Skip to main content

Centrosomes in Checkpoint Responses

  • Chapter
  • First Online:
Checkpoint Controls and Targets in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 848 Accesses

Abstract

Centrosomes consist of a pair of barrel-shaped centrioles, surrounded by a pericentriolar matrix. Their best characterized function is to organize both interphase microtubule arrays and the mitotic spindle, which mediates the strictly bipolar separation of chromosomes during cell division. In addition, centrosomes have come into focus as part of a network that integrates cell cycle arrest and repair signals in response to genotoxic stress. Recent evidence suggests that centrosomes are involved in both, regulation of the G2/M transition in response to DNA damage and induction of cell death via centrosome amplification and mitotic catastrophe as a backup mechanism for the elimination of cells that evade DNA damage checkpoints operating earlier during the cell cycle. While other aspects of the G2/M checkpoint are described elsewhere, this chapter will focus on the emerging role of centrosomes as regulators and effectors of DNA damage at mitotic entry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bornens M (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14(1):25–34

    CAS  PubMed  Google Scholar 

  2. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426(6966):570–574

    CAS  PubMed  Google Scholar 

  3. Moritz M, Braunfeld MB, Guenebaut V, Heuser J, Agard DA (2000) Structure of the gamma-tubulin ring complex: a template for microtubule nucleation. Nat Cell Biol 2(6):365–370

    CAS  PubMed  Google Scholar 

  4. Jackman M, Lindon C, Nigg EA, Pines J (2003) Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 5(2):143–148

    CAS  PubMed  Google Scholar 

  5. Kramer A, Mailand N, Lukas C et al (2004) Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol 6(9):884–891

    PubMed  Google Scholar 

  6. Doxsey S, McCollum D, Theurkauf W (2005) Centrosomes in cellular regulation. Annu Rev Cell Dev Biol 21:411–434

    CAS  PubMed  Google Scholar 

  7. Tsou MF, Stearns T (2006) Mechanism limiting centrosome duplication to once per cell cycle. Nature 442(7105):947–951

    CAS  PubMed  Google Scholar 

  8. Tsou MF, Stearns T (2006) Controlling centrosome number: licenses and blocks. Curr Opin Cell Biol 18(1):74–78

    CAS  PubMed  Google Scholar 

  9. Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA (1998) C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol 141(7):1563–1574

    CAS  PubMed  Google Scholar 

  10. Fry AM, Meraldi P, Nigg EA (1998) A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. Embo J 17(2):470–481

    CAS  PubMed  Google Scholar 

  11. Blangy A, Lane HA, d'Herin P, Harper M, Kress M, Nigg EA (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83(7):1159–1169

    CAS  PubMed  Google Scholar 

  12. Graser S, Stierhof Y-D, Nigg EA (2007) Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J Cell Sci 120(24):4321–4331

    CAS  PubMed  Google Scholar 

  13. Yang J, Adamian M, Li T (2006) Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol Biol Cell 17(2):1033–1040

    CAS  PubMed  Google Scholar 

  14. Bahe S, Stierhof YD, Wilkinson CJ, Leiss F, Nigg EA (2005) Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J Cell Biol 171(1):27–33

    CAS  PubMed  Google Scholar 

  15. Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA (1999) Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat Cell Biol 1(2):88–93

    CAS  PubMed  Google Scholar 

  16. Matsumoto Y, Hayashi K, Nishida E (1999) Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol 9(8):429–432

    CAS  PubMed  Google Scholar 

  17. Lacey KR, Jackson PK, Stearns T (1999) Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci U S A 96(6):2817–2822

    CAS  PubMed  Google Scholar 

  18. Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7(11):1140–1146

    CAS  PubMed  Google Scholar 

  19. Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L et al (2005) SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 15(24):2199–2207

    CAS  PubMed  Google Scholar 

  20. Ko MA, Rosario CO, Hudson JW et al (2005) Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat Genet 37(8):883–888

    CAS  PubMed  Google Scholar 

  21. Hagiwara H, Ohwada N, Takata K (2004) Cell biology of normal and abnormal ciliogenesis in the ciliated epithelium. Int Rev Cytol 234:101–141

    PubMed  Google Scholar 

  22. Khodjakov A, Rieder CL, Sluder G, Cassels G, Sibon O, Wang CL (2002) De novo formation of centrosomes in vertebrate cells arrested during S phase. J Cell Biol 158(7):1171–1181

    CAS  PubMed  Google Scholar 

  23. La Terra S, English CN, Hergert P, McEwen BF, Sluder G, Khodjakov A (2005) The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J Cell Biol 168(5):713–722

    PubMed  Google Scholar 

  24. Uetake Y, Loncarek J, Nordberg JJ et al (2007) Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. J Cell Biol 176(2):173–182

    CAS  PubMed  Google Scholar 

  25. Marshall WF, Vucica Y, Rosenbaum JL (2001) Kinetics and regulation of de novo centriole assembly. Implications for the mechanism of centriole duplication. Curr Biol 11(5):308–317

    CAS  PubMed  Google Scholar 

  26. Loncarek J, Sluder G, Khodjakov A (2007) Centriole biogenesis: a tale of two pathways. Nat Cell Biol 9(7):736–738

    CAS  PubMed  Google Scholar 

  27. Hinchcliffe EH, Miller FJ, Cham M, Khodjakov A, Sluder G (2001) Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291(5508):1547–1550

    CAS  PubMed  Google Scholar 

  28. Khodjakov A, Cole RW, Oakley BR, Rieder CL (2000) Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 10(2):59–67

    CAS  PubMed  Google Scholar 

  29. Basto R, Lau J, Vinogradova T et al (2006) Flies without centrioles. Cell 125(7):1375–1386

    CAS  PubMed  Google Scholar 

  30. Compton DA (2000) Spindle assembly in animal cells. Annu Rev Biochem 69:95–114

    CAS  PubMed  Google Scholar 

  31. Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344(6266):503–508

    CAS  PubMed  Google Scholar 

  32. Bailly E, Doree M, Nurse P, Bornens M (1989) p34cdc2 is located in both nucleus and cytoplasm; part is centrosomally associated at G2/M and enters vesicles at anaphase. Embo J 8(13):3985–3995

    CAS  PubMed  Google Scholar 

  33. Bailly E, Pines J, Hunter T (1992) Cytoplasmic accumulation of cyclin B1 in human cells: association with a detergent-resistant compartment and with the centrosome. J Cell Sci 101(Pt 3):529–545

    CAS  PubMed  Google Scholar 

  34. Morgan DO (1995) Principles of CDK regulation. Nature 374(6518):131–134

    CAS  PubMed  Google Scholar 

  35. Galaktionov K, Beach D (1991) Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67(6):1181–1194

    CAS  PubMed  Google Scholar 

  36. Sadhu K, Reed SI, Richardson H, Russell P (1990) Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc Natl Acad Sci U S A 87(13):5139–5143

    CAS  PubMed  Google Scholar 

  37. Gabrielli BG, De Souza CP, Tonks ID, Clark JM, Hayward NK, Ellem KA (1996) Cytoplasmic accumulation of cdc25B phosphatase in mitosis triggers centrosomal microtubule nucleation in HeLa cells. J Cell Sci 109(Pt 5):1081–1093

    CAS  PubMed  Google Scholar 

  38. Karlsson C, Katich S, Hagting A, Hoffmann I, Pines J (1999) Cdc25B and Cdc25C differ markedly in their properties as initiators of mitosis. J Cell Biol 146(3):573–584

    CAS  PubMed  Google Scholar 

  39. Lammer C, Wagerer S, Saffrich R, Mertens D, Ansorge W, Hoffmann I (1998) The cdc25B phosphatase is essential for the G2/M phase transition in human cells. J Cell Sci 111(Pt 16)):2445–2453

    CAS  PubMed  Google Scholar 

  40. Dutertre S, Cazales M, Quaranta M et al (2004) Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2-M transition. J Cell Sci 117(Pt 12):2523–2531

    CAS  PubMed  Google Scholar 

  41. Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK (2005) Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol 171(1):35–45

    CAS  PubMed  Google Scholar 

  42. Trinkle-Mulcahy L, Lamond AI (2006) Mitotic phosphatases: no longer silent partners. Curr Opin Cell Biol 18(6):623–631

    CAS  PubMed  Google Scholar 

  43. Busch C, Barton O, Morgenstern E et al (2007) The G2/M checkpoint phosphatase cdc25C is located within centrosomes. Int J Biochem Cell Biol 39(9):1707–1713

    CAS  PubMed  Google Scholar 

  44. Bonnet J, Coopman P, Morris MC (2008) Characterization of centrosomal localization and dynamics of Cdc25C phosphatase in mitosis. Cell Cycle 7(13):1991–1998

    CAS  PubMed  Google Scholar 

  45. Ducommun B, Montoya G (2008) The "starter" and "gas pedal" of mitosis reside at the centrosome. Commentary on "characterization of centrosomal localization and dynamics of CDC25C phosphatase in mitosis" by Bonnet et al. Cell Cycle 7(13):1893–1894

    CAS  PubMed  Google Scholar 

  46. Meraldi P, Honda R, Nigg EA (2004) Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev 14(1):29–36

    CAS  PubMed  Google Scholar 

  47. Carmena M, Earnshaw WC (2003) The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4(11):842–854

    CAS  PubMed  Google Scholar 

  48. Hirota T, Kunitoku N, Sasayama T et al (2003) Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114(5):585–598

    CAS  PubMed  Google Scholar 

  49. Kramer A, Lukas J, Bartek J (2004) Checking out the centrosome. Cell Cycle 3(11):1390–1393

    CAS  PubMed  Google Scholar 

  50. Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3(5):421–429

    CAS  PubMed  Google Scholar 

  51. Zachos G, Gillespie DA (2007) Exercising restraints: role of Chk1 in regulating the onset and progression of unperturbed mitosis in vertebrate cells. Cell Cycle 6(7):810–813

    CAS  PubMed  Google Scholar 

  52. Zachos G, Rainey MD, Gillespie DA (2003) Chk1-deficient tumour cells are viable but exhibit multiple checkpoint and survival defects. Embo J 22(3):713–723

    CAS  PubMed  Google Scholar 

  53. Liu Q, Guntuku S, Cui XS et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14(12):1448–1459

    CAS  PubMed  Google Scholar 

  54. Lukas C, Bartkova J, Latella L et al (2001) DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Res 61(13):4990–4993

    CAS  PubMed  Google Scholar 

  55. Sorensen CS, Syljuasen RG, Falck J et al (2003) Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3(3):247–258

    CAS  PubMed  Google Scholar 

  56. Kaneko YS, Watanabe N, Morisaki H et al (1999) Cell-cycle-dependent and ATM-independent expression of human Chk1 kinase. Oncogene 18(25):3673–3681

    CAS  PubMed  Google Scholar 

  57. Zhao H, Watkins JL, Piwnica-Worms H (2002) Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci U S A 99(23):14795–14800

    CAS  PubMed  Google Scholar 

  58. Lam MH, Liu Q, Elledge SJ, Rosen JM (2004) Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 6(1):45–59

    CAS  PubMed  Google Scholar 

  59. Sanchez Y, Wong C, Thoma RS et al (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277(5331):1497–1501

    CAS  PubMed  Google Scholar 

  60. Schmitt E, Boutros R, Froment C, Monsarrat B, Ducommun B, Dozier C (2006) CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J Cell Sci 119(Pt 20):4269–4275

    CAS  PubMed  Google Scholar 

  61. Loffler H, Rebacz B, Ho AD, Lukas J, Bartek J, Kramer A (2006) Chk1-dependent regulation of Cdc25B functions to coordinate mitotic events. Cell Cycle 5(21):2543–2547

    PubMed  Google Scholar 

  62. Giles N, Forrest A, Gabrielli B (2003) 14–3-3 acts as an intramolecular bridge to regulate cdc25B localization and activity. J Biol Chem 278(31):28580–28587

    CAS  PubMed  Google Scholar 

  63. Uchida S, Kuma A, Ohtsubo M et al (2004) Binding of 14–3-3beta but not 14–3-3sigma controls the cytoplasmic localization of CDC25B: binding site preferences of 14–3-3 subtypes and the subcellular localization of CDC25B. J Cell Sci 117(Pt 14):3011–3020

    CAS  PubMed  Google Scholar 

  64. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374

    CAS  PubMed  Google Scholar 

  65. Bartek J, Lukas J (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19(2):238–245

    CAS  PubMed  Google Scholar 

  66. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323

    CAS  PubMed  Google Scholar 

  67. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246(4930):629–634

    CAS  PubMed  Google Scholar 

  68. Bartek J, Lukas C, Lukas J (2004) Checking on DNA damage in S phase. Nat Rev Cancer 5(10):792–804

    CAS  Google Scholar 

  69. O'Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA (2003) A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33(4):497–501

    PubMed  Google Scholar 

  70. Alderton GK, Joenje H, Varon R, Borglum AD, Jeggo PA, O'Driscoll M (2004) Seckel syndrome exhibits cellular features demonstrating defects in the ATR-signalling pathway. Hum Mol Genet 13(24):3127–3138

    CAS  PubMed  Google Scholar 

  71. Jackson AP, Eastwood H, Bell SM et al (2002) Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet 71(1):136–142

    CAS  PubMed  Google Scholar 

  72. Loffler H, Bochtler T, Fritz B et al (2007) DNA damage-induced accumulation of centrosomal Chk1 contributes to its checkpoint function. Cell Cycle 6(20):2541–2548

    PubMed  Google Scholar 

  73. Niida H, Katsuno Y, Banerjee B, Hande MP, Nakanishi M (2007) Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol 27(7):2572–2581

    CAS  PubMed  Google Scholar 

  74. Sibon OC, Kelkar A, Lemstra W, Theurkauf WE (2000) DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nat Cell Biol 2(2):90–95

    CAS  PubMed  Google Scholar 

  75. Takada S, Kelkar A, Theurkauf WE (2003) Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity. Cell 113(1):87–99

    CAS  PubMed  Google Scholar 

  76. Jiang K, Pereira E, Maxfield M, Russell B, Goudelock DM, Sanchez Y (2003) Regulation of Chk1 includes chromatin association and 14–3-3 binding following phosphorylation on Ser-345. J Biol Chem 278(27):25207–25217

    CAS  PubMed  Google Scholar 

  77. Cazales M, Schmitt E, Montembault E, Dozier C, Prigent C, Ducommun B (2005) CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage. Cell Cycle 4(9):1233–1238

    CAS  PubMed  Google Scholar 

  78. Griffith E, Walker S, Martin CA et al (2008) Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nat Genet. 40(2):232–236doi: 10.1038/ng.2007.80

    Google Scholar 

  79. Rauch A, Thiel CT, Schindler D et al (2008) Mutations in the Pericentrin (PCNT) Gene Cause Primordial Dwarfism. Science. 319(5864):816–819doi:10.1126/science.1151174

    PubMed  Google Scholar 

  80. Gillingham AK, Munro S (2000) The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep 1(6):524–529

    CAS  PubMed  Google Scholar 

  81. Doxsey SJ, Stein P, Evans L, Calarco PD, Kirschner M (1994) Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Cell 76(4):639–650

    CAS  PubMed  Google Scholar 

  82. Dictenberg JB, Zimmerman W, Sparks CA et al (1998) Pericentrin and gamma-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J Cell Biol 141(1):163–174

    CAS  PubMed  Google Scholar 

  83. Diviani D, Langeberg LK, Doxsey SJ, Scott JD (2000) Pericentrin anchors protein kinase A at the centrosome through a newly identified RII-binding domain. Curr Biol 10(7):417–420

    CAS  PubMed  Google Scholar 

  84. Chen D, Purohit A, Halilovic E, Doxsey SJ, Newton AC (2004) Centrosomal anchoring of protein kinase C betaII by pericentrin controls microtubule organization, spindle function, and cytokinesis. J Biol Chem 279(6):4829–4839

    CAS  PubMed  Google Scholar 

  85. Purohit A, Tynan SH, Vallee R, Doxsey SJ (1999) Direct interaction of pericentrin with cytoplasmic dynein light intermediate chain contributes to mitotic spindle organization. J Cell Biol 147(3):481–492

    CAS  PubMed  Google Scholar 

  86. Delaval B, Doxsey S (319) Genetics. Dwarfism, where pericentrin gains stature. Science 319(5864):732–733

    Google Scholar 

  87. Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2001) Classification system for malformations of cortical development: update 2001. Neurology 57(12):2168–2178

    CAS  PubMed  Google Scholar 

  88. Alderton GK, Galbiati L, Griffith E et al (2006) Regula-tion of mitotic entry by microcephalin and its overlap with ATR signalling. Nat Cell Biol 8(7):725–733

    CAS  PubMed  Google Scholar 

  89. Bartek J (2006) Microcephalin guards against small brains, genetic instability, and cancer. Cancer Cell 10(2):91–93

    CAS  PubMed  Google Scholar 

  90. Rai R, Dai H, Multani AS et al (2006) BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer. Cancer Cell 10(2):145–157

    CAS  PubMed  Google Scholar 

  91. Jeffers LJ, Coull BJ, Stack SJ, Morrison CG (2008) Distinct BRCT domains in Mcph1/Brit1 mediate ionizing radiation-induced focus formation and centrosomal localization. Oncogene 27(1):139–144

    CAS  PubMed  Google Scholar 

  92. Zhong X, Pfeifer GP, Xu X (2006) Microcephalin encodes a centrosomal protein. Cell Cycle 5(4):457–458

    CAS  PubMed  Google Scholar 

  93. Pihan GA, Purohit A, Wallace J et al (1998) Centrosome defects and genetic instability in malignant tumors. Cancer Res 58(17):3974–3985

    CAS  PubMed  Google Scholar 

  94. Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2(11):815–825

    CAS  PubMed  Google Scholar 

  95. Nigg EA (2006) Origins and consequences of centrosome aberrations in human cancers. Int J Cancer 119(12):2717–2723

    CAS  PubMed  Google Scholar 

  96. Kramer A (2005) Centrosome aberrations–hen or egg in cancer initiation and progression? Leukemia 19(7):1142–1144

    CAS  PubMed  Google Scholar 

  97. Kramer A, Neben K, Ho AD (2005) Centrosome aberrations in hematological malignancies. Cell Biol Int 29(5):375–383

    PubMed  Google Scholar 

  98. Neben K, Giesecke C, Schweizer S, Ho AD, Kramer A (2003) Centrosome aberrations in acute myeloid leukemia are correlated with cytogenetic risk profile. Blood 101(1):289–291

    CAS  PubMed  Google Scholar 

  99. Chng WJ, Braggio E, Mulligan G et al (2008) The centrosome index is a powerful prognostic marker in myeloma and identifies a cohort of patients that might benefit from aurora kinase inhibition. Blood 111(3):1603–1609

    CAS  PubMed  Google Scholar 

  100. Kramer A, Schweizer S, Neben K et al (2003) Centrosome aberrations as a possible mechanism for chromosomal instability in non-Hodgkin's lymphoma. Leukemia 17(11):2207–2213

    CAS  PubMed  Google Scholar 

  101. Schneeweiss A, Sinn HP, Ehemann V et al (2003) Centrosomal aberrations in primary invasive breast cancer are associated with nodal status and hormone receptor expression. Int J Cancer 107(3):346–352

    CAS  PubMed  Google Scholar 

  102. Pihan GA, Purohit A, Wallace J, Malhotra R, Liotta L, Doxsey SJ (2001) Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res 61(5):2212–2219

    CAS  PubMed  Google Scholar 

  103. Lingle WL, Barrett SL, Negron VC et al (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci U S A 99(4):1978–1983

    CAS  PubMed  Google Scholar 

  104. Levis AG, Marin G (1963) Induction of Multipolar Spindles by X-Radiation in Mammalian Cells in Vitro. Exp Cell Res 31:448–451

    CAS  PubMed  Google Scholar 

  105. Fetner RH, Porter ED (1965) Multipolar Mitosis in the Kb (Eagle) Human Cell Line and Its Increased Frequency as a Function of 250 Kv X-Irradiation. Exp Cell Res 37:429–439

    CAS  PubMed  Google Scholar 

  106. Sato C, Kuriyama R, Nishizawa K (1983) Micro-tubule-organizing centers abnormal in number, structure, and nucleating activity in x-irradiated mammalian cells. J Cell Biol 96(3):776–782

    CAS  PubMed  Google Scholar 

  107. Sato N, Mizumoto K, Nakamura M, Tanaka M (2000) Radiation-induced centrosome overduplication and multiple mitotic spindles in human tumor cells. Exp Cell Res 255(2):321–326

    CAS  PubMed  Google Scholar 

  108. Sato N, Mizumoto K, Nakamura M et al (2000) A possible role for centrosome overduplication in radiation-induced cell death. Oncogene 19(46):5281–5290

    CAS  PubMed  Google Scholar 

  109. Hut HM, Lemstra W, Blaauw EH, Van Cappellen GW, Kampinga HH, Sibon OC (2003) Centrosomes split in the presence of impaired DNA integrity during mitosis. Mol Biol Cell 14(5):1993–2004

    CAS  PubMed  Google Scholar 

  110. Dodson H, Wheatley SP, Morrison CG (2007) Involvement of centrosome amplification in radiation-induced mitotic catastrophe. Cell Cycle 6(3):364–370

    CAS  PubMed  Google Scholar 

  111. Bourke E, Dodson H, Merdes A et al (2007) DNA damage induces Chk1-dependent centrosome amplification. EMBO Rep 8(6):603–609

    CAS  PubMed  Google Scholar 

  112. Eriksson D, Lofroth PO, Johansson L, Riklund KA, Stigbrand T (2007) Cell cycle disturbances and mitotic catastrophes in HeLa Hep2 cells following 2.5 to 10 Gy of ionizing radiation. Clin Cancer Res 13(18 Pt 2):5501s–5508s

    CAS  PubMed  Google Scholar 

  113. Yih LH, Tseng YY, Wu YC, Lee TC (2006) Induction of centrosome amplification during arsenite-induced mitotic arrest in CGL-2 cells. Cancer Res 66(4):2098–2106

    CAS  PubMed  Google Scholar 

  114. Holmes AL, Wise SS, Sandwick SJ et al (2006) Chronic exposure to lead chromate causes centrosome abnormalities and aneuploidy in human lung cells. Cancer Res 66(8):4041–4048

    CAS  PubMed  Google Scholar 

  115. Robinson HM, Black EJ, Brown R, Gillespie DA (2007) DNA mismatch repair and Chk1-dependent centrosome amplification in response to DNA alkylation damage. Cell Cycle 6(8):982–992

    CAS  PubMed  Google Scholar 

  116. Thacker J (2005) The RAD51 gene family, genetic instability and cancer. Cancer Lett 219(2):125–135

    CAS  PubMed  Google Scholar 

  117. Griffin CS, Simpson PJ, Wilson CR, Thacker J (2000) Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat Cell Biol 2(10):757–761

    CAS  PubMed  Google Scholar 

  118. Xu X, Weaver Z, Linke SP et al (1999) Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 3(3):389–395

    CAS  PubMed  Google Scholar 

  119. Tutt A, Gabriel A, Bertwistle D et al (1999) Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr Biol 9(19):1107–1110

    CAS  PubMed  Google Scholar 

  120. Bertrand P, Lambert S, Joubert C, Lopez BS (2003) Overexpression of mammalian Rad51 does not stimulate tumorigenesis while a dominant-negative Rad51 affects centrosome fragmentation, ploidy and stimulates tumorigenesis, in p53-defective CHO cells. Oncogene 22(48):7587–7592

    Google Scholar 

  121. Smiraldo PG, Gruver AM, Osborn JC, Pittman DL (2005) Extensive chromosomal instability in Rad51d-deficient mouse cells. Cancer Res 65(6):2089–2096

    CAS  PubMed  Google Scholar 

  122. Date O, Katsura M, Ishida M et al (2006) Haplo-insufficiency of RAD51B causes centrosome fragmentation and aneuploidy in human cells. Cancer Res 66(12):6018–6024

    CAS  PubMed  Google Scholar 

  123. Renglin Lindh A, Schultz N, Saleh-Gohari N, Helleday T (2007) RAD51C (RAD51L2) is involved in maintaining centrosome number in mitosis. Cytogenet Genome Res 116(1–2):38–45

    CAS  PubMed  Google Scholar 

  124. Campbell MR, Wang Y, Andrew SE, Liu Y (2006) Msh2 deficiency leads to chromosomal abnormalities, centrosome amplification, and telomere capping defect. Oncogene 25(17):2531–2536

    CAS  PubMed  Google Scholar 

  125. Kanai M, Tong WM, Sugihara E, Wang ZQ, Fukasawa K, Miwa M (2003) Involvement of poly(ADP-Ribose) polymerase 1 and poly(ADP-Ribosyl) ation in regulation of centrosome function. Mol Cell Biol 23(7):2451–2462

    CAS  PubMed  Google Scholar 

  126. Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF (1996) Abnormal centrosome amplification in the absence of p53. Science 271(5256):1744–1747

    CAS  PubMed  Google Scholar 

  127. Carroll PE, Okuda M, Horn HF et al (1999) Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene 18(11):1935–1944

    CAS  PubMed  Google Scholar 

  128. Tarapore P, Horn HF, Tokuyama Y, Fukasawa K (2001) Direct regulation of the centrosome duplication cycle by the p53–p21Waf1/Cip1 pathway. Oncogene 20(25):3173–3184

    CAS  PubMed  Google Scholar 

  129. Mantel C, Braun SE, Reid S et al (1999) p21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood 93(4):1390–1398

    CAS  PubMed  Google Scholar 

  130. Hollander MC, Sheikh MS, Bulavin DV et al (1999) Genomic instability in Gadd45a-deficient mice. Nat Genet 23(2):176–184

    CAS  PubMed  Google Scholar 

  131. Smith L, Liu SJ, Goodrich L et al (1998) Duplication of ATR inhibits MyoD, induces aneuploidy and eliminates radiation-induced G1 arrest. Nat Genet 19(1):39–46

    CAS  PubMed  Google Scholar 

  132. Meraldi P, Honda R, Nigg EA (2002) Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. Embo J 21(4):483–492

    CAS  PubMed  Google Scholar 

  133. Dodson H, Bourke E, Jeffers LJ et al (23) Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. Embo J 23:3864–3873

    Google Scholar 

  134. Duensing S, Duensing A, Crum CP, Munger K (2001) Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res 61(6):2356–2360

    CAS  PubMed  Google Scholar 

  135. Pihan GA, Wallace J, Zhou Y, Doxsey SJ (2003) Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 63(6):1398–1404

    CAS  PubMed  Google Scholar 

  136. Bartkova J, Horejsi Z, Koed K et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434(7035):864–870

    CAS  PubMed  Google Scholar 

  137. Gorgoulis VG, Vassiliou LV, Karakaidos P et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434(7035):907–913

    CAS  PubMed  Google Scholar 

  138. Dewey WC, Ling CC, Meyn RE (1995) Radiation-induced apoptosis: relevance to radiotherapy. Int J Radiat Oncol Biol Phys 33(4):781–796

    CAS  PubMed  Google Scholar 

  139. Jonathan EC, Bernhard EJ, McKenna WG (1999) How does radiation kill cells? Curr Opin Chem Biol 3(1):77–83

    CAS  PubMed  Google Scholar 

  140. Brinkley BR (2001) Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 11(1):18–21

    CAS  PubMed  Google Scholar 

  141. Sluder G, Nordberg JJ (2004) The good, the bad and the ugly: the practical consequences of centrosome amplification. Curr Opin Cell Biol 16(1):49–54

    CAS  PubMed  Google Scholar 

  142. Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS (2005) Spindle multipolarity is prevented by centrosomal clustering. Science 307(5706):127–129

    CAS  PubMed  Google Scholar 

  143. Ring D, Hubble R, Kirschner M (1982) Mitosis in a cell with multiple centrioles. J Cell Biol 94(3):549–556

    CAS  PubMed  Google Scholar 

  144. Rebacz B, Larsen TO, Clausen MH et al (2007) Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Res 67(13):6342–6350

    CAS  PubMed  Google Scholar 

  145. Basto R, Brunk K, Vinadogrova T et al (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133(6):1032–1042

    CAS  PubMed  Google Scholar 

  146. Wong C, Stearns T (2005) Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol 6(1):6

    PubMed  Google Scholar 

  147. Uetake Y, Sluder G (2004) Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a "tetraploidy checkpoint". J Cell Biol 165(5):609–615

    CAS  PubMed  Google Scholar 

  148. Khodjakov A, Rieder CL (2001) Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J Cell Biol 153(1):237–242

    CAS  PubMed  Google Scholar 

  149. Balczon R, Simerly C, Takahashi D, Schatten G (2002) Arrest of cell cycle progression during first interphase in murine zygotes microinjected with anti-PCM-1 antibodies. Cell Motil Cytoskeleton 52(3):183–192

    CAS  PubMed  Google Scholar 

  150. Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P, Doxsey S (2007) Loss of centrosome integrity induces p38–p53-p21-dependent G1-S arrest. Nat Cell Biol 9(2):160–170

    CAS  PubMed  Google Scholar 

  151. Srsen V, Gnadt N, Dammermann A, Merdes A (2006) Inhibition of centrosome protein assembly leads to p53-dependent exit from the cell cycle. J Cell Biol 174(5):625–630

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alwin Krämer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Krämer, A. (2010). Centrosomes in Checkpoint Responses. In: Siddik, Z. (eds) Checkpoint Controls and Targets in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60761-178-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-178-3_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-177-6

  • Online ISBN: 978-1-60761-178-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics