Skip to main content

Beyond PSA: Promising New Markers for Prostate Cancer

  • Chapter
  • First Online:
  • 1478 Accesses

Part of the book series: Current Clinical Urology ((CCU))

Abstract

The discovery of new biomarkers for prostate cancer (CaP) far outstrips the validation and approval of new biomarkers. Thus, PSA remains the only validated and approved CaP biomarker at this time, but two others appear to be nearing FDA approval: PCA3, a gene grossly over-expressed by CaP tissue and found in urine of men with the disease, and -2proPSA, an analog of PSA, which helps impart CaP specificity to total PSA. Gene fusion products such as TMPRSS2:ERG are of keen interest. At the tissue level the methylation marker GST-P1 and the proliferation index Ki-67 appear potentially valuable.

Future biomarkers will help improve CaP specificity and also predict lethality of CaP vis-a-vis current limitations of serum PSA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For Investigational Use Only. The performance characteristics of these products have not been established.

  2. 2.

    Not available in the United States.

  3. 3.

    Not available in the United States.

  4. 4.

    All trademarks are the property of their respective owners.

  5. 5.

    Since the writing of this chapter, both the PCA3 gene test and the proPSA test (phi) were approved by the U.S.FDA (February, 2012 for PCA3 and June, 2012 for phi).

References

  1. Stamey TA. Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. Monogr Urol. 1989;10(4):50–64.

    Google Scholar 

  2. Stamey TA, Caldwell M, McNeal JE, Nolley R, Hemenez M, Downs J. The prostate specific antigen era in the United States is over for prostate cancer: what happened in the last 20 years? J Urol. 2004;172(4 Pt 1):1297–301.

    Article  PubMed  Google Scholar 

  3. Gutman AB, Gutman EB. An “acid” phosphatase occurring in the serum of patients with metastasizing carcinoma of the prostate gland. J Clin Invest. 1938;17(4):473–8.

    Article  PubMed  CAS  Google Scholar 

  4. Huggins C, Stevens RA, Hodges CV. Studies on prostate cancer. The effects of castration on advanced carcinoma of the prostate gland. Arch Surg. 1941;43:209–23.

    Article  CAS  Google Scholar 

  5. Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5(11):845–56.

    Article  PubMed  CAS  Google Scholar 

  6. Brawley OW, Ankerst DP, Thompson IM. Screening for prostate cancer. CA Cancer J Clin. 2009;59(4): 264–73.

    Article  PubMed  Google Scholar 

  7. Magklara A, Scorilas A, Stephan C, et al. Decreased concentrations of prostate-specific antigen and human glandular kallikrein 2 in malignant versus nonmalignant prostatic tissue. Urology. 2000;56(3): 527–32.

    Article  PubMed  CAS  Google Scholar 

  8. Sardana G, Dowell B, Diamandis EP. Emerging biomarkers for the diagnosis and prognosis of prostate cancer. Clin Chem. 2008;54(12):1951–60.

    Article  PubMed  CAS  Google Scholar 

  9. Biomarkers—Advanced Technologies and Global Market (2009–2014) 2009. Research Report BT 1033; MarketsandMarkets.com, Dallas, TX; 2009.

    Google Scholar 

  10. Babaian RJ, Kojima M, Ramirez EI, Johnston D. Comparative analysis of prostate specific antigen and its indexes in the detection of prostate cancer. J Urol. 1996;156(2 Pt 1):432–7.

    PubMed  CAS  Google Scholar 

  11. DeAntoni EP, Crawford ED, Oesterling JE, et al. Age- and race-specific reference ranges for prostate-specific antigen from a large community-based study. Urology. 1996;48(2):234–9.

    Article  PubMed  CAS  Google Scholar 

  12. Djavan B, Zlotta AR, Byttebier G, et al. Prostate specific antigen density of the transition zone for early detection of prostate cancer. J Urol. 1998;160(2):411–8; discussion 418–9.

    Google Scholar 

  13. Maeda H, Arai Y, Ishitoya S, Okubo K, Aoki Y, Okada T. Prostate specific antigen adjusted for the transition zone volume as an indicator of prostate cancer. J Urol. 1997;158(6):2193–6.

    Article  PubMed  CAS  Google Scholar 

  14. Oesterling JE, Jacobsen SJ, Chute CG, et al. Serum prostate-specific antigen in a community-based population of healthy men. Establishment of age-specific reference ranges. JAMA. 1993;270(7):860–4.

    Article  PubMed  CAS  Google Scholar 

  15. Smith DS, Catalona WJ. Rate of change in serum prostate specific antigen levels as a method for prostate cancer detection. J Urol. 1994;152(4):1163–7.

    PubMed  CAS  Google Scholar 

  16. Nadler RB, Humphrey PA, Smith DS, Catalona WJ, Ratliff TL. Effect of inflammation and benign prostatic hyperplasia on elevated serum prostate specific antigen levels. J Urol. 1995;154(2 Pt 1):407–13.

    PubMed  CAS  Google Scholar 

  17. Christensson A, Bjork T, Nilsson O, et al. Serum prostate specific antigen complexed to alpha 1-antichymotrypsin as an indicator of prostate cancer. J Urol. 1993;150(1):100–5.

    PubMed  CAS  Google Scholar 

  18. Stenman UH, Leinonen J, Alfthan H, Rannikko S, Tuhkanen K, Alfthan O. A complex between prostate-specific antigen and alpha 1-antichymotrypsin is the major form of prostate-specific antigen in serum of patients with prostatic cancer: assay of the complex improves clinical sensitivity for cancer. Cancer Res. 1991;51(1):222–6.

    PubMed  CAS  Google Scholar 

  19. Mikolajczyk SD, Catalona WJ, Evans CL, et al. Proenzyme forms of prostate-specific antigen in serum improve the detection of prostate cancer. Clin Chem. 2004;50(6):1017–25.

    Article  PubMed  CAS  Google Scholar 

  20. Catalona WJ, Smith DS, Wolfert RL, et al. Evaluation of percentage of free serum prostate-specific antigen to improve specificity of prostate cancer screening. JAMA. 1995;274(15):1214–20.

    Article  PubMed  CAS  Google Scholar 

  21. Catalona WJ, Southwick PC, Slawin KM, et al. Comparison of percent free PSA, PSA density, and age-specific PSA cutoffs for prostate cancer detection and staging. Urology. 2000;56(2):255–60.

    Article  PubMed  CAS  Google Scholar 

  22. Thompson IM, Ankerst DP, Chi C, et al. Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. J Natl Cancer Inst. 2006;98(8): 529–34.

    Article  PubMed  Google Scholar 

  23. Sokoll LJ, Chan DW, Mikolajczyk SD, et al. Proenzyme psa for the early detection of prostate cancer in the 2.5–4.0 ng/ml total psa range: preliminary analysis. Urology. 2003;61(2):274–6.

    Article  PubMed  Google Scholar 

  24. Babaian RJ, Johnston DA, Naccarato W, Ayala A, Bhadkamkar VA, Fritsche Jr HH. The incidence of prostate cancer in a screening population with a serum prostate specific antigen between 2.5 and 4.0 ng/ml: relation to biopsy strategy. J Urol. 2001;165(3): 757–60.

    Article  PubMed  CAS  Google Scholar 

  25. Catalona WJ, Smith DS, Ornstein DK. Prostate cancer detection in men with serum PSA concentrations of 2.6 to 4.0 ng/mL and benign prostate examination. Enhancement of specificity with free PSA measurements. JAMA. 1997;277(18):1452–5.

    Article  PubMed  CAS  Google Scholar 

  26. Smith DS, Catalona WJ, Herschman JD. Longitudinal screening for prostate cancer with prostate-specific antigen. JAMA. 1996;276(16):1309–15.

    Article  PubMed  CAS  Google Scholar 

  27. Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med. 2004;350(22):2239–46.

    Article  PubMed  CAS  Google Scholar 

  28. Loeb S, Catalona WJ. PSA Isoforms: The next generation of prostate cancer detection. Clin Lab News. 2007;33(3):12–5.

    Google Scholar 

  29. Mikolajczyk SD, Millar LS, Wang TJ, et al. “BPSA,” a specific molecular form of free prostate-specific antigen, is found predominantly in the transition zone of patients with nodular benign prostatic hyperplasia. Urology. 2000;55(1):41–5.

    Article  PubMed  CAS  Google Scholar 

  30. Linton HJ, Marks LS, Millar LS, Knott CL, Rittenhouse HG, Mikolajczyk SD. Benign prostate-specific antigen (BPSA) in serum is increased in benign prostate disease. Clin Chem. 2003;49(2): 253–9.

    Article  PubMed  CAS  Google Scholar 

  31. Mikolajczyk SD, Marks LS, Partin AW, Rittenhouse HG. Free prostate-specific antigen in serum is becoming more complex. Urology. 2002;59(6): 797–802.

    Article  PubMed  Google Scholar 

  32. Khan MA, Partin AW, Rittenhouse HG, et al. Evaluation of proprostate specific antigen for early detection of prostate cancer in men with a total prostate specific antigen range of 4.0 to 10.0 ng/ml. J Urol. 2003;170(3):723–6.

    Article  PubMed  CAS  Google Scholar 

  33. Mikolajczyk SD, Marker KM, Millar LS, et al. A truncated precursor form of prostate-specific antigen is a more specific serum marker of prostate cancer. Cancer Res. 2001;61(18):6958–63.

    PubMed  CAS  Google Scholar 

  34. Peter J, Unverzagt C, Krogh TN, Vorm O, Hoesel W. Identification of precursor forms of free prostate-specific antigen in serum of prostate cancer patients by immunosorption and mass spectrometry. Cancer Res. 2001;61(3):957–62.

    PubMed  CAS  Google Scholar 

  35. Chan TY, Mikolajczyk SD, Lecksell K, et al. Immunohistochemical staining of prostate cancer with monoclonal antibodies to the precursor of prostate-specific antigen. Urology. 2003;62(1): 177–81.

    Article  PubMed  Google Scholar 

  36. de Vries SH, Raaijmakers R, Blijenberg BG, Mikolajczyk SD, Rittenhouse HG, Schroder FH. Additional use of [-2] precursor prostate-specific antigen and “benign” PSA at diagnosis in screen-detected prostate cancer. Urology. 2005;65(5): 926–30.

    Article  PubMed  Google Scholar 

  37. Tam JE. PSA isoforms. In: Ankerst DP, editor. Current clinical urology. Totowa: Humana Press; 2009. p. 225–31.

    Google Scholar 

  38. Jansen FH, van Schaik RH, Kurstjens J, et al. Prostate-specific antigen (PSA) isoform p2PSA in combination with total PSA and free PSA improves diagnostic accuracy in prostate cancer detection. Eur Urol. 2010;57(6):921–7.

    Article  PubMed  CAS  Google Scholar 

  39. Sokoll LJ, Wang Y, Feng Z, et al. [-2]proenzyme prostate specific antigen for prostate cancer detection: a national cancer institute early detection research network validation study. J Urol. 2008;180(2): 539–43; discussion 543.

    Google Scholar 

  40. Mikolajczyk SD, Millar LS, Wang TJ, et al. A precursor form of prostate-specific antigen is more highly elevated in prostate cancer compared with benign transition zone prostate tissue. Cancer Res. 2000;60(3):756–9.

    PubMed  CAS  Google Scholar 

  41. Mikolajczyk SD, Rittenhouse HG. Tumor-associated forms of prostate specific antigen improve the discrimination of prostate cancer from benign disease. Rinsho Byori. 2004;52(3):223–30.

    PubMed  CAS  Google Scholar 

  42. Naya Y, Fritsche HA, Bhadkamkar VA, Mikolajczyk SD, Rittenhouse HG, Babaian RJ. Evaluation of precursor prostate-specific antigen isoform ratios in the detection of prostate cancer. Urol Oncol. 2005;23(1): 16–21.

    Article  PubMed  CAS  Google Scholar 

  43. Catalona WJ, Bartsch G, Rittenhouse HG, et al. Serum pro prostate specific antigen improves cancer detection compared to free and complexed prostate specific antigen in men with prostate specific antigen 2 to 4 ng/ml. J Urol. 2003;170(6 Pt 1):2181–5.

    Article  PubMed  CAS  Google Scholar 

  44. Sokoll LJ, Sanda MG, Feng Z, et al. A prospective, multicenter, National Cancer Institute Early Detection Research Network study of [-2]proPSA: improving prostate cancer detection and correlating with cancer aggressiveness. Cancer Epidemiol Biomarkers Prev. 2008;19(5):1193–200.

    Article  Google Scholar 

  45. Le BV, Griffin CR, Loeb S, et al. [-2]Proenzyme prostate specific antigen is more accurate than total and free prostate specific antigen in differentiating prostate cancer from benign disease in a prospective prostate cancer screening study. J Urol. 2010;183(4): 1355–9.

    Article  PubMed  CAS  Google Scholar 

  46. Catalona WJ, Sanda MG, Wei JT, et al. {-2}proPSA in combination with PSA and free PSA using the Beckman Coulter Access Immunoassay Systems Improves Prostate cancer detection relative to PSA and free PSA. Paper presented at: Annual Meeting, American Urological Association, 2010; San Francisco, CA.

    Google Scholar 

  47. Makarov DV, Isharwal S, Sokoll LJ, et al. Pro-prostate-specific antigen measurements in serum and tissue are associated with treatment necessity among men enrolled in expectant management for prostate cancer. Clin Cancer Res. 2009;15(23):7316–21.

    Article  PubMed  CAS  Google Scholar 

  48. Bussemakers MJ, van Bokhoven A, Verhaegh GW, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59(23): 5975–9.

    PubMed  CAS  Google Scholar 

  49. de Kok JB, Verhaegh GW, Roelofs RW, et al. DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res. 2002;62(9): 2695–8.

    PubMed  Google Scholar 

  50. Hessels D, Klein Gunnewiek JM, van Oort I, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. 2003;44(1):8–15; discussion 15–6.

    Google Scholar 

  51. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15 Spec No 1:R17–29.

    Google Scholar 

  52. Clarke RA, Zhao Z, Guo AY, et al. New genomic structure for prostate cancer specific gene PCA3 within BMCC1: implications for prostate cancer detection and progression. PLoS One. 2009;4(3): e4995.

    Article  PubMed  CAS  Google Scholar 

  53. Salagierski M, Verhaegh GW, Jannink SA, Smit FP, Hessels D, Schalken JA. Differential expression of PCA3 and its overlapping PRUNE2 transcript in prostate cancer. Prostate. 2010;70(1):70–8.

    Article  PubMed  CAS  Google Scholar 

  54. Meng FJ, Shan A, Jin L, Young CY. The expression of a variant prostate-specific antigen in human prostate. Cancer Epidemiol Biomarkers Prev. 2002;11(3):305–9.

    PubMed  CAS  Google Scholar 

  55. van Gils MP, Hessels D, van Hooij O, et al. The time-resolved fluorescence-based PCA3 test on urinary sediments after digital rectal examination; a Dutch multicenter validation of the diagnostic performance. Clin Cancer Res. 2007;13(3):939–43.

    Article  PubMed  Google Scholar 

  56. Fradet Y, Saad F, Aprikian A, et al. uPM3, a new molecular urine test for the detection of prostate cancer. Urology. 2004;64(2):311–5; discussion 315–6.

    Google Scholar 

  57. Tinzl M, Marberger M, Horvath S, Chypre C. DD3PCA3 RNA analysis in urine—a new perspective for detecting prostate cancer. Eur Urol. 2004;46(2):182–6; discussion 187.

    Google Scholar 

  58. Groskopf J, Aubin SM, Deras IL, et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin Chem. 2006;52(6):1089–95.

    Article  PubMed  CAS  Google Scholar 

  59. Deras IL, Aubin SM, Blase A, et al. PCA3: a molecular urine assay for predicting prostate biopsy outcome. J Urol. 2008;179(4):1587–92.

    Article  PubMed  Google Scholar 

  60. Marks LS, Fradet Y, Deras IL, et al. PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology. 2007;69(3):532–5.

    Article  PubMed  Google Scholar 

  61. Shappell SB, Fulmer J, Arguello D, Wright BS, Oppenheimer JR, Putzi MJ. PCA3 urine mRNA testing for prostate carcinoma: patterns of use by community urologists and assay performance in reference laboratory setting. Urology. 2009;73(2):363–8.

    Article  PubMed  Google Scholar 

  62. Sokoll LJ, Ellis W, Lange P, et al. A multicenter evaluation of the PCA3 molecular urine test: ­pre-analytical effects, analytical performance, and diagnostic accuracy. Clin Chim Acta. 2008;389(1–2):1–6.

    Article  PubMed  CAS  Google Scholar 

  63. Schilling D, Hennenlotter J, Munz M, Bokeler U, Sievert KD, Stenzl A. Interpretation of the prostate cancer gene 3 in reference to the individual clinical background: implications for daily practice. Urol Int. 2010;85(2):159–65.

    Article  PubMed  Google Scholar 

  64. Andriole G, Bostwick D, Brawley O, et al. Chemoprevention of prostate cancer in men at high risk: rationale and design of the reduction by dutasteride of prostate cancer events (REDUCE) trial. J Urol. 2004;172(4 Pt 1):1314–7.

    Article  PubMed  CAS  Google Scholar 

  65. Aubin SM, Reid J, Sarno MJ, et al. PCA3 Molecular urine test for predicting repeat prostate biopsy outcome in populations at risk: validation in the placebo arm of the dutasteride REDUCE trial. J Urol. 2010;184(5):1947–52.

    Article  PubMed  Google Scholar 

  66. Aubin SM, Reid J, Sarno MJ, Blase A, Aussie J, Rittenhouse H, Rittmaster RS, Andriole GL, Groskopf J. Prostate cancer gene 3 score predicts prostate biopsy outcome in men receiving dutasteride for prevention of prostate cancer: results from the REDUCE trial. Urology. 2011 Aug;78(2):380–85.

    Google Scholar 

  67. Nakanishi H, Groskopf J, Fritsche HA, et al. PCA3 molecular urine assay correlates with prostate cancer tumor volume: implication in selecting candidates for active surveillance. J Urol. 2008;179(5):1804–9; discussion 1809–10.

    Google Scholar 

  68. Whitman EJ, Groskopf J, Ali A, et al. PCA3 scores in urine before radical prostatectomy predict extra-capsular extension and tumor volume. J Urol. 2008;180(5):1975–8.

    Article  PubMed  Google Scholar 

  69. Hessels D, van Gils MP, van Hooij O, et al. Predictive value of PCA3 in urinary sediments in determining clinico-pathological characteristics of prostate cancer. Prostate. 2009;70(1):10–6.

    Article  CAS  Google Scholar 

  70. Ankerst DP, Groskopf J, Day JR, et al. Predicting prostate cancer risk through incorporation of prostate cancer gene 3. J Urol. 2008;180(4):1303–8; discussion 1308.

    Google Scholar 

  71. Chun FK, de la Taille A, van Poppel H, et al. Prostate cancer gene 3 (PCA3): development and internal validation of a novel biopsy nomogram. Eur Urol. 2009;56(4):659–67.

    Article  PubMed  Google Scholar 

  72. Auprich M, Haese A, Walz J, et al. External validation of urinary PCA3-based nomograms to individually predict prostate biopsy outcome. Eur Urol. 2010;58(5):727–32.

    Article  PubMed  Google Scholar 

  73. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.

    Article  PubMed  CAS  Google Scholar 

  74. Melo JV, Deininger MW. Biology of chronic myelogenous leukemia—signaling pathways of initiation and transformation. Hematol Oncol Clin North Am. 2004;18(3):545–68; vii–viii.

    Google Scholar 

  75. Schmitt F. HER2+ breast cancer: how to evaluate? Adv Ther. 2009;26 Suppl 1:S1–8.

    Article  PubMed  CAS  Google Scholar 

  76. Tomlins SA, Bjartell A, Chinnaiyan AM, et al. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol. 2009;56(2): 275–86.

    Article  PubMed  CAS  Google Scholar 

  77. Han B, Mehra R, Dhanasekaran SM, et al. A fluorescence in situ hybridization screen for E26 transformation-specific aberrations: identification of DDX5-ETV4 fusion protein in prostate cancer. Cancer Res. 2008;68(18):7629–37.

    Article  PubMed  CAS  Google Scholar 

  78. Mehra R, Tomlins SA, Shen R, et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod Pathol. 2007;20(5):538–44.

    Article  PubMed  CAS  Google Scholar 

  79. Tomlins SA, Laxman B, Dhanasekaran SM, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 2007;448(7153):595–9.

    Article  PubMed  CAS  Google Scholar 

  80. Mosquera JM, Mehra R, Regan MM, et al. Prevalence of TMPRSS2-ERG fusion prostate cancer among men undergoing prostate biopsy in the United States. Clin Cancer Res. 2009;15(14):4706–11.

    Article  PubMed  CAS  Google Scholar 

  81. Demichelis F, Fall K, Perner S, et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene. 2007;26(31): 4596–9.

    Article  PubMed  CAS  Google Scholar 

  82. Attard G, Clark J, Ambroisine L, et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene. 2008;27(3):253–63.

    Article  PubMed  CAS  Google Scholar 

  83. FitzGerald LM, Agalliu I, Johnson K, et al. Association of TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer. BMC Cancer. 2008;8:230.

    Article  PubMed  CAS  Google Scholar 

  84. Attard G, Clark J, Ambroisine L, et al. Heterogeneity and clinical significance of ETV1 translocations in human prostate cancer. Br J Cancer. 2008;99(2): 314–20.

    Article  PubMed  CAS  Google Scholar 

  85. Miller GJ, Cygan JM. Morphology of prostate cancer: the effects of multifocality on histological grade, tumor volume and capsule penetration. J Urol. 1994;152(5 Pt 2):1709–13.

    PubMed  CAS  Google Scholar 

  86. Barry M, Perner S, Demichelis F, Rubin MA. TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. Urology. 2007;70(4):630–3.

    Article  PubMed  Google Scholar 

  87. Clark J, Attard G, Jhavar S, et al. Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene. 2008;27(14): 1993–2003.

    Article  PubMed  CAS  Google Scholar 

  88. Furusato B, Gao CL, Ravindranath L, et al. Mapping of TMPRSS2-ERG fusions in the context of multi-focal prostate cancer. Mod Pathol. 2008;21(2): 67–75.

    PubMed  CAS  Google Scholar 

  89. Mehra R, Han B, Tomlins SA, et al. Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res. 2007;67(17):7991–5.

    Article  PubMed  CAS  Google Scholar 

  90. Hessels D, Smit FP, Verhaegh GW, Witjes JA, Cornel EB, Schalken JA. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin Cancer Res. 2007;13(17):5103–8.

    Article  PubMed  Google Scholar 

  91. Rice KR, Chen Y, Ali A, et al. Evaluation of the ETS-related gene mRNA in urine for the detection of prostate cancer. Clin Cancer Res. 2010;16(5): 1572–6.

    Article  PubMed  CAS  Google Scholar 

  92. Marcucci G, Baldus CD, Ruppert AS, et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J Clin Oncol. 2005;23(36):9234–42.

    Article  PubMed  CAS  Google Scholar 

  93. Perner S, Demichelis F, Beroukhim R, et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res. 2006;66(17):8337–41.

    Article  PubMed  CAS  Google Scholar 

  94. Sutcliffe P, Hummel S, Simpson E, et al. Use of classical and novel biomarkers as prognostic risk factors for localised prostate cancer: a systematic review. Health Technol Assess. 2009;13(5):iii; xi–xiii 1–219.

    Google Scholar 

  95. Berney DM. Biomarkers for prostate cancer detection and progression: beyond prostate-specific antigen. Drug News Perspect. 2010;23(3):185–94.

    Article  PubMed  CAS  Google Scholar 

  96. Inoue T, Segawa T, Shiraishi T, et al. Androgen receptor, Ki67, and p53 expression in radical prostatectomy specimens predict treatment failure in Japanese population. Urology. 2005;66(2):332–7.

    Article  PubMed  Google Scholar 

  97. Berney DM, Gopalan A, Kudahetti S, et al. Ki-67 and outcome in clinically localised prostate cancer: analysis of conservatively treated prostate cancer patients from the Trans-Atlantic Prostate Group study. Br J Cancer. 2009;100(6):888–93.

    Article  PubMed  CAS  Google Scholar 

  98. Tollefson M, Karnes RJ, Blute M, et al. Biopsy KI-67 is a strong predictor of systemic progression and cancer-specific death following radical prostatectomy. J Urol. 2010;183:e794.

    Article  Google Scholar 

  99. Hopkins TG, Burns PA, Routledge MN. DNA methylation of GSTP1 as biomarker in diagnosis of prostate cancer. Urology. 2007;69(1):11–6.

    Article  PubMed  Google Scholar 

  100. Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N Engl J Med. 2003;349(4):366–81.

    Article  PubMed  CAS  Google Scholar 

  101. Lee WH, Morton RA, Epstein JI, et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci USA. 1994;91(24):11733–7.

    Article  PubMed  CAS  Google Scholar 

  102. Zhou M, Tokumaru Y, Sidransky D, Epstein JI. Quantitative GSTP1 methylation levels correlate with Gleason grade and tumor volume in prostate needle biopsies. J Urol. 2004;171(6 Pt 1):2195–8.

    Article  PubMed  CAS  Google Scholar 

  103. Ellinger J, Bastian PJ, Jurgan T, et al. CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer. Urology. 2008;71(1):161–7.

    Article  PubMed  Google Scholar 

  104. Partin AW, Getzenberg RH, CarMichael MJ, et al. Nuclear matrix protein patterns in human benign prostatic hyperplasia and prostate cancer. Cancer Res. 1993;53(4):744–6.

    PubMed  CAS  Google Scholar 

  105. Dhir R, Vietmeier B, Arlotti J, et al. Early identification of individuals with prostate cancer in negative biopsies. J Urol. 2004;171(4):1419–23.

    Article  PubMed  Google Scholar 

  106. Uetsuki H, Tsunemori H, Taoka R, Haba R, Ishikawa M, Kakehi Y. Expression of a novel biomarker, EPCA, in adenocarcinomas and precancerous lesions in the prostate. J Urol. 2005;174(2):514–8.

    Article  PubMed  Google Scholar 

  107. Hansel DE, DeMarzo AM, Platz EA, et al. Early prostate cancer antigen expression in predicting presence of prostate cancer in men with histologically negative biopsies. J Urol. 2007;177(5): 1736–40.

    Article  PubMed  CAS  Google Scholar 

  108. Leman ES, Cannon GW, Trock BJ, et al. EPCA-2: a highly specific serum marker for prostate cancer. Urology. 2007;69(4):714–20.

    Article  PubMed  Google Scholar 

  109. Diamandis EP. POINT: EPCA-2: a promising new serum biomarker for prostatic carcinoma? Clin Biochem. 2007;40(18):1437–9.

    Article  PubMed  CAS  Google Scholar 

  110. Fiorentino M, Capizzi E, Loda M. Blood and tissue biomarkers in prostate cancer: state of the art. Urol Clin North Am. 2010;37(1):131–41. Table of Contents.

    Google Scholar 

  111. Freedland SJ, deGregorio F, Sacoolidge JC, et al. Preoperative p27 status is an independent predictor of prostate specific antigen failure following radical prostatectomy. J Urol. 2003;169(4):1325–30.

    Article  PubMed  CAS  Google Scholar 

  112. Wolters T, Vissers KJ, Bangma CH, Schroder FH, van Leenders GJ. The value of EZH2, p27(kip1), BMI-1 and MIB-1 on biopsy specimens with low-risk prostate cancer in selecting men with significant prostate cancer at prostatectomy. BJU Int. 2010;106(2):280–6.

    Article  PubMed  Google Scholar 

  113. Camp RL, Neumeister V, Rimm DL. A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J Clin Oncol. 2008;26(34):5630–7.

    Article  PubMed  Google Scholar 

  114. Han KR, Seligson DB, Liu X, et al. Prostate stem cell antigen expression is associated with gleason score, seminal vesicle invasion and capsular invasion in prostate cancer. J Urol. 2004;171(3):1117–21.

    Article  PubMed  CAS  Google Scholar 

  115. Donovan MJ, Khan FM, Fernandez G, et al. Personalized prediction of tumor response and cancer progression on prostate needle biopsy. J Urol. 2009;182(1):125–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonard Marks , Jack Groskopf or Jack Schalken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marks, L. (2012). Beyond PSA: Promising New Markers for Prostate Cancer. In: Klein, E., Jones, J. (eds) Management of Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-259-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-259-9_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-258-2

  • Online ISBN: 978-1-60761-259-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics