Skip to main content

p27Kip1 as a Biomarker and Target for Treatment of Cancer

  • Chapter
  • First Online:
Book cover Checkpoint Controls and Targets in Cancer Therapy

Abstract

p27Kip1 (p27) is a critical cyclin dependent kinase inhibitor that negatively regulates cell cycle progression from G1 to S phase. Levels of nuclear p27 are reduced in many human cancers. Both the levels and function of p27 are regulated by transcriptional, translational, and posttranslational mechanisms. In regulating p27, posttranslational phosphorylation of the protein is particularly important for determining susceptibility to ubiquitination and proteolytic degradation, as well as the levels, subcellular localization, and functional activity of p27. In addition to the control of cell cycle, cytoplasmic expression of p27 can enhance cell motility, increase renewal of stem cells, inhibit apoptosis, induce autophagy, and stimulate tumor metastasis. Persistence of nuclear p27 provides an independent favorable prognostic factor in many human cancers. Expression or induction of p27 may provide a predictive biomarker for response to chemotherapy, hormonal therapy, and at least some targeted therapies including trastuzumab and Src inhibitors. In addition, restoration of nuclear p27 levels might be achieved pharmacologically, inhibiting proliferation of cancer cells. Inhibition of SKP2-mediated p27 ubiquitination provides one additional promising approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A (1994) p27Kip1, a cyclin-CDK inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8:9–22

    CAS  PubMed  Google Scholar 

  2. Hengst L, Dulic V, Slingerland JM, Lees E, Reed SI (1994) A cell cycle-regulated inhibitor of cyclin-dependent kinases. Proc Natl Acad Sci U S A 91:5291–5295

    CAS  PubMed  Google Scholar 

  3. Sherr CJ (1999) Roberts JM CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    CAS  PubMed  Google Scholar 

  4. Chu IM, Hengst L, Slingerland JM (2008) The CDK inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8:253–267

    CAS  PubMed  Google Scholar 

  5. Viglietto G, Motti ML, Fusco A (2002) Understanding p27(kip1) deregulation in cancer: down-regulation or mislocalization. Cell Cycle 1:394–400

    CAS  PubMed  Google Scholar 

  6. Blain SW, Scher HI, Cordon-Cardo C, Koff A (2003) p27 as a target for cancer therapeutics. Cancer Cell 3:111–115

    CAS  PubMed  Google Scholar 

  7. Besson A, Assoian RK, Roberts JM (2004) Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors? Nat Rev Cancer 4:948–955

    CAS  PubMed  Google Scholar 

  8. le Sage C, Nagel R, Agami R (2007) Diverse ways to control p27Kip1 function: miRNAs come into play. Cell Cycle 6:2742–2749

    PubMed  Google Scholar 

  9. Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont DJ, Gutterman JU, Walker CL, Slingerland JM, Mills GB (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9:218–224

    CAS  PubMed  Google Scholar 

  10. Cariou S et al (2000) Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proc Natl Acad Sci U S A 97:9042–9046

    CAS  PubMed  Google Scholar 

  11. Spataro VJ, Litman H, Viale G, Maffini F, Masullo M, Golouh R, Martinez-Tello FJ, Grigolato P, Shilkin KB, Gusterson BA, Castiglione-Gertsch M, Price K, Lindtner J, Cortes-Funes H, Simoncini E, Byrne MJ, Collins J, Gelber RD, Coates AS, Goldhirsch A (2003) Decreased immunoreactivity for p27 protein in patients with early-stage breast carcinoma is correlated with HER-2/neu overexpression and with benefit from one course of perioperative chemotherapy in patients with negative lymph node status: Results from Inter-national Breast Cancer Study Group Trial V. Cancer 97:1591–1600

    CAS  PubMed  Google Scholar 

  12. Oka K, Suzuki Y, Nakano T (2000) Expression of p27 and p53 in cervical squamous cell carcinoma patients treated with radiotherapy alone: Radiotherapeutic effect and prognosis. Cancer 88:2766–2773

    CAS  PubMed  Google Scholar 

  13. Le XF, Claret FX, Lammayot A et al (2003) The role of cyclin-dependent kinase inhibitor p27Kip1 in anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. J Biol Chem 278:23441–23450

    CAS  PubMed  Google Scholar 

  14. Yang W et al (2001) Repression of transcription of the p27Kip1 cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene 20:1688–1702

    CAS  PubMed  Google Scholar 

  15. Murata K et al (2005) Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol Cell Biol 25:4262–4271

    CAS  PubMed  Google Scholar 

  16. Everly DN Jr, Mainou BA, Raab-Traub N (2004) Induction of Id1 and Id3 by latent membrane protein 1 of Epstein-Barr virus and regulation of p27/Kip and cyclin-dependent kinase 2 in rodent fibroblast transformation. J Virol 78:13470–13478

    CAS  PubMed  Google Scholar 

  17. Chassot AA, Turchi L, Virolle T, Fitsialos G, Batoz M, Deckert M, Dulic V, Meneguzzi G, Buscà R, Ponzio G (2007) Id3 is a novel regulator of p27kip1 mRNA in early G1 phase and is required for cell-cycle prog-ression. Oncogene 26:5772–5783

    CAS  PubMed  Google Scholar 

  18. Garrett-Engele CM, Tasch MA, Hwang HC, Fero ML, Perlmutter RM, Clurman BE, Roberts JM (2007) A mechanism misregulating p27 in tumors discovered in a functional genomic screen. PLoS Genet 3:2415–2427

    CAS  Google Scholar 

  19. Medema RH, Kops GJ, Bos JL, Burgering BM (2000) AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404:782–787

    CAS  PubMed  Google Scholar 

  20. Karnik SK et al (2005) Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27(Kip1) and p18(INK4c). Proc Natl Acad Sci U S A 102:14659–14664

    CAS  PubMed  Google Scholar 

  21. Wang C, Hou X, Mohapatra S, Ma Y, Cress WD, Pledger WJ, Chen J (2005) Activation of p27Kip1 expression by E2F1 – a negative feedback mechanism. J Biol Chem 280:12339–12343

    CAS  PubMed  Google Scholar 

  22. Inoue T, Kamiyama J, Sakai T (1999) Sp1 and NF-Y synergistically mediate the effect of vitamin D-3 in the p27Kip1 gene promoter that lacks vitamin D response elements. J Biol Chem 274:32309–32317

    CAS  PubMed  Google Scholar 

  23. Kozak M (1980) Evaluation of the “scanning model” for initiation of protein synthesis in eucaryotes. Cell 22:7–8

    CAS  PubMed  Google Scholar 

  24. Pestova TV, Kolupaeva VG, Lomakin IB, Pilipenko EV, Shatsky IN, Agol VI, Hellen CU (2001) Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci U S A 98:7029–7036

    CAS  PubMed  Google Scholar 

  25. Miskimins WK, Wang G, Hawkinson M, Miskimins R (2001) Control of cyclin-dependent kinase inhibitor p27 expression by cap-independent translation. Mol Cell Biol 21:4960–4967

    CAS  PubMed  Google Scholar 

  26. Koff A (2006) How to decrease p27Kip1 levels during tumor development. Cancer Cell 9:75–76

    CAS  PubMed  Google Scholar 

  27. Kullmann M, Gopfert U, Siewe B, Hengst L (2002) ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5′ UTR. Genes Dev 16:3087–3099

    CAS  PubMed  Google Scholar 

  28. Cho SC, Kim JH, Back SH, Jang SK (2005) Polypyrimidine tract-binding protein enhances the internal ribosomal entry site-dependent translation of p27Kip1 mRNA and modulates transition from G1 to S phase. Mol Cell Biol 25:1283–1297

    CAS  PubMed  Google Scholar 

  29. Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA, Farace MG (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282:23716–23724

    CAS  PubMed  Google Scholar 

  30. le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafrè SA, Farace MG, Agami R (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26:3699–3708

    PubMed  Google Scholar 

  31. Bloom J, Pagano M (2003) Deregulated degradation of the CDK inhibitor p27 and malignant transformation. Semin Cancer Biol 13:41–47

    CAS  PubMed  Google Scholar 

  32. Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6:369–381

    CAS  PubMed  Google Scholar 

  33. Susaki E, Nakayama KI (2007) Multiple mechanisms for p27(Kip1) translocation and degradation. Cell Cycle 6:3015–3020

    CAS  PubMed  Google Scholar 

  34. Ishida N, Kitagawa M, Hatakeyama S, Nakayama K (2000) Phosphorylation at serine 10, a major phosphorylation site of p27(Kip1), increases its protein stability. J Biol Chem 275:25146–25154

    CAS  PubMed  Google Scholar 

  35. Besson A, Gurian-West M, Chen X, Kelly-Spratt KS, Kemp CJ, James M, Roberts JM (2006) Subcellular localization, and tumor suppression stability, Kip1 A pathway in quiescent cells that controls p27. Genes Dev 20:47–64

    CAS  PubMed  Google Scholar 

  36. Alessandrini A, Chiaur DS, Pagano M (1997) Regulation of the cyclin-dependent kinase inhibitor p27 by degradation and phosphorylation. Leukemia 11:342–345

    CAS  PubMed  Google Scholar 

  37. Boehm M, Yoshimoto T, Crook MF, Nallamshetty S, True A, Nabel GJ, Nabel EG (2002) A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression. EMBO J 21:3390–3401

    CAS  PubMed  Google Scholar 

  38. Deng X, Mercer SE, Shah S, Ewton DZ, Friedman E (2004) The cyclin-dependent kinase inhibitor p27Kip1 is stabilized in G0 by Mirk/dyrk1B kinase. J Biol Chem 279:22498–22504

    CAS  PubMed  Google Scholar 

  39. Lee JG, Kay EP (2007) Two populations of p27 use differential kinetics to phosphorylate Ser-10 and Thr-187 via phosphatidylinositol 3-Kinase in response to fibroblast growth factor-2 stimulation. J Biol Chem 282:6444–6454

    CAS  PubMed  Google Scholar 

  40. Ishida N, Hara T, Kamura T, Yoshida M, Nakayama K, Nakayama KI (2002) Phosphorylation of p27Kip1 on serine 10 is required for its binding to CRM1 and nuclear export. J Biol Chem 277:14355–14358

    CAS  PubMed  Google Scholar 

  41. Kotake Y, Nakayama K, Ishida N, Nakayama KI (2005) Role of serine 10 phosphorylation in p27 stabilization revealed by analysis of p27 knock-in mice harboring a serine 10 mutation. J Biol Chem 280:1095–1102

    CAS  PubMed  Google Scholar 

  42. Grimmler M, Wang Y, Mund T, Cilensek Z, Keidel EM, Waddell MB, Jäkel H, Kullmann M, Kriwacki RW, Hengst L (2007) CDK-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128:269–280

    CAS  PubMed  Google Scholar 

  43. Chu I, Sun J, Arnaout A, Kahn H, Hanna W, Narod S, Sun P, Tan CK, Hengst L, Slingerland J (2007) p27 phosphorylation by Src regulates inhibition of cyclin E-CDK2. Cell 128:281–294

    CAS  PubMed  Google Scholar 

  44. James MK, Ray A, Leznova D, Blain SW (2008) Differential modification of p27Kip1 controls its cyclin D-CDK4 inhibitory activity. Mol Cell Biol 28:498–510

    CAS  PubMed  Google Scholar 

  45. Viglietto G, Motti ML, Bruni P, Melillo RM, D'Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P, Bellacosa A, Fusco A, Santoro M (2002) Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 8:1136–1144

    CAS  PubMed  Google Scholar 

  46. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, Arteaga CL (2002) PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 8:1145–1152

    CAS  PubMed  Google Scholar 

  47. Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E, Slingerland JM (2002) PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8:1153–1160

    CAS  PubMed  Google Scholar 

  48. Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE (1997) Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev 11:1464–1478

    CAS  PubMed  Google Scholar 

  49. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682–685

    CAS  PubMed  Google Scholar 

  50. Fujita N, Sato S, Katayama K, Tsuruo T (2002) Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem 277:28706–28713

    CAS  PubMed  Google Scholar 

  51. Fujita N, Sato S, Tsuruo T (2003) Phosphorylation of p27Kip1 at threonine 198 by p90 ribosomal protein S6 kinases promotes its binding to 14-3-3 and cytoplasmic localization. J Biol Chem 278:49254–49260

    CAS  PubMed  Google Scholar 

  52. Kossatz U, Vervoorts J, Nickeleit I, Sundberg HA, Arthur JS, Manns MP, Malek NP (2006) C-terminal phosphorylation controls the stability and function of p27kip1. EMBO J 25:5159–5170

    CAS  PubMed  Google Scholar 

  53. Hattori T, Isobe T, Abe K, Kikuchi H, Kitagawa K, Oda T, Uchida C, Kitagawa M (2007) Pirh2 promotes ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. Cancer Res 67:10789–10795

    CAS  PubMed  Google Scholar 

  54. Tomoda K, Kubota Y, Kato J (1999) Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398:160–165

    CAS  PubMed  Google Scholar 

  55. Tomoda K, Kubota Y, Arata Y, Mori S, Maeda M, Tanaka T, Yoshida M, Yoneda-Kato N, Kato JY (2002) The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex. J Biol Chem 277:2302–2310

    CAS  PubMed  Google Scholar 

  56. Chamovitz DA, Glickman M (2002) The COP9 signalosome. Curr Biol 12:R232

    CAS  PubMed  Google Scholar 

  57. Shin I, Rotty J, Wu FY, Arteaga CL (2005) Phosphorylation of p27Kip1 at Thr-157 interferes with its association with importin alpha during G1 and prevents nuclear re-entry. J Biol Chem 280:6055–6063

    CAS  PubMed  Google Scholar 

  58. Sekimoto T, Fukumoto M, Yoneda Y (2004) 14-3-3 suppresses the nuclear localization of threonine 157-phosphorylated p27(Kip1). EMBO J 23:1934–1942

    CAS  PubMed  Google Scholar 

  59. Rodier G, Montagnoli A, Di Marcotullio L, Coulombe P, Draetta GF, Pagano M, Meloche S (2001) p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J 20:6672–6682

    CAS  PubMed  Google Scholar 

  60. Susaki E, Nakayama K, Nakayama KI (2007) Cyclin D2 translocates p27 out of the nucleus and promotes its degradation at the G0–G1 transition. Mol Cell Biol 27:4626–4640

    CAS  PubMed  Google Scholar 

  61. Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ (1999) The p21Cip1 and p27Kip1 CDK ‘inhibitors’ are essential activators of cyclin D dependent kinases in murine fibroblasts. EMBO J 18:1571–1583

    CAS  PubMed  Google Scholar 

  62. Cheng M, Sexl V, Sherr CJ, Roussel MF (1998) Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci U S A 95:1091–1096

    CAS  PubMed  Google Scholar 

  63. Perez-Roger I, Kim SH, Griffiths B, Sewing A, Land H (1999) Cyclins D1 and D2 mediate myc-induced proliferation via sequestration of p27(Kip1) and p21(Cip1). EMBO J 18:5310–5320

    CAS  PubMed  Google Scholar 

  64. Bouchard C, Thieke K, Maier A, Saffrich R, Hanley-Hyde J, Ansorge W, Reed S, Sicinski P, Bartek J, Eilers M (1999) Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J 18:5321–5333

    CAS  PubMed  Google Scholar 

  65. Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama K (1996) Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85:707–720

    CAS  PubMed  Google Scholar 

  66. Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A (1996) Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85:721–732

    CAS  PubMed  Google Scholar 

  67. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM (1996) A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85:733–744

    CAS  PubMed  Google Scholar 

  68. Fero M, Randel E, Gurley K, Roberts J, Kemp C (1998) The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396:177–180

    CAS  PubMed  Google Scholar 

  69. Philipp-Staheli J, Payne S, Kemp C (2001) p27(Kip1): Regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res 264:148–168

    CAS  PubMed  Google Scholar 

  70. Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP (2001) Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 27:222–224

    PubMed  Google Scholar 

  71. Park MS, Rosai J, Nguyen HT, Capodieci P, Cordon-Cardo C, Koff A (1999) p27 and Rb are on overlapping pathways suppressing tumorigenesis in mice. Proc Natl Acad Sci U S A 96:6382–6387

    CAS  PubMed  Google Scholar 

  72. Martín-Caballero J, Flores JM, García-Palencia P, Collado M, Serrano M (2004) Different cooperating effect of p21 or p27 deficiency in combination with INK4a/ARF deletion in mice. Oncogene 23:8231–8237

    PubMed  Google Scholar 

  73. Philipp-Staheli J, Kim KH, Liggitt D, Gurley KE, Longton G, Kemp CJ (2004) Distinct roles for p53, p27Kip1, and p21Cip1 during tumor development. Oncogene 23:905–913

    CAS  PubMed  Google Scholar 

  74. Cipriano SC, Chen L, Burns KH, Koff A, Matzuk MM (2001) Inhibin and p27 interact to regulate gonadal tumorigenesis. Mol Endocrinol 15:985–996

    CAS  PubMed  Google Scholar 

  75. Philipp-Staheli J, Kim KH, Payne SR, Gurley KE, Liggitt D, Longton G, Kemp CJ (2002) Pathway-specific tumor suppression. Reduction of p27 accelerates gastrointestinal tumorigenesis in Apc mutant mice, but not in Smad3 mutant mice. Cancer Cell 1:355–368

    PubMed  Google Scholar 

  76. Martins CP, Berns A (2002) Loss of p27(Kip1) but not p21(Cip1) decreases survival and synergizes with MYC in murine lymphomagenesis. EMBO J 21:3739–3748

    CAS  PubMed  Google Scholar 

  77. McAllister SS, Becker-Hapak M, Pintucci G, Pagano M, Dowdy SF (2003) Novel p27Kip1(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions. Mol Cell Biol 23:216–228

    CAS  PubMed  Google Scholar 

  78. Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM (2004) p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 18:862–876

    CAS  PubMed  Google Scholar 

  79. Wu FY, Wang SE, Sanders ME, Shin I, Rojo F, Baselga J, Arteaga CL (2006) Reduction of cytosolic p27Kip1(Kip1) inhibits cancer cell motility, survival, and tumorigenicity. Cancer Res 66:2162–2172

    CAS  PubMed  Google Scholar 

  80. Baldassarre G, Belletti B, Nicoloso MS, Schiappacassi M, Vecchione A, Spessotto P, Morrione A, Canzonieri V, Colombatti A (2005) p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell 7:51–63

    CAS  PubMed  Google Scholar 

  81. Besson A, Hwang HC, Cicero S, Donovan SL, Gurian-West M, Johnson D, Clurman BE, Dyer MA, Roberts JM (2007) Discovery of an oncogenic acti-vity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev 21:1731–1746

    CAS  PubMed  Google Scholar 

  82. Hiromura K, Pippin JW, Fero ML, Roberts JM, Shankland SJ (1999) Modulation of apoptosis by the cyclin-dependent kinase inhibitor p27(Kip1). J Clin Invest 103:597–604

    CAS  PubMed  Google Scholar 

  83. Eymin B, Sordet O, Droin N, Munsch B, Haugg M, Van de Craen M, Vandenabeele P, Solary E (1999) Caspase-induced proteolysis of the cyclin-dependent kinase inhibitor p27Kip1 mediates its antiapoptotic activity. Oncogene 18:4839–4847

    CAS  PubMed  Google Scholar 

  84. Eymin B, Haugg M, Droin N, Sordet O, Dimanche-Boitrel MT, Solary E (1999) p27Kip1 induces drug resistance by preventing apoptosis upstream of cytochrome c release and procaspase-3 activation in leukemic cells. Oncogene 18:1411–1418

    CAS  PubMed  Google Scholar 

  85. Blain SW, Massague J (2002) Breast cancer banishes p27 from nucleus. Nat Med 8:1076–1078

    CAS  PubMed  Google Scholar 

  86. Slingerland J, Pagano M (2000) Regulation of the CDK inhibitor p27 and its deregulation in cancer. J Cell Physiol 183:10–17

    Google Scholar 

  87. Alkarain A, Jordan R, Slingerland J (2004) p27 deregulation in breast cancer: prognostic significance and implications for therapy. J Mammary Gland Biol Neoplasia 9:67–80

    CAS  PubMed  Google Scholar 

  88. Denicourt C, Saenz CC, Datnow B, Cui XS, Dowdy SF (2007) Relocalized p27Kip1 tumor suppressor functions as a cytoplasmic metastatic oncogene in melanoma. Cancer Res 67:9238–9243

    CAS  PubMed  Google Scholar 

  89. Porter PL et al (1997) Expression of cell cycle regulators p27kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat Med 3:222–225

    CAS  PubMed  Google Scholar 

  90. Catzavelos C et al (1997) Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nat Med 3:227–230

    CAS  PubMed  Google Scholar 

  91. Loda M et al (1997) Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 3:231–234

    CAS  PubMed  Google Scholar 

  92. Tan P et al (1997) The cell cycle inhibitor p27 is an independent prognostic marker in small (T1a, b) invasive breast carcinomas. Cancer Res 57:1259–1263

    CAS  PubMed  Google Scholar 

  93. Belletti B, Nicoloso MS, Schiappacassi M, Chimienti E, Berton S, Lovat F, Colombatti A, Baldassarre G (2005) p27(kip1) functional regulation in human cancer: a potential target for therapeutic designs. Curr Med Chem 12:1589–1605

    CAS  PubMed  Google Scholar 

  94. Han S et al (1999) Reduced expression of p27Kip1 protein is associated with poor clinical outcome of breast cancer patients treated with systemic chemotherapy and is linked to cell proliferation and differentiation. Breast Cancer Res Treat 55:161–167

    CAS  PubMed  Google Scholar 

  95. DePaola F, Vecci AM, Granato AM, Liverani M, Monti F, Innoceta AM, Gianni L, Saragoni L, Ricci M, Falcini F, Amadori D, Volpi A (2002) p27/kip1 expression in normal epithelium, benign and neoplastic breast lesions. J Pathol 196:26–31

    CAS  Google Scholar 

  96. Moriya T, Sakamoto K, Sasano H, Kawanaka M, Sonoo H, Manabe T, Ito J (2000) Immunohistochemical analysis of Ki-67, p53, p21, and p27 in benign and malignant apocrine lesions of the breast: Its correlation to histologic findings in 43 cases. Mod Pathol 13:13–18

    CAS  PubMed  Google Scholar 

  97. Anagnostopoulos GK, Stefanou D, Arkoumani E, Karagiannis J, Paraskeva K, Chalkley L, Habi-lomati E, Tsianos E, Agnantis NJ (2008) Immuno-histochemical expression of cell-cycle proteins in gastric precancerous lesions. J Gastroenterol Hepatol 23:626–631

    PubMed  Google Scholar 

  98. Wu H, Hayashi T, Inoue M (2004) Immuno-histochemical Expression of p27 and p21 in Canine Cutaneous Mast Cell Tumors and Histiocytomas. Vet Pathol 41:296–299

    CAS  PubMed  Google Scholar 

  99. Massarelli E, Brown E, Tran NK, Liu DD, Izzo JG,Lee JJ, El-Naggar AK, Hong WK, Papadi-mitrakopoulou VA (2005) Loss of E-cadherin and p27 expression is associated with head and neck squamous tumorigenesis. Cancer 103:952–959

    CAS  PubMed  Google Scholar 

  100. Latres E, Chiarle R, Schulman BA, Pavletich NP, Pellicer A, Inghirami G, Pagano M (2001) Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci U S A 98:2515–2520

    CAS  PubMed  Google Scholar 

  101. Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, Krek W (2001) Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci U S A 98:5043–5048

    CAS  PubMed  Google Scholar 

  102. Kudo Y, Kitajima S, Sato S, Miyauchi M, Ogawa I, Takata T (2001) High expression of S-phase kinaseinteracting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res 61:7044–7047

    CAS  PubMed  Google Scholar 

  103. Masuda TA, Inoue H, Sonoda H, Mine S, Yoshikawa Y, Nakayama K, Nakayama K, Mori M (2002) Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res 62:3819–3825

    CAS  PubMed  Google Scholar 

  104. Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6:184–192

    CAS  PubMed  Google Scholar 

  105. Holbro T, Hynes NE (2004) ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 44:195–217

    CAS  PubMed  Google Scholar 

  106. Newman L, Xia W, Yang HY, Sahin A, Bondy M, Lukmanji F, Hung MC, Lee MH (2001) Correlation of p27 protein expression with HER-2/neu expression in breast cancer. Mol Carcinog 30:169–175

    CAS  PubMed  Google Scholar 

  107. Casalini P, Iorio MV, Berno V, Bergamaschi A, Børresen Dale AL, Gasparini P, Orlandi R, Casati B, Tagliabue E, Ménard S (2007) Relationship between p53 and p27 expression following HER2 signaling. Breast 16:597–605

    PubMed  Google Scholar 

  108. Le XF, Pruefer F, Bast RC Jr (2005) HER2-targeting antibodies modulate the cyclin-dependent kinase inhibitor p27Kip1 via multiple signaling pathways. Cell Cycle 4:87–95

    CAS  PubMed  Google Scholar 

  109. Le XF, Lammayot A, Gold D, Lu Y, Mao W, Chang T, Patel A, Mills GB, Bast RC Jr (2005) Genes affecting the cell cycle, growth, maintenance, and drug sensitivity are preferentially regulated by anti-HER2 antibody through phosphatidylinositol 3-kinase-AKT signaling. J Biol Chem 280:2092–2104

    CAS  PubMed  Google Scholar 

  110. Le XF, Bedrosian I, Mao W, Murray M, Lu Z, Keyomarsi K, Lee MH, Zhao J, Bast RC Jr (2006) Anti-HER2 antibody trastuzumab inhibits CDK2-mediated NPAT and histone H4 expression via the PI3K pathway. Cell Cycle 5:1654–1661

    CAS  PubMed  Google Scholar 

  111. Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL (2002) Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 62:4132–4141

    CAS  PubMed  Google Scholar 

  112. Li DM, Sun H (1998) PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci U S A 95:15406–15411

    CAS  PubMed  Google Scholar 

  113. Cheney IW, Neuteboom ST, Vaillancourt MT, Ramachandra M, Bookstein R (1999) Adenovirus-mediated gene transfer of MMAC1/PTEN to glioblastoma cells inhibits S phase entry by the recruitment of p27Kip1 into cyclin E/CDK2 complexes. Cancer Res 59:2318–2323

    CAS  PubMed  Google Scholar 

  114. Gottschalk AR, Basila D, Wong M, Dean NM, Brandts CH, Stokoe D, Haas-Kogan DA (2001) p27Kip1 is required for PTEN-induced G1 growth arrest. Cancer Res 61:2105–2111

    CAS  PubMed  Google Scholar 

  115. Mamillapalli R, Gavrilova N, Mihaylova VT, Tsvetkov LM, Wu H, Zhang H, Sun H (2001) PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2). Curr Biol 11:263–267

    CAS  PubMed  Google Scholar 

  116. Ishizawar R, Parsons SJ (2004) c-Src and cooperating partners in human cancer. Cancer Cell 6:209–214

    CAS  PubMed  Google Scholar 

  117. Dehm SM, Bonham K (2004) SRC gene expression in human cancer: the role of transcriptional activation. Biochem Cell Biol 82:263–274

    CAS  PubMed  Google Scholar 

  118. Tsihlias J, Kapusta L, Slingerland J (1999) The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer. Annu Rev Med 50:401–423

    CAS  PubMed  Google Scholar 

  119. Andreu EJ et al (2005) BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells. Cancer Res 65:3264–3272

    CAS  PubMed  Google Scholar 

  120. Kawada M, Yamagoe S, Murakami Y, Suzuki K, Mizuno S, Uehara Y (1997) Induction of p27Kip1 degradation and anchorage independence by Ras through the MAPkinase signaling pathway. Oncogene 15:629–637

    CAS  PubMed  Google Scholar 

  121. Hoshino R, Tanimura S, Watanabe K, Kataoka T, Kohno M (2001) Blockade of the extracellular signal-regulated kinase pathway induces marked G1 cell cycle arrest and apoptosis in tumor cells in which the pathway is constitutively activated: Up-regulation of p27(Kip1). J Biol Chem 276:2686–2692

    CAS  PubMed  Google Scholar 

  122. Yang HY, Zhou BP, Hung MC, Lee MH (2000) Oncogenic signals of HER-2/neu in regulating the stability of the cyclin-dependent kinase inhibitor p27. J Biol Chem. 275:24735–24739

    CAS  PubMed  Google Scholar 

  123. Hu W, Bellone CJ, Baldassare JJ (1999) RhoA stimulates p27(Kip) degradation through its regulation of cyclin E/CDK2 activity. J Biol Chem 274:3396–3401

    CAS  PubMed  Google Scholar 

  124. Croft DR, Olson MF (2006) The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms. Mol Cell Biol 26:4612–4627

    CAS  PubMed  Google Scholar 

  125. Vidal A, Millard SS, Miller JP, Koff A (2002) Rho activity can alter the translation of p27 mRNA and is important for RasV12-induced transformation in a manner dependent on p27 status. J Biol Chem 277:16433–16440

    CAS  PubMed  Google Scholar 

  126. Sabile A, Meyer AM, Wirbelauer C, Hess D, Kogel U, Scheffner M, Krek W (2006) Regulation of p27 degradation and S-phase progression by Ro52 RING finger protein. Mol Cell Biol 26:5994–6004

    CAS  PubMed  Google Scholar 

  127. Sui L, Dong Y, Ohno M, Watanabe Y, Sugimoto K, Tai Y, Tokuda M (2001) Jab1 expression is associated with inverse expression of p27(kip1) and poor prognosis in epithelial ovarian tumors. Clin Cancer Res 7:4130–4135

    CAS  PubMed  Google Scholar 

  128. Rassidakis GZ, Claret FX, Lai R, Zhang Q, Sarris AH, McDonnell TJ, Medeiros LJ (2003) Expression of p27(Kip1) and c-Jun activation binding protein 1 are inversely correlated in systemic anaplastic large cell lymphoma. Clin Cancer Res 9:1121–1128

    CAS  PubMed  Google Scholar 

  129. Kouvaraki MA, Rassidakis GZ, Tian L, Kumar R, Kittas C, Claret FX (2003) Jun activation domain-binding protein 1 expression in breast cancer inversely correlates with the cell cycle inhibitor p27(Kip1). Cancer Res 63:2977–2981

    CAS  PubMed  Google Scholar 

  130. Berg JP, Zhou Q, Breuhahn K, Schirmacher P, Patil MA, Chen X, Schäfer N, Höller TT, Fischer HP, Büttner R, Gütgemann I (2007) Inverse expression of Jun activation domain binding protein 1 and cell cycle inhibitor p27Kip1: influence on proliferation in hepatocellular carcinoma. Hum Pathol 38:1621–1627

    CAS  PubMed  Google Scholar 

  131. Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N (2008) Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res 68:5076–5085

    CAS  PubMed  Google Scholar 

  132. Amson R, Sigaux F, Przedborski S, Flandrin G, Givol D, Telerman A (1989) The human protooncogene product p33pim is expressed during fetal hematopoiesis and in diverse leukemias. Proc Natl Acad Sci U S A 86:8857–8861

    CAS  PubMed  Google Scholar 

  133. Cohen AM, Grinblat B, Bessler H, Kristt D, Kremer A, Schwartz A, Halperin M, Shalom S, Merkel D, Don J (2004) Increased expression of the hPim-2 gene in human chronic lymphocytic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma 45:951–955

    CAS  PubMed  Google Scholar 

  134. Cibull TL, Jones TD, Li L, Eble JN, Ann Baldridge L, Malott SR, Luo Y, Cheng L (2006) Overexpression of Pim-1 during progression of prostatic adenocarcinoma. J Clin Pathol 59:285–288

    CAS  PubMed  Google Scholar 

  135. Beier UH, Weise JB, Laudien M, Sauerwein H, Görögh T (2007) Overexpression of Pim-1 in head and neck squamous cell carcinomas. Int J Oncol 30:1381–1387

    CAS  PubMed  Google Scholar 

  136. Hunter T, Pines J (1994) Cyclins and cancer II: Cyclin D and CDK inhibitors come of age. Cell 79:573–582

    CAS  PubMed  Google Scholar 

  137. Motokura T, Arnold A (1993) Cyclin D and oncogenesis. Curr Opin Genet Dev 3:5–10

    CAS  PubMed  Google Scholar 

  138. Vita M, Henriksson M (2006) The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16:318–330

    CAS  PubMed  Google Scholar 

  139. Yoon A, Peng G, Brandenburger Y, Zollo O, Xu W, Rego E, Ruggero D (2006) Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312:902–906

    CAS  PubMed  Google Scholar 

  140. Denkert C et al (2004) Overexpression of the embryonic lethal abnormal vision-like protein HuR in ovarian carcinoma is a prognostic factor and is associated with increased cyclooxygenase 2 expression. Cancer Res 64:189–195

    CAS  PubMed  Google Scholar 

  141. López de Silanes I, Fan J, Yang X, Zonderman AB, Potapova O, Pizer ES, Gorospe M (2003) Role of the RNA-binding protein HuR in colon carcinogenesis. Oncogene 22:7146–7154

    PubMed  Google Scholar 

  142. Heinonen M, Fagerholm R, Aaltonen K, Kilpivaara O, Aittomäki K, Blomqvist C, Heikkilä P, Haglund C, Nevanlinna H, Ristimäki A (2007) Prognostic role of HuR in hereditary breast cancer. Clin Cancer Res 13:6959–6963

    CAS  PubMed  Google Scholar 

  143. Barbisan F, Mazzucchelli R, Santinelli A, Lopez-Beltran A, Cheng L, Scarpelli M, Montorsi F, Montironi R (2009) Overexpression of ELAV-like protein HuR is associated with increased COX-2 expression in atrophy, high-grade prostatic intraepithelial neoplasia, and incidental prostate cancer in cystoprostatectomies. Eur Urol 56:105–112

    Google Scholar 

  144. Cho NP, Han HS, Soh Y, Lee KY, Son HJ (2007) Cytoplasmic HuR over-expression is associated with increased cyclooxygenase-2 expression in laryngeal squamous cell carcinomas. Pathology 39:545–550

    CAS  PubMed  Google Scholar 

  145. López de Silanes I, Lal A, Gorospe M (2005) HuR: post-transcriptional paths to malignancy. RNA Biol 2:11–13

    PubMed  Google Scholar 

  146. Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V, Borbone E, Petrocca F, Alder H, Croce CM, Fusco A (2007) MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 14:791–798

    CAS  PubMed  Google Scholar 

  147. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, Jacob S, Majumder S (2008) MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27(Kip1). J Biol Chem 283(44):29897–29903

    CAS  PubMed  Google Scholar 

  148. Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Giovannini C, Croce CM, Bolondi L, Negrini M (2008) MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27(43):5651–5661

    CAS  PubMed  Google Scholar 

  149. Kanamori M, Kawaguchi T, Nigro JM, Feuerstein BG, Berger MS, Miele L, Pieper RO (2007) Contribution of Notch signaling activation to human glioblastoma multiforme. J Neurosurg 106:417–4127

    PubMed  Google Scholar 

  150. Zhang P, Yang Y, Zweidler-McKay PA, Hughes DP (2008) Critical role of notch signaling in osteosarcoma invasion and metastasis. Clin Cancer Res 14:2962–2969

    CAS  PubMed  Google Scholar 

  151. Kamalian L, Gosney JR, Forootan SS, Foster CS, Bao ZZ, Beesley C, Ke Y (2008) Increased expression of Id family proteins in small cell lung cancer and its prognostic significance. Clin Cancer Res 14:2318–2325

    CAS  PubMed  Google Scholar 

  152. Gupta GP, Perk J, Acharyya S, de Candia P, Mittal V, Todorova-Manova K, Gerald WL, Brogi E, Benezra R, Massagué J (2007) ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc Natl Acad Sci U S A 104:19506–19511

    CAS  PubMed  Google Scholar 

  153. Huang H, Tindall DJ (2006) FOXO factors: a matter of life and death. Future Oncol 2:83–89

    CAS  PubMed  Google Scholar 

  154. Bravou V, Klironomos G, Papadaki E, Taraviras S, Varakis J (2006) ILK over-expression in human colon cancer progression correlates with activation of beta-catenin, down-regulation of E-cadherin and activation of the Akt–FKHR pathway. J Pathol. 208:91–99

    CAS  PubMed  Google Scholar 

  155. Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, Kobayashi R, Hung MC (2004) IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117:225–237

    CAS  PubMed  Google Scholar 

  156. Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML (2005) The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123:207–218

    CAS  PubMed  Google Scholar 

  157. Schnepp RW, Chen YX, Wang H, Cash T, Silva A, Diehl JA, Brown E, Hua X (2006) Mutation of tumor suppressor gene Men1 acutely enhances proliferation of pancreatic islet cells. Cancer Res 66:5707–5715

    CAS  PubMed  Google Scholar 

  158. Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12:2245–2262

    CAS  PubMed  Google Scholar 

  159. Iwanaga R, Komori H, Ishida S, Okamura N, Nakayama K, Nakayama KI, Ohtani K (2006) Identification of novel E2F1 target genes regulated in cell cycle-dependent and independent manners. Oncogene 25:1786–1798

    CAS  PubMed  Google Scholar 

  160. Huang YC, Chen JY, Hung WC (2004) Vitamin D3 receptor/Sp1 complex is required for the induction of p27Kip1 expression by vitamin D3. Oncogene 23:4856–4861

    CAS  PubMed  Google Scholar 

  161. Kobayashi M, Shiraishi T, Tonouchi H, Miki C, Kusunoki M (2002) 5-FU improves p27-related poor prognosis in patients with Astler-Coller B2-C colorectal carcinoma. Oncol Rep 9:29–33

    CAS  PubMed  Google Scholar 

  162. Psyrri A, Bamias A, Yu Z, Weinberger PM, Kassar M, Markakis S, Kowalski D, Efstathiou E, Camp RL, Rimm DL, Dimopoulos MA (2005) Subcellular localization and protein levels of cyclin-dependent kinase inhibitor p27 independently predict for survival in epithelial ovarian cancer. Clin Cancer Res 11:8384–8390

    CAS  PubMed  Google Scholar 

  163. Han SK, Park HY, Kim MS, Lee H, Kim J, Kim YD (1999) Reduced expression of p27Kip1 protein is associated with poor clinical outcome of breast cancer patients treated with systemic chemotherapy and is linked to cell proliferation and differentiation. Breast Cancer Res Treat 55:161–167

    CAS  PubMed  Google Scholar 

  164. Masciullo V, Ferrandina G, Pucci B, Fanfani F, Lovergine S, Palazzo J, Zannoni G, Mancuso S, Scambia G, Giordano A (2000) p27Kip1 expression is associated with clinical outcome in advanced epithelial ovarian cancer: multivariate analysis. Clin Cancer Res 6:4816–4822

    CAS  PubMed  Google Scholar 

  165. Korkolopoulou P, Vassilopoulos I, Konstantinidou AE, Zorzos H, Patsouris E, Agapitos E, Davaris P (2002) The combined evaluation of p27Kip1 and Ki-67 expression provides independent information on overall survival of ovarian carcinoma patients. Gynecol Oncol 85:404–414

    PubMed  Google Scholar 

  166. Oshita F, Kameda Y, Nishio K, Tanaka G, Yamada K, Nomura I, Nakayama H, Noda K (2000) Increased expression levels of cyclin-dependent kinase inhibitor p27 correlate with good responses to platinum-based chemotherapy in non-small cell lung cancer. Oncol Rep 7:491–495

    CAS  PubMed  Google Scholar 

  167. Pohl G, Rudas M, Dietze O, Lax S, Markis E, Pirker R, Zielinski CC, Hausmaninger H, Kubista E, Samonigg H, Jakesz R, Filipits M (2003) High p27Kip1 expression predicts superior relapse-free and overall survival for premenopausal women with early-stage breast cancer receiving adjuvant treatment with tamoxifen plus goserelin. J Clin Oncol 21:3594–3600

    CAS  PubMed  Google Scholar 

  168. Porter PL, Barlow WE, Yeh IT, Lin MG, Yuan XP, Donato E, Sledge GW, Shapiro CL, Ingle JN, Haskell CM, Albain KS, Roberts JM, Livingston RB, Hayes DF (2006) p27Kip1 and cyclin E expression and breast cancer survival after treatment with adjuvant chemotherapy. J Natl Cancer Inst 98:1723–1731

    CAS  PubMed  Google Scholar 

  169. Korkmaz H, Du W, Yoo GH, Enamorado II, Lin HS, Adsay V, Kewson D, Ensley JF, Shibuya TY, Jacobs JR, Kim H (2005) Prognostic significance of G1 cellcycle inhibitors in early laryngeal cancer. Am J Otolaryngol 26:77–82

    CAS  PubMed  Google Scholar 

  170. Anayama T, Furihata M, Ishikawa T, Ohtsuki Y, Ogoshi S (1998) Positive correlation between p27Kip1 expression and progression of human esophageal squamous cell carcinoma. Int J Cancer 79:439–443

    CAS  PubMed  Google Scholar 

  171. Nahta R, Takahashi T, Ueno NT, Hung MC, Esteva FJ (2004) P27(kip1) down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res 64:3981–3986

    CAS  PubMed  Google Scholar 

  172. Casaccia-Bonnefil P, Tikoo R, Kiyokawa H, Friedrich V Jr, Chao MV, Koff A (1997) Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes Dev 11:2335–2346

    CAS  PubMed  Google Scholar 

  173. Harvat BL, Wang A, Seth P, Jetten AM (1998) Up-regulation of p27Kip1, p21WAF1/Cip1 and p16Ink4a is associated with, but not sufficient for, induction of squamous differentiation. J Cell Sci 111:1185–1196

    CAS  PubMed  Google Scholar 

  174. Hauser PJ, Agrawal D, Flanagan M, Pledger WJ (1997) The role of p27kip1 in the in vitro differentiation of murine keratinocytes. Cell Growth Differ 8:203–211

    CAS  PubMed  Google Scholar 

  175. Nguyen L, Besson A, Heng JI, Schuurmans C, Teboul L, Parras C, Philpott A, Roberts JM, Guillemot F (2006) p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 20:1511–1524

    CAS  PubMed  Google Scholar 

  176. Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D, Corral LG, Krenitsky VP, Xu W, Moutouh-de Parseval L, Webb DR, Mercurio F, Nakayama KI, Nakayama K, Orlowski RZ (2008) Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 111:4690–4699

    CAS  PubMed  Google Scholar 

  177. Perathoner A, Pirkebner D, Brandacher G, Spizzo G, Stadlmann S, Obrist P, Margreiter R, Amberger A(2005) 14-3-3sigma expression is an indepen-dent prognostic parameter for poor survival in colorectal carcinoma patients. Clin Cancer Res 11:3274–3279

    CAS  PubMed  Google Scholar 

  178. Rojas P, Cadenas MB, Lin PC, Benavides F, Conti CJ, Rodriguez-Puebla ML (2007) Cyclin D2 and cyclin D3 play opposite roles in mouse skin carcinogenesis. Oncogene 26:1723–1730

    CAS  PubMed  Google Scholar 

  179. Kukoski R, Blonigen B, Macri E, Renshaw AA, Hoffman M, Loda M, Datta MW (2003) p27 and cyclin 181. E/D2 associations in testicular germ cell tumors: implications for tumorigenesis. Appl Immunohistochem Mol Morphol 11:138–143

    CAS  PubMed  Google Scholar 

  180. Mermelshtein A, Gerson A, Walfisch S, Delgado B, Shechter-Maor G, Delgado J, Fich A, Gheber L (2005) Expression of D-type cyclins in colon cancer and in cell lines from colon carcinomas. Br J Cancer 93:338–345

    CAS  PubMed  Google Scholar 

  181. Rajkumar SV, Richardson PG, Hideshima T, Anderson KC (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23:630–639

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments:

This work was supported in part by a grant CA39930 from the National Cancer Institute, a grant from the Commonwealth Foun-dation (Goodwin Family), and the generous support of the Zarrow Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Le, XF., Bast, R.C. (2010). p27Kip1 as a Biomarker and Target for Treatment of Cancer. In: Siddik, Z. (eds) Checkpoint Controls and Targets in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60761-178-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-178-3_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-177-6

  • Online ISBN: 978-1-60761-178-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics