemon BD, Tijian R. Transcriptional coactivator complexes. Ann Rev Biochem. 2001;70: 475–501.

    PubMed  CAS  Google Scholar 

  6. Sung SY, Chung LW. Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation. 2002;70:506–21.

    PubMed  CAS  Google Scholar 

  7. Tindall DJ, Rittmaster RS. The rationale for inhibiting 5α-reductase isoenzymes in the prevention and treatment of prostate cancer. J Urol. 2008;179: 1235–42.

    PubMed  CAS  Google Scholar 

  8. Imperato-McGinley J, Zhu YS. Androgens and male physiology the syndrome of 5alpha-reductase-2 deficiency. Mol Cell Endocrinol. 2002;198:51–9.

    PubMed  CAS  Google Scholar 

  9. Zhou ZX, Lane MV, Kemppainen JA, et al. Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol Endocrinol. 1995;9:208–18.

    PubMed  CAS  Google Scholar 

  10. Roehrborn CG, Boyle P, Nickel JC, et al. Efficacy and safety of a dual inhibitor of 5-alpha-reductase types 1 and 2 (dutasteride) in men with benign prostatic hyperplasia. Urology. 2002;60:434–41.

    PubMed  Google Scholar 

  11. McConnell JD, Bruskewitz R, Walsh P, et al. The effect of finasteride on the risk of acute urinary retention and the need for surgical treatment among men with benign prostatic hyperplasia. Finasteride Long-Term Efficacy and Safety Study Group. N Engl J Med. 1998;338:557–63.

    PubMed  CAS  Google Scholar 

  12. Huggins C, Hodges CV. Studies on prostate cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1941;1: 293–7.

    CAS  Google Scholar 

  13. Dehm SM, Tindall DJ. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol. 2007;21:2855–63.

    PubMed  CAS  Google Scholar 

  14. Dehm SM, Tindall DJ. Molecular regulation of androgen action in prostate cancer. J Cell Biochem. 2006;99:333–44.

    PubMed  CAS  Google Scholar 

  15. Messing EM, Manola J, Yao J, et al. Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol. 2006;7:472–9.

    PubMed  CAS  Google Scholar 

  16. Bolla M, Collette L, Blank L, et al. Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomized trial. Lancet. 2002;360:103–8.

    PubMed  CAS  Google Scholar 

  17. Thompson IM, Goodman PJ, Tangen CM, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med. 2003;349:215–24.

    PubMed  CAS  Google Scholar 

  18. Andriole GL, Bostwick DG, Brawley OW, et al. Effect of dutasteride on the risk of prostate cancer. N Engl J Med. 2010;362:1192–202.

    PubMed  CAS  Google Scholar 

  19. Iehle C, Radvanyi F, Gil Diez de Medina S, et al. Differences in steroid 5alpha-reductase iso-enzymes expression between normal and pathological human prostate tissue. J Steroid Biochem Mol Biol. 1999;68: 189–95.

    PubMed  CAS  Google Scholar 

  20. Thomas LN, Lazier CB, Gupta R, et al. Differential alterations in 5alpha-reductase type 1 and type 2 levels during development and progression of prostate cancer. Prostate. 2005;63:231–9.

    PubMed  CAS  Google Scholar 

  21. Schmidt LJ, Murillo H, Tindall DJ. Gene expression in prostate cancer cells treated with the dual 5 alpha-reductase inhibitor dutasteride. J Androl. 2004;25:944–53.

    PubMed  CAS  Google Scholar 

  22. Cohen YC, Liu KS, Heyden NL, et al. Detection bias due to the effect of finasteride on prostate volume: a modeling approach for analysis of the Prostate Cancer Prevention Trial. J Natl Cancer Inst. 2007;99:1366–74.

    PubMed  CAS  Google Scholar 

  23. Lucia MS, Epstein JI, Goodman PJ, et al. Finasteride and high-grade prostate cancer in the Prostate Cancer Prevention Trial. J Natl Cancer Inst. 2007;99: 1375–83.

    PubMed  CAS  Google Scholar 

  24. Redman MW, Tangen CM, Goodman PJ, et al. Finasteride does not increase the risk of high-grade prostate cancer: a bias-adjusted modeling approach. Cancer Prev Res. 2008;1:174–81.

    CAS  Google Scholar 

  25. Fleshner N, Gomella LG, Cookson MS, et al. Delay in the progression of low-risk prostate cancer: rationale and design of the Reduction by Dutasteride of Clinical Progression Events in Expectant Management (REDEEM) trial. Contemp Clin Trials. 2007;28:763–9.

    PubMed  CAS  Google Scholar 

  26. Chen CD, Welsbie DS, Tran C, et al. Molecular determinants of resistance to anti-androgen therapy. Nat Med. 2004;10:33–9.

    PubMed  Google Scholar 

  27. Prostate Cancer Trialists’ Collaborative Group. Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Lancet. 2000;355:1491–8.

    Google Scholar 

  28. Crawford ED, Eisenberger MA, McLeod DG, et al. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med. 1989;321:419–24.

    PubMed  CAS  Google Scholar 

  29. Denis LJ, Keuppens F, Smith PH, et al. Maximal androgen blockade: final analysis of EORTC phase III trial 30853. Eur Urol. 1998;33:144–51.

    PubMed  CAS  Google Scholar 

  30. Eisenberger MA, Blumensteinn BA, Crawford ED, et al. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med. 1998;339:1036–42.

    PubMed  CAS  Google Scholar 

  31. Li TH, Zhao H, Peng Y, et al. A promoting role of androgen receptor in androgen-sensitive and -insensitive prostate cancer cells. Nucleic Acids Res. 2007;13:2767–76.

    Google Scholar 

  32. Kohli M, Tindall DJ. New developments in the medical management of prostate cancer. Mayo Clin Proc. 2010;85:77–86.

    PubMed  CAS  Google Scholar 

  33. Buchanan G, Irvine RA, Coetzee GA, et al. Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev. 2001;20:207–23.

    PubMed  CAS  Google Scholar 

  34. Zhang L, Johnson M, Le KH, et al. Interrogating androgen receptor function in recurrent prostate cancer. Cancer Res. 2003;63:4552–60.

    PubMed  CAS  Google Scholar 

  35. Chen Y, Clegg NL, Scherr HI. Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target. Lancet Oncol. 2009;10:981–91.

    PubMed  Google Scholar 

  36. Edwards J, Krishna NS, Grigor KM. Androgen receptor gene amplication and protein expression in hormone refractory prostate cancer. Br J Cancer. 2003;89:552–6.

    PubMed  CAS  Google Scholar 

  37. Holzbeierlein J, Lal P, LaTulippe E, et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol. 2004;164:217–27.

    PubMed  CAS  Google Scholar 

  38. Grossmann ME, Huang H, Tindall DJ. Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst. 2001;22:1687–97.

    Google Scholar 

  39. Taplin ME, Rajeshkumar B, Halabi S, et al. Androgen receptor mutations in androgen-independent prostate cancer: cancer and Leukemia Group B Study 9663. J Clin Oncol. 2003;21:2673–8.

    PubMed  CAS  Google Scholar 

  40. Yoshida T, Kinoshita H, Segawa T, et al. Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res. 2005;65:9611–6.

    PubMed  CAS  Google Scholar 

  41. Hara T, Miyazaki J, Araki H, et al. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawl syndrome. Cancer Res. 2003;63:149–53.

    PubMed  CAS  Google Scholar 

  42. Steinkamp MP, O’Mahony OA, Brogley M, et al. Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res. 2009;69:4434–42.

    PubMed  CAS  Google Scholar 

  43. Dehm SM, Schmidt LJ, Heemers HV, et al. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 2008;68:5469–77.

    PubMed  CAS  Google Scholar 

  44. Guo Z, Yang X, Sun F, et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 2009;69: 2305–13.

    PubMed  CAS  Google Scholar 

  45. Hu R, Dunn TA, Wei S, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 2009;69:16–22.

    PubMed  CAS  Google Scholar 

  46. Mellinghoff IK, Vivanco I, Kwon A, et al. HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell. 2004;6:517–27.

    PubMed  CAS  Google Scholar 

  47. Mahajan NP, Liu Y, Majumder S, et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA. 2007;104:8438–43.

    PubMed  CAS  Google Scholar 

  48. Gregory CW, He B, Johnson RT, et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res. 2001;61:4315–9.

    PubMed  CAS  Google Scholar 

  49. Comuzzi B, Lambrinidis L, Rogatsch H, et al. The transcriptional co-activator cAMP response element-binding protein-binding protein is expressed in prostate cancer and enhances androgen- and anti-androgen-induced androgen receptor function. Am J Pathol. 2003;162:233–41.

    PubMed  CAS  Google Scholar 

  50. Wang Y, Kreisberg JI, Bedolla RG, et al. A 90 kDa fragment of filamin A promotes casodex-induced growth inhibition in casodex-resistant androgen receptor positive C4-2 prostate cancer cells. Oncogene. 2007;26:6061–70.

    PubMed  CAS  Google Scholar 

  51. Stanbrough M, Bubley GJ, Ross K, et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 2006;66:2815–25.

    PubMed  CAS  Google Scholar 

  52. Montgomery RB, Mostaghel EA, Vessella R, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 2008;68:4447–54.

    PubMed  CAS  Google Scholar 

  53. Linja MJ, Savinainen KJ, Saramaki OR, et al. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res. 2001;61:3550–5.

    PubMed  CAS  Google Scholar 

  54. Latil A, Bieche I, Vidaud D, et al. Evaluation of androgen, estrogen (ER α and ER β), and progesterone receptor expression in human prostate cancer by real-time quantitative reverse transcription-polymerase chain reaction assays. Cancer Res. 2001;61:1919–26.

    PubMed  CAS  Google Scholar 

  55. Haapala K, Hyytinen ER, Roiha M, et al. Androgen receptor alterations in prostate cancer relapsed during a combined androgen blockade by orchiectomy and bicalutamide. Lab Invest. 2001;81:1647–51.

    PubMed  CAS  Google Scholar 

  56. Hyytinen ER, Haapala K, Thompson J, et al. Pattern of somatic androgen receptor gene mutations in patients with hormone-refractory prostate cancer. Lab Invest. 2002;82:1591–8.

    PubMed  CAS  Google Scholar 

  57. Taplin ME, Bubley GJ, Shuster TD, et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med. 1995;332:1393–8.

    PubMed  CAS  Google Scholar 

  58. Taplin ME, Bubley GJ, Ko YJ, et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res. 1999;59:2511–5.

    PubMed  CAS  Google Scholar 

  59. Zhao XY, Malloy PJ, Krishnan AV, et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med. 2000;6:703–6.

    PubMed  CAS  Google Scholar 

  60. Culig Z, Hobisch A, Cronauer MV, et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol. 1993;7: 1541–50.

    PubMed  CAS  Google Scholar 

  61. Culig Z, Stober J, Gast A, et al. Activation of two mutant androgen receptors from human prostatic carcinoma by adrenal androgens and metabolic derivatives of testosterone. Cancer Detect Prev. 1996;20:68–75.

    PubMed  CAS  Google Scholar 

  62. Veldscholte J, Ris-Stalpers C, Kuiper GG, et al. A mutation in the ligand binding domain of the androgen receptor of human LNCap cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun. 1990;173: 534–40.

    PubMed  CAS  Google Scholar 

  63. Kelly WK, Scher HI. Prostate specific antigen decline after antiandrogen withdrawl: the flutamide withdrawl syndrome. J Urol. 1993;149:607–9.

    PubMed  CAS  Google Scholar 

  64. Culig Z, Hobisch A, Cronauer MV, et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 1994;54:5474–8.

    PubMed  CAS  Google Scholar 

  65. Hobisch A, Eder IE, Putz T, et al. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 1998;58:4640–5.

    PubMed  CAS  Google Scholar 

  66. Lee SO, Lou W, Hou M, et al. Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway. Oncogene. 2003;22:7981–8.

    PubMed  Google Scholar 

  67. Adler HL, McCurdy MA, Kattan MW, et al. Elevated levels of circulating interleukin-6 and transforming growth factor-β1 in patients with metastatic prostatic carcinoma. J Urol. 1999;161:182–7.

    PubMed  CAS  Google Scholar 

  68. Drachenberg DE, Elgamal AA, Rowbotham R, et al. Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate. 1999;41:127–33.

    PubMed  CAS  Google Scholar 

  69. Wise GJ, Marella VK, Talluri G, et al. Cytokine variations in patients with hormone treated prostate cancer. J Urol. 2000;164:722–5.

    PubMed  CAS  Google Scholar 

  70. Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev. 2007;28:778–808.

    PubMed  CAS  Google Scholar 

  71. Debes JD, Schmidt LJ, Huang H, et al. p300 mediates androgen-independent transactivation of the androgen receptor by interleukin-6. Cancer Res. 2002;62:5632–6.

    PubMed  CAS  Google Scholar 

  72. Ueda T, Bruchovsky N, Sadar MD. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem. 2002;277:7076–85.

    PubMed  CAS  Google Scholar 

  73. Mohler JL. Castration-recurrent prostate cancer is not androgen-independent. Adv Exp Med Biol. 2008;617:223–34.

    PubMed  Google Scholar 

  74. Attard G, Reid AH, Yap TA, et al. Phase I clinical trial of a selective inhibitor of CYP 17, abiraterone acetate, confirms that castrate-resistant prostate cancer commonly remains hormone driven. J Clin Oncol. 2008;26:4563–71.

    PubMed  CAS  Google Scholar 

  75. Hakki T, Bernhardt R. CYP17- and CYP11B-dependent steroid hydroxylases as drug development targets. Pharmacol Ther. 2006;111:27–52.

    PubMed  CAS  Google Scholar 

  76. Reid AHM, Attard G, Danila DC, et al. Significant and sustained antitumor activity in post-docetaxel, castration-resistant prostate cancer with the CYP17 inhibitor abiraterone acetate. J Clin Oncol. 2010;28: 1489–95.

    PubMed  CAS  Google Scholar 

  77. Tran C, Ouk S, Clegg NJ, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science. 2009;324: 787–90.

    PubMed  CAS  Google Scholar 

  78. Andersen RJ, Mawji NR, Wang J, et al. Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell. 2010;17:535–46.

    PubMed  CAS  Google Scholar 

  79. Bonkhoff H, Berges R. The evolving role of oestrogens and their receptors in the development and progression of prostate cancer. Eur Urol. 2009;55: 533–42.

    PubMed  CAS  Google Scholar 

  80. Chang WY, Prins GS. Estrogen receptor-beta: implications for the prostate gland. Prostate. 1999;40: 115–24.

    PubMed  CAS  Google Scholar 

  81. Ho S-M. Estrogens and anti-estrogens: key mediators of prostate carcinogenesis and new therapeutic candidates. J Cell Biochem. 2004;91:491–503.

    PubMed  CAS  Google Scholar 

  82. Risbridger GP, Ellem SJ, McPherson SJ. Estrogen action on the prostate gland: a critical mix of endocrine and paracrine signaling. J Mol Endocrinol. 2007;39:183–8.

    PubMed  CAS  Google Scholar 

  83. Singh PB, Matanhelia SS, Martin FL. A potential paradox in prostate adenocarcinoma progression: oestrogen as the initiating driver. Eur J Cancer. 2008;44:928–36.

    PubMed  CAS  Google Scholar 

  84. Scherr DS, Pitts Jr WR. The nonsteroidal effects of diethylstilbestrol: the rationale for androgen deprivation therapy without estrogen deprivation in the treatment of prostate cancer. J Urol. 2003;170: 1703–8.

    PubMed  CAS  Google Scholar 

  85. Ellem SJ, Schmitt JF, Pedersen JS, et al. Local aromatase expression in human prostate is altered in malignancy. J Clin Endocrinol Metab. 2004;89: 2434–41.

    PubMed  CAS  Google Scholar 

  86. Ellem SJ, Risbridger GP. Treating prostate cancer: a rationale for targeting local oestrogens. Nat Rev Cancer. 2007;7:621–7.

    PubMed  CAS  Google Scholar 

  87. Leav I, Merk FB, Kwan PW, et al. Androgen-supported estrogen-enhanced epithelial proliferation in the prostates of intact Noble rats. Prostate. 1989;15:23–40.

    PubMed  CAS  Google Scholar 

  88. Leav I, Lau KM, Adams JY, et al. Comparative studies of the estrogen receptors β and α and the androgen receptor in normal human prostate glands, dysplasia, and in primary and metastatic carcinoma. Am J Pathol. 2001;159:79–92.

    PubMed  CAS  Google Scholar 

  89. Cunha GR, Wang YZ, Hayward SW, et al. Estrogenic effects on prostatic differentiation and carcinogenesis. Reprod Fertil Dev. 2001;13:285–96.

    PubMed  CAS  Google Scholar 

  90. McPherson SJ, Wang H, Jones ME, et al. Elevated androgens and prolactin in aromatase deficient (ArKO) mice cause enlargement but not malignancy of the prostate gland. Endocrinology. 2001;142: 2458–67.

    PubMed  CAS  Google Scholar 

  91. Bosland MC. The role of steroid hormones in prostate carcinogenesis. J Natl Cancer Inst Monogr. 2000;27:39–66.

    PubMed  CAS  Google Scholar 

  92. Hill P, Garbaczewski L, Walker AR. Age, environmental factors and prostate cancer. Med Hypotheses. 1984;14:29–39.

    PubMed  CAS  Google Scholar 

  93. de Jong FH, Oishi K, Hayes RB, et al. Peripheral hormone levels in controls and patients with prostatic cancer or benign prostatic hyperplasia: results from the Dutch-Japanese case–control study. Cancer Res. 1991;51:3445–50.

    PubMed  Google Scholar 

  94. Landström M, Eklöv S, Colosetti P, et al. Estrogen induces apoptosis in a rat prostatic adenocarcinoma: association with an increased expression of TGF-beta 1 and its type-I and type-II receptors. Int J Cancer. 1996;67:573–9.

    PubMed  Google Scholar 

  95. Wang J, Eltoum IE, Lamartiniere CA. Dietary genistein suppresses chemically induced prostate cancer in Lobund-Wistar rats. Cancer Lett. 2002;186: 11–8.

    PubMed  CAS  Google Scholar 

  96. Ricke WA, McPherson SJ, Bianco JJ, et al. Prostatic hormonal carcinogenesis is mediated by in situ estrogen production and estrogen receptor alpha signaling. FASEB J. 2008;22:1512–20.

    PubMed  CAS  Google Scholar 

  97. Klein EA. Opportunities for prevention of prostate cancer: genetics, chemoprevention, and dietary intervention. Rev Urol. 2002;4:18–28.

    Google Scholar 

  98. Cheng J, Lee EJ, Madison LD, et al. Expression of the estrogen receptor beta in prostate carcinoma cells inhibits invasion and proliferation and triggers ­apoptosis. FEBS Lett. 2004;566:169–72.

    PubMed  Google Scholar 

  99. Fixemer T, Remberger K, Bonkhoff H. Differential expression of the estrogen receptor beta (ER beta) in human prostate tissue, premalignant changes, and in primary, metastatic, and recurrent prostatic adenocarcinoma. Prostate. 2003;54:79–87.

    PubMed  CAS  Google Scholar 

  100. Bonkhoff H, Fixemer T, Hunsicker I, et al. Estrogen receptor expression in prostate cancer and premalignant prostatic lesions. Am J Pathol. 1999;155:641–7.

    PubMed  CAS  Google Scholar 

  101. Setlur SR, Mertz KD, Hoshida Y, et al. Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J Natl Cancer Inst. 2008;100:815–25.

    PubMed  CAS  Google Scholar 

  102. Kim IY, Seong DH, Kim BC, et al. Raloxifene, a selective estrogen receptor modulator, induces apoptosis in androgen-responsive human prostate cancer cell line LNCaP through an androgen-independent pathway. Cancer Res. 2002;62:3649–53.

    PubMed  CAS  Google Scholar 

  103. Neubauer BL, Best KL, Counts DF, et al. Raloxifene (LY156758) produces antimetastatic responses and extends survival in the PAIII rat prostatic adenocarcinoma model. Prostate. 1995;27:220–9.

    PubMed  CAS  Google Scholar 

  104. Neubauer BL, McNulty AM, Chedid M, et al. The selective estrogen receptor modulator trioxifene (LY133314) inhibits metastasis and extends survival in the PAIII rat prostatic carcinoma model. Cancer Res. 2003;63:6056–62.

    PubMed  CAS  Google Scholar 

  105. Price D, Stein B, Sieber P, et al. Toremifene for the prevention of prostate cancer in men with high grade prostatic intraepithelial neoplasia: results of a double-blind, placebo-controlled, phase IIB clinical trial. J Urol. 2006;176:965–70.

    PubMed  CAS  Google Scholar 

  106. Smith DC, Redman BG, Flaherty LE, et al. A phase II trial of oral diethylstilbestrol as a second-line hormonal agent in advanced prostate cancer. Urology. 1998;52:257–60.

    PubMed  CAS  Google Scholar 

  107. Oh WK. The evolving role of estrogens in prostate cancer. Clin Prostate Cancer. 2002;1:81–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald J. Tindall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boorjian, S.A., Tindall, D.J. (2012). Molecular Progression of Prostate Cancer: Androgens and Estrogens. In: Klein, E., Jones, J. (eds) Management of Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-259-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-259-9_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-258-2

  • Online ISBN: 978-1-60761-259-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics