Skip to main content

Structural and Electrophysiological Remodeling of the Failing Heart

  • Chapter
  • First Online:
Renin Angiotensin System and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 991 Accesses

Abstract

The influence of the renin angiotensin aldosterone system on the structural and electrophysiological remodeling of the failing heart is discussed including changes in cell communication, impulse propagation, and the generation of cardiac arrhythmias. Particular attention was given to the harmful effects of angiotensin II and the beneficial influence of ACE inhibitors, AT1 receptor blockers, and angiotensin [1–7] on cardiac function and cardiac remodeling. Finally, the role of the renin angiotensin aldosterone system on the regulation of cell volume in the failing heart was discussed and evidence was provided that the intracrine RAS plays an important role in the regulation of cell volume. Pathophysiological implications of the change in cell volume are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirschenbaum, L.A. (2003) Stresses of the failing heart. J Mol Cell Cardiol 35, 1017–1019

    Article  CAS  Google Scholar 

  2. Afzal, N., and Dhalla, N.S. (1992) Differential changes in left and right ventricular SR calcium transport in congestive heart failure. Am J Physiol 262, H868–H874

    CAS  PubMed  Google Scholar 

  3. Hill, M.F., and Singal, P.K. (1996) Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 148, 291–330

    CAS  PubMed  Google Scholar 

  4. Daniels, M.C., Naya, T., Rundell, V.L., and de Tombe, P.P. (2007) Development of contractile dysfunction in rat heart failure: hierarchy of cellular events. Am J Physiol Reg Integr Com Physiol 293, R284–R292

    CAS  Google Scholar 

  5. Cannel, M.B., Corsmann, D.J., and Soeller, C. (2006) T tubules in normal heart run mainly in radial direction while during heart failure are oriented toward the longitudinal axis of the fibers. Effect of changes in action potential spike configuration, junctional SR micro-architecture and altered T tubule structure in human heart failure. J Muscle Res Cell Motil 27, 297–306

    Article  Google Scholar 

  6. Cooper, G. (2006) Increase microtubule density is found in the hypertrophied and failing heart imposing a viscous load on active filaments during contraction.– Cytoskeletal networks and the regulation of cardiac contractility, microtubules, hypertrophy and cardiac dysfunction. Am J Physiol Heart Circ Physiol 29, H1003–H1014

    Article  CAS  Google Scholar 

  7. Pacifico, A., and Henry, P.D. (2003) Structural pathways and prevention of heart failure and sudden death. J Cardiovasc Electrophysiol 14, 764–775

    Article  PubMed  Google Scholar 

  8. Ammoundas, A.A., Wu, R., Juang, G., Marban, E., and Tomaseli, G.F. (2003) Electrical and structural remodeling of the failing ventricle. Pharmacol Ther 92, 213–230

    Article  Google Scholar 

  9. De Mello, W.C. (1999) Cell coupling and impulse propagation in the failing heart. J Cardiovasc Electrophysiol 10, 1409–1430

    Article  PubMed  Google Scholar 

  10. Severs, N.J. (1994) Pathophysiology of gap junctions in heart disease. J Cardiac Electrophysiol 5, 462–475

    Article  CAS  Google Scholar 

  11. Kostin, S. (2007) Zona occludens-1 and connexin 43 expression in the failing human heart. J Cell Mol Med 4, 892–895

    Article  Google Scholar 

  12. De Mello, W.C. (2004) Heart failure: how important is cellular sequestration? The role of the renin angiotensin aldosterone system. J Mol Cell Cardiol 37, 431–438

    Article  PubMed  CAS  Google Scholar 

  13. Emdad, L., Uzzman, M., Takagishi, T., Honjo, H., Uchida, T., and Severs, N.J., et al. (2001) Gap junction remodeling in hypertrophied left ventricles of aorta-banded rats: prevention by angiotensin II type 1 receptor blockade. J Mol Cell Cardiol 33, 219–231

    Article  CAS  PubMed  Google Scholar 

  14. Pimentel, R.C., Yamada, K.A., Kleber, A.G., and Saffitz, J.E. (2002) Autocrine regulation of Cx43 expression by VEGF. Circ Res 90, 671–677

    Article  CAS  PubMed  Google Scholar 

  15. Severs, N.J. (2002) Gap junctions and connexin expression in human heart disease. In: De Mello, W.C., Janse, M., (eds.) Heart Cell Coupling and Impulse Propagation in Health and Disease. Kluwer Academic Publishers, Boston, pp. 321–334

    Google Scholar 

  16. Gupta, R.C., Mishra, S., Rastogi, S., Imai., M,, Habbib, O., and Sabbah, H.N. (2003) Cardiac SR-coupled PP1 activity and expression are increased and inhibitor 1 protein expression is decreased in failing hearts. Am J Physiol Heart Circ Physiol 285, H2373–H2381

    CAS  PubMed  Google Scholar 

  17. Dzau, V.J. (1987) Implications of local angiotensin production in cardiovascular physiology and pharmacology. Am J Cardiol 59(A), A59–A65

    Article  Google Scholar 

  18. Lindpaintner, K., Jin, M.W., Niedermaier, N., Wilhelm, M.J., and Ganten, D. (1990) Cardiac angiotensinogen and its local activation in the isolated perfused beating heart. Circ Res 67, 564–573

    CAS  PubMed  Google Scholar 

  19. Harada, K., Komuro, I., Hayashi, D., Sugaya, T., Murakami, K., and Yazaki, H. (1998) Angiotensin II type 1a receptor is involved in the occurrence of reperfusion arrhythmias. Circulation 97, 315–317

    CAS  PubMed  Google Scholar 

  20. De Mello, W.C. (1996) Renin angiotensin system and cell communication in the failing heart. Hypertension 27, 1267–1272

    PubMed  Google Scholar 

  21. De Mello, W.C., and Specht, P. (2006) Chronic blockade of angiotensin II AT1 receptors increased cell-to-cell communication, reduced fibrosis and improved impulse propagation in the failing heart. J Renin Angiotensin Aldosterone Syst 7, 201–205

    Article  PubMed  Google Scholar 

  22. Studer, R., Reinecke, H., and Muller, B., et al. (1994) Increased angiotensin 1 converting enzyme gene expression in the failing human heart. J Clin Invest 94, 301–310

    Article  CAS  PubMed  Google Scholar 

  23. De Mello, W.C. (1994) Is an intracellular renin angiotensin system involved in the control of cell communication in heart? J Cardiovasc Pharmacol 23, 640–646

    Article  PubMed  Google Scholar 

  24. De Mello, W.C. (2001) Cardiac arrhythmias; the possible role of the renin angiotensin system. J Mol Med 79, 103–108

    Article  PubMed  Google Scholar 

  25. Satoh Veda, Y, Suematsu, N., and Oyama J., et al. (2003) Beneficial effects of angiotensin converting enzyme inhibitors on sarcoplasmic reticulum function in the failing heart of the Dahl tar. Circ J 67, 705–711

    Article  Google Scholar 

  26. Tokushita, T., Yano, M., Obayashi, M., Noma, T., Mochizuki, M., and Oda, T., et al. (2006) AT1 receptor antagonist restores cardiac rhyanodine receptor function rendering isoproterenol-induced failing heart less susceptible to Ca2+- leak induced by oxidative stress. Circ J 70, 777–786

    Article  Google Scholar 

  27. Hein, L., Stevens, M.E., Barsh, G.S., Pratt, R.E., Kobilka, B.K., and Dzau, V.J. (1997) Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proce Natl Acad Sci USA 94, 6391–6396

    Article  CAS  Google Scholar 

  28. Dostal, D.E. (2001) Regulation of cardiac collagen: angiotensin and cross-talk with local growth factors. Hypertension 37, 841–844

    CAS  PubMed  Google Scholar 

  29. Haendeler, J., and Berk, B. (2000) Tyrosine phosphorylation is involved in Ang II-mediated signal transduction. Reg Pept 95, 1–7

    Article  CAS  Google Scholar 

  30. Disertori, M., Latini, R., Maggioni, A.P., Delise, P., Di Pasquale, G., Franzosi, M.G., Staszewsky, L., and Tognoni, G. and GISSI-AF Investigators (2006) Rationale and design of the GISSI-Atrial Fibrillation Trial: a randomized, prospective, multicentre study on the use of valsartan, an angiotensin II AT1-receptor blocker, in the prevention of atrial fibrillation recurrence. J Cardiovasc Med (Hagerstown) 7(1), 29–38

    Article  Google Scholar 

  31. Katz, S.A., Opsahl, J.A., and Lunser, M.M., et al. (1997) Effect of bilateral nephrectmy on active renin, angiotensinogen and renin glycoforms in plasma and myocardium. Hypertension 30, 259–266

    CAS  PubMed  Google Scholar 

  32. Danser, A.H.J., van Katz, J.P., and Admiraal, P.J.J., et al. (1994) Cardiac renin and angiotensins: uptake from plasma versus in situ synthesis. Hypertension 24, 37–48

    CAS  PubMed  Google Scholar 

  33. van den Eijnden, MMED, Saris J.J., and de Bruin, R.J.A., et al. (2001) Prorenin accumulation and activation in human endothelial cells. Importance of mannose-6-phosphate receptors. Arterioscler Thromb Vasc Biol 21, 911–916

    PubMed  Google Scholar 

  34. Nguyen, G. (2007) The (pro) renin receptor: a new kid in town. Sem Nephrol 27, 519–523

    Article  CAS  Google Scholar 

  35. Peters, J., Farrenkopf, R., and Clausmeyer, S., et al. (2002) Functional significance of prorenin internalization in the rat heart. Circ Res 90, 1135–1141

    Article  CAS  PubMed  Google Scholar 

  36. De Mello, W.C. (1995) Influence of intracellular renin on heart cell communication. Hypertension 25, 1172–1177

    CAS  PubMed  Google Scholar 

  37. De Mello, W.C. (2006) Renin increments the inward calcium current in the failing heart. J Hypertens 24, 1181–1186

    Article  PubMed  CAS  Google Scholar 

  38. Schefe, J.H., Menck, M., Reinemunde, J., and Effertz, K., et al. (2006) A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res 99, 1355–1366

    Article  CAS  PubMed  Google Scholar 

  39. Clausmeyer, S., Reinecke, A., and Farrenkopf, R., et al. (2000) Tissue-specific expression of rat renin transcript lacking the coding sequence for the prefragment and its stimulation by myocardial infarction. Endocrinology 141, 2963–2970

    Article  CAS  PubMed  Google Scholar 

  40. Griendling, K.K., Soresku, D., and Ushio-Fukai, M. (2000) NAD(P)H oxidase. Role in cardiovascular biology. Circ Res 86, 494–501

    CAS  PubMed  Google Scholar 

  41. Lauersen, J.B., Rajagopalan, S., Galis, Z., Tarpey, M., Freeman, B.A., and Harrison, D.G. (1997) Role of superoxide in angiotensin II-induced but not cathecol-induced hypertension. Circulation 95, 588–593

    Google Scholar 

  42. Diet, F., Pratt, R.E., Berry, G.L., Momose, N., Gibbons, G.H., and Dzau, V.J. (1996) Increased accumulation of tissue ACE in human atherosclerotic coronary disease. Circulation 94, 2756–2767

    CAS  PubMed  Google Scholar 

  43. Hornig, B., Landmesser, U., Kohler, C., Ahlermann, D., and Spiekermann, S., et al. (2001) Comparative effects of ACE inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary disease: role of superoxide dismutase. Circulation 103, 799–805

    CAS  PubMed  Google Scholar 

  44. Kamik, A.A., Fields, A.V., and Shannon, R.P. (2007) Diabetic cardiomyopathy. Current Hypertens Rep 9, 467–473

    Article  Google Scholar 

  45. Yamashita, C., Hayahi, T., Mori, T., Tazawa, N., Kwak, C.J., and Nakano, D., et al. (2007) Angiotensin II receptor blocker reduces oxidative stress and attenuates hypoxia-induced left ventricular remodeling in apolipoprotein-E-knockout mice. Hypertens Res 30, 1219–1230

    Article  CAS  PubMed  Google Scholar 

  46. Miyajima, K., Minatogushi, S., Ito, Y., Hukunishi, M., and Matsuno, M., et al. (2007) Reduction of QTc dispersion by the angiotensin II receptor blocker valsartan may be related to its anti-oxidative stress effect in patients with essential hypertension. Hypertens Res 30, 307–313

    Article  CAS  PubMed  Google Scholar 

  47. Donoghue, M., Hsieh, F., and Baronas, E., et al. (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin (1–9). Circ Res 87, E1–E9

    CAS  PubMed  Google Scholar 

  48. Zisman, L.S., Keller, R.S., and Weaver, B., et al. (2003) Increased angiotensin (1-7) forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin converting enzyme homolog, ACE2. Circulation 108, 1707–1712

    Article  CAS  PubMed  Google Scholar 

  49. Ferrario, C., Chappell, M., and Tallant, E.K., et al. (1997) Counterregulatory actions of angiotensin (1-7). Hypertension 30, 535–541

    Google Scholar 

  50. Ferrario, C.M., Trask, A.J., and Jessupt, J, A. (2005) Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1-7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol. 289, H2281

    Article  CAS  PubMed  Google Scholar 

  51. Ferreira, A. J., Santos, R.A., and Almeida, A.P. (2001) Angiotensin (1-7); cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 38, 665–668

    CAS  PubMed  Google Scholar 

  52. De Mello, W.C. (2004) Angiotensin (1-7) re-establishes impulse conduction in cardiac muscle during ischemia-reperfusion. The role of the sodium pump. J Renin Angiotensin Aldosterone Syst 5, 203–208

    Article  PubMed  Google Scholar 

  53. De Mello, W.C., Ferrario, C., and Jessupt, J.A. (2007) Beneficial versus harmful effects of angiotensin (1-7) on impulse propagation and cardiac arrhythmias in the failing heart. J Renin Angiotensin Aldosterone Syst 8, 74–80

    Article  PubMed  CAS  Google Scholar 

  54. Donoghue, M.,Wakimoto, H., Maguire, C.T., Acton, S. P., and Stagliano, N., et al. (2003) Heart block, ventricular tachycardia and sudden death in ACE2 transgenic mice with downregulated connexins. J Mol Cell Cardiol 35, 1043–1053

    Article  CAS  PubMed  Google Scholar 

  55. Haussinger, D., Reinehr, R., and Schliess, F. (2006) The hepatocyte integrin system and cell volume sensing. Acta Physiol(Oxf) 187, 249–255

    Article  CAS  Google Scholar 

  56. Kent, R.L., Hoober, J.B., and Cooper, G. (1989) Local responsiveness of protein synthesis in adult mammalian myocardium: role of cardiac deformation linked to sodium influx. Circ Res 64, 74–85

    CAS  PubMed  Google Scholar 

  57. De Mello, W.C. (2007) Interamerican Soc. of Hypertension Meeting

    Google Scholar 

  58. De Mello, W.C. (2008) Intracellular and extracellular renin have opposite effects on the regulation of heart cell volume. Implications to myocardial ischemia. J Renin Angiotensin Aldosterone Syst 9, 112–118

    Article  PubMed  CAS  Google Scholar 

  59. Lang, F. (2007) Mechanisms and significance of cell volume regulation. J Am Coll Nutr 26(5), 613S–623S

    CAS  PubMed  Google Scholar 

  60. Baumgarten, C.M., and Clemo, H.F. (2003) Swelling-activated chloride channels in cardiac physiology and pathophysiology. Prog Biophys Mol Biol 122, 689–702

    Google Scholar 

  61. Delcayre, C., and Swynghedauw, B. (2002) Molecular mechanisms of myocardial remodeling. J Mol Cell Cardiol 34, 1577–1584

    Article  CAS  PubMed  Google Scholar 

  62. Ramires, F.J.A., Mansur, A., and Coelho, O., et al. (2000) Effect of spironolactone on ventricular arrhythmias in congestive heart failure secondary to idiopathic dilated or to ischemic cardiomyopathy. Am J Cardiol 85, 207–211

    Article  Google Scholar 

  63. Pitt, B., Zannad, F., and Remme, W.J., et al. for the Randomized Aldactone Evaluation Study Investigators (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. New Engl J Med 341, 709–717

    Article  CAS  PubMed  Google Scholar 

  64. Pitt, B., Remme, W., and Zannad, F., et al. (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. New Engl J Med 348, 1309–1321

    Article  CAS  PubMed  Google Scholar 

  65. De Mello, W.C. (2006) Beneficial effect of eplerenone on cardiac remodeling and electrical properties of the failing heart. J Renin Angiotensin Aldosterone Syst 7, 40–46

    Article  PubMed  Google Scholar 

  66. De Mello, W.C., and Gerena, Y. (2008) Eplererenone inhibits the intracrine and extracellular actions of angiotensin II on the inward calcium current in the failing heart. On the presence of an intracrine renin angiotensin aldosterone system. Reg. Pept 151, 54–60

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walmor C. DeMello MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

DeMello, W.C. (2009). Structural and Electrophysiological Remodeling of the Failing Heart. In: DeMello, W., Frohlich, E. (eds) Renin Angiotensin System and Cardiovascular Disease. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-60761-186-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-186-8_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-185-1

  • Online ISBN: 978-1-60761-186-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics