Skip to main content

Targeting p21-Dependent Pathways for Cell Death in Cancer Therapy

  • Chapter
  • First Online:
Checkpoint Controls and Targets in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 862 Accesses

Abstract

Checkpoint activation is a natural response to DNA damage that enables cells to take approp-riate action, which results in cells either living or dying. A major target in checkpoint response is the tumor suppressor p53, which becomes stabilized and activated following the post-translation modifications. The activated p53 then transactivates the downstream p21 gene to inhibit cyclin-dependent kinase (CDK), induce cell cycle arrest to allow DNA repair, and enable cells to survive. If DNA damage is excessive, then p53-dependent apoptosis is affected. Since cell cycle arrest precedes cell death, it is not surprising that checkpoint response has been correlated with apoptosis, and the possibility that these two processes cross-communicate is supported by evidence that p21, like p53, is a tumor suppressor, and its expression is downregulated in apoptosis-defective cancers. In addition to affecting apoptosis through checkpoint response, p21 can also induce this mode of cell death through a different mechanism that involves repression of anti-apoptotic genes. It becomes apparent that p21 may be an important component of not only checkpoint response, but also apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samuel T, Weber HO, Funk JO (2002) Linking DNA damage to cell cycle checkpoints. Cell Cycle 1(3):162–168

    CAS  PubMed  Google Scholar 

  2. Pietenpol JA, Stewart ZA (2002) Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181–182:475–481

    PubMed  Google Scholar 

  3. O’Connor PM, Kohn KW (1992) A fundamental role for cell cycle regulation in the chemosensitivity of cancer cells? Semin Cancer Biol 3(6):409–416

    PubMed  Google Scholar 

  4. O’Connor PM, Fan S (1996) DNA damage checkpoints: implications for cancer therapy. Prog Cell Cycle Res 2:165–173

    PubMed  Google Scholar 

  5. O’Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M et al (1997) Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res 57(19):4285–4300

    PubMed  Google Scholar 

  6. Vekris A, Meynard D, Haaz MC, Bayssas M, Bonnet J, Robert J (2004) Molecular determinants of the cytotoxicity of platinum compounds: the contribution of in silico research. Cancer Res 64(1):356–362

    CAS  PubMed  Google Scholar 

  7. Molinari M (2000) Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif 33(5):261–274

    CAS  PubMed  Google Scholar 

  8. Iliakis G, Wang Y, Guan J, Wang H (2003) DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22(37):5834–5847

    CAS  PubMed  Google Scholar 

  9. Martin-Caballero J, Flores JM, Garcia-Palencia P, Serrano M (2001) Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Res 61(16):6234–6238

    CAS  PubMed  Google Scholar 

  10. el Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J et al (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54(5):1169–1174

    CAS  PubMed  Google Scholar 

  11. Agami R, Bernards R (2000) Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell 102(1):55–66

    CAS  PubMed  Google Scholar 

  12. Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13(2):65–70

    CAS  PubMed  Google Scholar 

  13. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512

    CAS  PubMed  Google Scholar 

  14. He G, Siddik ZH, Huang Z, Wang R, Koomen J, Kobayashi R et al (2005) Induction of p21 by p53 following DNA damage inhibits both CDK4 and CDK2 activities. Oncogene 24(18):2929–2943

    CAS  PubMed  Google Scholar 

  15. Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P et al (1995) Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 6(4):387–400

    CAS  PubMed  Google Scholar 

  16. Johnson DG, Walker CL (1999) Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 39:295–312

    CAS  PubMed  Google Scholar 

  17. Gartel AL, Tyner AL (1999) Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 246(2):280–289

    CAS  PubMed  Google Scholar 

  18. Adkins JN, Lumb KJ (2000) Stoichiometry of cyclin A-cyclin-dependent kinase 2 inhibition by p21Cip1/Waf1. Biochemistry 39(45):13925–13930

    CAS  PubMed  Google Scholar 

  19. Hengst L, Gopfert U, Lashuel HA, Reed SI (1998) Complete inhibition of CDK/cyclin by one molecule of p21(Cip1). Genes Dev 12(24):3882–3888

    CAS  PubMed  Google Scholar 

  20. Zhou H, Kato A, Yasuda H, Miyaji T, Fujigaki Y, Yamamoto T et al (2004) The induction of cell cycle regulatory and DNA repair proteins in cisplatin-induced acute renal failure. Toxicol Appl Pharmacol 200(2):111–120

    CAS  PubMed  Google Scholar 

  21. Aleem E, Berthet C, Kaldis P (2004) CDK2 as a master of S phase entry: fact or fake? Cell Cycle 3(1):35–37

    CAS  PubMed  Google Scholar 

  22. Munoz-Alonso MJ, Acosta JC, Richard C, Delgado MD, Sedivy J, Leon J (2005) p21Cip1 and p27Kip1 induce distinct cell cycle effects and differentiation programs in myeloid leukemia cells. J Biol Chem 280(18):18120–18129

    CAS  PubMed  Google Scholar 

  23. Petrocelli T, Slingerland J (2000) UVB induced cell cycle checkpoints in an early stage human melanoma line, WM35. Oncogene 19(39):4480–4490

    CAS  PubMed  Google Scholar 

  24. He G, Kuang J, Huang Z, Koomen J, Kobayashi R, Khokhar AR et al (2006) Upregulation of p27 and its inhibition of CDK2/cyclin E activity following DNA damage by a novel platinum agent are dependent on the expression of p21. Br J Cancer 95(11):1514–1524

    CAS  PubMed  Google Scholar 

  25. Lee TH, Chuang LY, Hung WC (1999) Tamoxifen induces p21WAF1 and p27KIP1 expression in estrogen receptor-negative lung cancer cells. Oncogene 18(29):4269–4274

    CAS  PubMed  Google Scholar 

  26. Magne N, Fischel JL, Tiffon C, Formento P, Dubreuil A, Renee N et al (2003) Molecular mechanisms underlying the interaction between ZD1839 (‘Iressa’) and cisplatin/5-fluorouracil. Br J Cancer 89(3):585–592

    CAS  PubMed  Google Scholar 

  27. Don MJ, Chang YH, Chen KK, Ho LK, Chau YP (2001) Induction of CDK inhibitors (p21(WAF1) and p27(Kip1)) and Bak in the beta-lapachone-induced apoptosis of human prostate cancer cells. Mol Pharmacol 59(4):784–794

    CAS  PubMed  Google Scholar 

  28. Bloom J, Pagano M (2003) Deregulated degradation of the CDK inhibitor p27 and malignant transformation. Semin Cancer Biol 13(1):41–47

    CAS  PubMed  Google Scholar 

  29. Nakayama KI, Hatakeyama S, Nakayama K (2001) Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1. Biochem Biophys Res Commun 282(4):853–860

    CAS  PubMed  Google Scholar 

  30. Brown I, Shalli K, McDonald SL, Moir SE, Hutcheon AW, Heys SD et al (2004) Reduced expression of p27 is a novel mechanism of docetaxel resistance in breast cancer cells. Breast Cancer Res 6(5):R601–R607

    CAS  PubMed  Google Scholar 

  31. Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A et al (1999) Ubiquitination of p27 is regulated by CDK-dependent phosphorylation and trimeric complex formation. Genes Dev 13(9):1181–1189

    CAS  PubMed  Google Scholar 

  32. Xu X, Nakano T, Wick S, Dubay M, Brizuela L (1999) Mechanism of CDK2/Cyclin E inhibition by p27 and p27 phosphorylation. Biochemistry 38(27):8713–8722

    CAS  PubMed  Google Scholar 

  33. Steinman RA, Lu Y, Yaroslavskiy B, Stehle C (2001) Cell cycle-independent upregulation of p27Kip1 by p21Waf1 in K562 cells. Oncogene 20(45):6524–6530

    CAS  PubMed  Google Scholar 

  34. Liu J, Estes ML, Drazba JA, Liu H, Prayson R, Kondo S et al (2000) Anti-sense oligonucleotide of p21(waf1/cip1) prevents interleukin 4-mediated elevation of p27(kip1) in low grade astrocytoma cells. Oncogene 19(5):661–669

    CAS  PubMed  Google Scholar 

  35. Zhang H, Xiong Y, Beach D (1993) Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol Biol Cell 4(9):897–906

    CAS  PubMed  Google Scholar 

  36. Xiong Y, Zhang H, Beach D (1992) D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71(3):505–514

    CAS  PubMed  Google Scholar 

  37. Loor G, Zhang SJ, Zhang P, Toomey NL, Lee MY (1997) Identification of DNA replication and cell cycle proteins that interact with PCNA. Nucleic Acids Res 25(24):5041–5046

    CAS  PubMed  Google Scholar 

  38. Kelman Z, Hurwitz J (1998) Protein-PCNA interactions: a DNA-scanning mechanism? Trends Biochem Sci 23(7):236–238

    CAS  PubMed  Google Scholar 

  39. Maga G, Hubscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116(Pt 15):3051–3060

    CAS  PubMed  Google Scholar 

  40. Xiong Y, Zhang H, Beach D (1993) Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev 7(8):1572–1583

    CAS  PubMed  Google Scholar 

  41. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366(6456):701–704

    CAS  PubMed  Google Scholar 

  42. Chopin V, Toillon RA, Jouy N, Le BX (2004) P21(WAF1/CIP1) is dispensable for G1 arrest, but indispensable for apoptosis induced by sodium butyrate in MCF-7 breast cancer cells. Oncogene 23(1):21–29

    CAS  PubMed  Google Scholar 

  43. Rossig L, Jadidi AS, Urbich C, Badorff C, Zeiher AM, Dimmeler S (2001) Akt-dependent phosphorylation of p21(Cip1) regulates PCNA binding and proliferation of endothelial cells. Mol Cell Biol 21(16):5644–5657

    CAS  PubMed  Google Scholar 

  44. Scott MT, Morrice N, Ball KL (2000) Reversible phosphorylation at the C-terminal regulatory domain of p21(Waf1/Cip1) modulates proliferating cell nuclear antigen binding. J Biol Chem 275(15):11529–11537

    CAS  PubMed  Google Scholar 

  45. Li Y, Dowbenko D, Lasky LA (2002) AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 277(13):11352–11361

    CAS  PubMed  Google Scholar 

  46. Lu Y, Tatsuka M, Takebe H, Yagi T (2000) Involvement of cyclin-dependent kinases in doxorubicin-induced apoptosis in human tumor cells. Mol Carcinog 29(1):1–7

    PubMed  Google Scholar 

  47. Mutoh M, Lung FD, Long YQ, Roller PP, Sikorski RS, O’Connor PM (1999) A p21(Waf1/Cip1) carboxyl-terminal peptide exhibited cyclin-dependent kinase-inhibitory activity and cytotoxicity when introduced into human cells. Cancer Res 59(14):3480–3488

    CAS  PubMed  Google Scholar 

  48. Ball KL, Lain S, Fahraeus R, Smythe C, Lane DP (1997) Cell-cycle arrest and inhibition of CDK4 activity by small peptides based on the carboxy-terminal domain of p21WAF1. Curr Biol 7(1):71–80

    CAS  PubMed  Google Scholar 

  49. Cayrol C, Ducommun B (1998) Interaction with cyclin-dependent kinases and PCNA modulates proteasome-dependent degradation of p21. Oncogene 17(19):2437–2444

    CAS  PubMed  Google Scholar 

  50. Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A (2008) PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev 22(18):2496–2506

    CAS  PubMed  Google Scholar 

  51. Gorospe M, Wang X, Holbrook NJ (1998) p53-dependent elevation of p21Waf1 expression by UV light is mediated through mRNA stabilization and involves a vanadate-sensitive regulatory system. Mol Cell Biol 18(3):1400–1407

    CAS  PubMed  Google Scholar 

  52. Haapajarvi T, Pitkanen K, Laiho M (1999) Human melanoma cell line UV responses show independency of p53 function. Cell Growth Differ 10(3):163–171

    CAS  PubMed  Google Scholar 

  53. Haapajarvi T, Kivinen L, Heiskanen A, des BC, Datto MB, Wang XF et al (1999) UV radiation is a transcriptional inducer of p21(Cip1/Waf1) cyclin-kinase inhibitor in a p53-independent manner. Exp Cell Res 248(1):272–279

    CAS  PubMed  Google Scholar 

  54. Funaoka K, Shindoh M, Yoshida K, Hanzawa M, Hida K, Nishikata S et al (1997) Activation of the p21(Waf1/Cip1) promoter by the ets oncogene family transcription factor E1AF. Biochem Biophys Res Commun 236(1):79–82

    CAS  PubMed  Google Scholar 

  55. Bartek J, Lukas J (2001) Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 13(6):738–747

    CAS  PubMed  Google Scholar 

  56. Lagger G, Doetzlhofer A, Schuettengruber B, Haidweger E, Simboeck E, Tischler J et al (2003) The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol Cell Biol 23(8):2669–2679

    CAS  PubMed  Google Scholar 

  57. Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F (2003) Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res 63(21):7291–7300

    CAS  PubMed  Google Scholar 

  58. Kaeser MD, Iggo RD (2002) Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci U S A 99(1):95–100

    CAS  PubMed  Google Scholar 

  59. Jackson JG, Pereira-Smith OM (2006) p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Res 66(17):8356–8360

    CAS  PubMed  Google Scholar 

  60. Kaeser MD, Iggo RD (2004) Promoter-specific p53-dependent histone acetylation following DNA damage. Oncogene 23(22):4007–4013

    CAS  PubMed  Google Scholar 

  61. Saramaki A, Banwell CM, Campbell MJ, Carlberg C (2006) Regulation of the human p21(waf1/cip1) gene promoter via multiple binding sites for p53 and the vitamin D3 receptor. Nucleic Acids Res 34(2):543–554

    PubMed  Google Scholar 

  62. Campomenosi P, Monti P, Aprile A, Abbondandolo A, Frebourg T, Gold B et al (2001) p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Oncogene 20(27):3573–3579

    CAS  PubMed  Google Scholar 

  63. Jascur T, Brickner H, Salles-Passador I, Barbier V, El Khissiin A, Smith B et al (2005) Regulation of p21(WAF1/CIP1) stability by WISp39, a Hsp90 binding TPR protein. Mol Cell 17(2):237–249

    CAS  PubMed  Google Scholar 

  64. Gartel AL, Tyner AL (2002) The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1(8):639–649

    CAS  PubMed  Google Scholar 

  65. Child ES, Mann DJ (2006) The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability. Cell Cycle 5(12):1313–1319

    CAS  PubMed  Google Scholar 

  66. Kim GY, Mercer SE, Ewton DZ, Yan Z, Jin K, Friedman E (2002) The stress-activated protein kinases p38 alpha and JNK1 stabilize p21(Cip1) by phosphorylation. J Biol Chem 277(33):29792–29802

    CAS  PubMed  Google Scholar 

  67. Du J, Cai S, Suzuki H, Akhand AA, Ma X, Takagi Y et al (2003) Involvement of MEKK1/ERK/P21Waf1/Cip1 signal transduction pathway in inhibition of IGF-I-mediated cell growth response by methylglyoxal. J Cell Biochem 88(6):1235–1246

    CAS  PubMed  Google Scholar 

  68. Hayakawa J, Ohmichi M, Kurachi H, Ikegami H, Kimura A, Matsuoka T et al (1999) Inhibition of extracellular signal-regulated protein kinase or c-Jun N-terminal protein kinase cascade, differentially activated by cisplatin, sensitizes human ovarian cancer cell line. J Biol Chem 274(44):31648–31654

    CAS  PubMed  Google Scholar 

  69. Wang X, Martindale JL, Holbrook NJ (2000) Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 275(50):39435–39443

    CAS  PubMed  Google Scholar 

  70. Persons DL, Yazlovitskaya EM, Pelling JC (2000) Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin. J Biol Chem 275:35778–35785

    CAS  PubMed  Google Scholar 

  71. Mitsuuchi Y, Johnson SW, Selvakumaran M, Williams SJ, Hamilton TC, Testa JR (2000) The phosphatidylinositol 3-kinase/AKT signal transduction pathway plays a critical role in the expression of p21WAF1/CIP1/SDI1 induced by cisplatin and paclitaxel. Cancer Res 60(19):5390–5394

    CAS  PubMed  Google Scholar 

  72. Fukuchi K, Watanabe H, Tomoyasu S, Ichimura S, Tatsumi K, Gomi K (2000) Phosphatidylinositol 3-kinase inhibitors, Wortmannin or LY294002, inhibited accumulation of p21 protein after gamma-irradiation by stabilization of the protein. Biochim Biophys Acta 1496(2–3):207–220

    CAS  PubMed  Google Scholar 

  73. Mattock H, Lane DP, Warbrick E (2001) Inhibition of cell proliferation by the PCNA-binding region of p21 expressed as a GFP miniprotein. Exp Cell Res 265(2):234–241

    CAS  PubMed  Google Scholar 

  74. Benson C, Kaye S, Workman P, Garrett M, Walton M, de Bono J (2005) Clinical anticancer drug development: targeting the cyclin-dependent kinases. Br J Cancer 92(1):7–12

    CAS  PubMed  Google Scholar 

  75. Shiohara M, el Deiry WS, Wada M, Nakamaki T, Takeuchi S, Yang R et al (1994) Absence of WAF1 mutations in a variety of human malignancies. Blood 84(11):3781–3784

    CAS  PubMed  Google Scholar 

  76. Barboza JA, Liu G, Ju Z, El Naggar AK, Lozano G (2006) p21 delays tumor onset by preservation of chromosomal stability. Proc Natl Acad Sci U S A 103(52):19842–19847

    CAS  PubMed  Google Scholar 

  77. Ohtani N, Imamura Y, Yamakoshi K, Hirota F, Nakayama R, Kubo Y et al (2007) Visualizing the dynamics of p21(Waf1/Cip1) cyclin-dependent kinase inhibitor expression in living animals. Proc Natl Acad Sci U S A 104(38):15034–15039

    CAS  PubMed  Google Scholar 

  78. Liu S, Bishop WR, Liu M (2003) Differential effects of cell cycle regulatory protein p21(WAF1/Cip1) on apoptosis and sensitivity to cancer chemotherapy. Drug Resist Updat 6(4):183–195

    CAS  PubMed  Google Scholar 

  79. Lincet H, Poulain L, Remy JS, Deslandes E, Duigou F, Gauduchon P et al (2000) The p21(cip1/waf1) cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells. Cancer Lett 161(1):17–26

    CAS  PubMed  Google Scholar 

  80. Wu Q, Kirschmeier P, Hockenberry T, Yang TY, Brassard DL, Wang L et al (2002) Transcriptional regulation during p21WAF1/CIP1-induced apoptosis in human ovarian cancer cells. J Biol Chem 277(39):36329–36337

    CAS  PubMed  Google Scholar 

  81. Shoji T, Tanaka F, Takata T, Yanagihara K, Otake Y, Hanaoka N et al (2002) Clinical significance of p21 expression in non-small-cell lung cancer. J Clin Oncol 20(18):3865–3871

    CAS  PubMed  Google Scholar 

  82. Rose SL, Goodheart MJ, DeYoung BR, Smith BJ, Buller RE (2003) p21 expression predicts outcome in p53-null ovarian carcinoma. Clin Cancer Res 9(3):1028–1032

    CAS  PubMed  Google Scholar 

  83. Lohr K, Moritz C, Contente A, Dobbelstein M (2003) p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem 278(35):32507–32516

    PubMed  Google Scholar 

  84. Gottifredi V, Karni-Schmidt O, Shieh SS, Prives C (2001) p53 down-regulates CHK1 through p21 and the retinoblastoma protein. Mol Cell Biol 21(4):1066–1076

    CAS  PubMed  Google Scholar 

  85. Zhang YW, Otterness DM, Chiang GG, Xie W, Liu YC, Mercurio F et al (2005) Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell 19(5):607–618

    CAS  PubMed  Google Scholar 

  86. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82(4):675–684

    CAS  PubMed  Google Scholar 

  87. Kuang J, He G, Huang Z, Khokhar AR, Siddik ZH (2001) Bimodal effects of 1R, 2R-diaminocyclohexane(trans-diacetato)(dichloro) platinum(IV) on cell cycle checkpoints. Clin Cancer Res 7(11):3629–3639

    CAS  PubMed  Google Scholar 

  88. Aguero MF, Facchinetti MM, Sheleg Z, Senderowicz AM (2005) Phenoxodiol, a novel isoflavone, induces G1 arrest by specific loss in cyclin-dependent kinase 2 activity by p53-independent induction of p21WAF1/CIP1. Cancer Res 65(8):3364–3373

    CAS  PubMed  Google Scholar 

  89. Golsteyn RM (2005) CDK1 and CDK2 complexes (cyclin dependent kinases) in apoptosis: a role beyond the cell cycle. Cancer Lett 217(2):129–138

    CAS  PubMed  Google Scholar 

  90. Fischer PM (2004) The use of CDK inhibitors in oncology: a pharmaceutical perspective. Cell Cycle 3(6):742–746

    CAS  PubMed  Google Scholar 

  91. Soni R, O’Reilly T, Furet P, Muller L, Stephan C, Zumstein-Mecker S et al (2001) Selective in vivo and in vitro effects of a small molecule inhibitor of cyclin-dependent kinase 4. J Natl Cancer Inst 93(6):436–446

    CAS  PubMed  Google Scholar 

  92. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E et al (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3(11):1427–1438

    CAS  PubMed  Google Scholar 

  93. Waldman T, Lengauer C, Kinzler KW, Vogelstein B (1996) Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381(6584):713–716

    CAS  PubMed  Google Scholar 

  94. Fan S, Chang JK, Smith ML, Duba D, Fornace AJ Jr, O’Connor PM (1997) Cells lacking CIP1/WAF1 genes exhibit preferential sensitivity to cisplatin and nitrogen mustard. Oncogene 14(18):2127–2136

    CAS  PubMed  Google Scholar 

  95. Chinery R, Brockman JA, Peeler MO, Shyr Y, Beauchamp RD, Coffey RJ (1997) Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer: a p53-independent induction of p21WAF1/CIP1 via C/EBPbeta. Nat Med 3(11):1233–1241

    CAS  PubMed  Google Scholar 

  96. Yang HL, Pan JX, Sun L, Yeung SC (2003) p21 Waf-1 (Cip-1) enhances apoptosis induced by manumycin and paclitaxel in anaplastic thyroid cancer cells. J Clin Endocrinol Metab 88(2):763–772

    CAS  PubMed  Google Scholar 

  97. West KA, Castillo SS, Dennis PA (2002) Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat 5(6):234–248

    CAS  PubMed  Google Scholar 

  98. Keeshan K, Cotter TG, McKenna SL (2003) Bcr-Abl upregulates cytosolic p21WAF-1/CIP-1 by a phosphoinositide-3-kinase (PI3K)-independent pathway. Br J Haematol 123(1):34–44

    CAS  PubMed  Google Scholar 

  99. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC (2001) Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3(3):245–252

    CAS  PubMed  Google Scholar 

  100. Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y et al (2004) Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 10(11):3815–3824

    CAS  PubMed  Google Scholar 

  101. Shi W, Zhang X, Pintilie M, Ma N, Miller N, Banerjee D et al (2003) Dysregulated PTEN-PKB and negative receptor status in human breast cancer. Int J Cancer 104(2):195–203

    CAS  PubMed  Google Scholar 

  102. Gartel AL, Radhakrishnan SK (2005) Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 65(10):3980–3985

    CAS  PubMed  Google Scholar 

  103. Gartel AL, Ye X, Goufman E, Shianov P, Hay N, Najmabadi F et al (2001) Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc Natl Acad Sci U S A 98(8):4510–4515

    CAS  PubMed  Google Scholar 

  104. Gartel AL, Goufman E, Tevosian SG, Shih H, Yee AS, Tyner AL (1998) Activation and repression of p21(WAF1/CIP1) transcription by RB binding proteins. Oncogene 17(26):3463–3469

    CAS  PubMed  Google Scholar 

  105. Kastan MB (2007) Wild-type p53: tumors can’t stand it. Cell 128(5):837–840

    CAS  PubMed  Google Scholar 

  106. Hagopian GS, Mills GB, Khokhar AR, Bast RC Jr, Siddik ZH (1999) Expression of p53 in cisplatin-resistant ovarian cancer cell lines: modulation with the novel platinum analogue (1R, 2R- diaminocyclohexane)(trans-diacetato)(dichloro)-platinum(IV). Clin Cancer Res 5(3):655–663

    CAS  PubMed  Google Scholar 

  107. Mujoo K, Watanabe M, Nakamura J, Khokhar AR, Siddik ZH (2003) Status of p53 phosphorylation and function in sensitive and resistant human cancer models exposed to platinum-based DNA damaging agents. J Cancer Res Clin Oncol 129(12):709–718

    CAS  PubMed  Google Scholar 

  108. Delmastro DA, Li J, Vaisman A, Solle M, Chaney SG (1997) DNA damage inducible-gene expression following platinum treatment in human ovarian carcinoma cell lines. Cancer Chemother Pharmacol 39(3):245–253

    CAS  PubMed  Google Scholar 

  109. Perego P, Gatti L, Righetti SC, Beretta GL, Carenini N, Corna E et al (2003) Development of resistance to a trinuclear platinum complex in ovarian carcinoma cells. Int J Cancer 105(5):617–624

    CAS  PubMed  Google Scholar 

  110. Hata T, Yamamoto H, Ngan CY, Koi M, Takagi A, Damdinsuren B et al (2005) Role of p21waf1/cip1 in effects of oxaliplatin in colorectal cancer cells. Mol Cancer Ther 4(10):1585–1594

    CAS  PubMed  Google Scholar 

  111. Allan LA, Duhig T, Read M, Fried M (2000) The p21(WAF1/CIP1) promoter is methylated in Rat-1 cells: stable restoration of p53-dependent p21(WAF1/CIP1) expression after transfection of a genomic clone containing the p21(WAF1/CIP1) gene. Mol Cell Biol 20(4):1291–1298

    CAS  PubMed  Google Scholar 

  112. Chen B, He L, Savell VH, Jenkins JJ, Parham DM (2000) Inhibition of the interferon-gamma/signal transducers and activators of transcription (STAT) pathway by hypermethylation at a STAT-binding site in the p21WAF1 promoter region. Cancer Res 60(12):3290–3298

    CAS  PubMed  Google Scholar 

  113. Roman-Gomez J, Castillejo JA, Jimenez A, Gonzalez MG, Moreno F, Rodriguez MC et al (2002) 5′ CpG island hypermethylation is associated with transcriptional silencing of the p21(CIP1/WAF1/SDI1) gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 99(7):2291–2296

    CAS  PubMed  Google Scholar 

  114. Kawamata N, Inagaki N, Mizumura S, Sugimoto KJ, Sakajiri S, Ohyanagi-Hara M et al (2005) Methylation status analysis of cell cycle regulatory genes (p16INK4A, p15INK4B, p21Waf1/Cip1, p27Kip1 and p73) in natural killer cell disorders. Eur J Haematol 74(5):424–429

    CAS  PubMed  Google Scholar 

  115. Kralj M, Husnjak K, Korbler T, Pavelic J (2003) Endogenous p21(WAF1/CIP1) status predicts the response of human tumor cells to wild-type p53 and p21(WAF1/CIP1) overexpression. Cancer Gene Ther 10(6):457–467

    CAS  PubMed  Google Scholar 

  116. Viniegra JG, Losa JH, Sanchez-Arevalo VJ, Cobo CP, Soria VM, Cajal S et al (2002) Modulation of PI3K/Akt pathway by E1a mediates sensitivity to cisplatin. Oncogene 21(46):7131–7136

    CAS  PubMed  Google Scholar 

  117. Qin LF, Ng IO (2001) Exogenous expression of p21(WAF1/CIP1) exerts cell growth inhibition and enhances sensitivity to cisplatin in hepatoma cells. Cancer Lett 172(1):7–15

    CAS  PubMed  Google Scholar 

  118. Li WW, Fan J, Hochhauser D, Bertino JR (1997) Overexpression of p21waf1 leads to increased inhibition of E2F–1 phosphorylation and sensitivity to anticancer drugs in retinoblastoma-negative human sarcoma cells. Cancer Res 57(11):2193–2199

    CAS  PubMed  Google Scholar 

  119. Laird PW (2005) Cancer epigenetics. Hum Mol Genet 14(Spec No 1):R65–R76

    CAS  PubMed  Google Scholar 

  120. Zhu WG, Hileman T, Ke Y, Wang P, Lu S, Duan W et al (2004) 5-aza-2′-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem 279(15):15161–15166

    CAS  PubMed  Google Scholar 

  121. Schmidt M, Bachhuber A, Victor A, Steiner E, Mahlke M, Lehr HA et al (2003) p53 expression and resistance against paclitaxel in patients with metastatic breast cancer. J Cancer Res Clin Oncol 129(5):295–302

    CAS  PubMed  Google Scholar 

  122. King TC, Akerley W, Fan AC, Moore T, Mangray S, Hsiu CM et al (2000) p53 mutations do not predict response to paclitaxel in metastatic nonsmall cell lung carcinoma. Cancer 89(4):769–773

    CAS  PubMed  Google Scholar 

  123. Mayer F, Honecker F, Looijenga LH, Bokemeyer C (2003) Towards an understanding of the biological basis of response to cisplatin-based chemotherapy in germ-cell tumors. Ann Oncol 14(6):825–832

    CAS  PubMed  Google Scholar 

  124. Lavarino C, Pilotti S, Oggionni M, Gatti L, Perego P, Bresciani G et al (2000) p53 gene status and response to platinum/paclitaxel-based chemotherapy in advanced ovarian carcinoma. J Clin Oncol 18(23):3936–3945

    CAS  PubMed  Google Scholar 

  125. Righetti SC, Della TG, Pilotti S, Menard S, Ottone F, Colnaghi MI et al (1996) A comparative study of p53 gene mutations, protein accumulation, and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res 56(4):689–693

    CAS  PubMed  Google Scholar 

  126. Kandioler-Eckersberger D, Ludwig C, Rudas M, Kappel S, Janschek E, Wenzel C et al (2000) TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin Cancer Res 6(1):50–56

    CAS  PubMed  Google Scholar 

  127. Siddik ZH, Hagopian GS, Thai G, Tomisaki S, Toyomasu T, Khokhar AR (1999) Role of p53 in the ability of 1, 2-diaminocyclohexane-diacetato-dichloro- Pt(IV) to circumvent cisplatin resistance. J Inorg Biochem 77(1–2):65–70

    CAS  PubMed  Google Scholar 

  128. Siddik ZH, Mims B, Lozano G, Thai G (1998) Independent pathways of p53 induction by cisplatin and X-rays in a cisplatin-resistant ovarian tumor cell line. Cancer Res 58(4):698–703

    CAS  PubMed  Google Scholar 

  129. Troester MA, Hoadley KA, Sorlie T, Herbert BS, Borresen-Dale AL, Lonning PE et al (2004) Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res 64(12):4218–4226

    CAS  PubMed  Google Scholar 

  130. Kapoor M, Lozano G (1998) Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc Natl Acad Sci U S A 95(6):2834–2837

    CAS  PubMed  Google Scholar 

  131. Zhao H, Piwnica-Worms H (2001) ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21(13):4129–4139

    CAS  PubMed  Google Scholar 

  132. Robinson HM, Jones R, Walker M, Zachos G, Brown R, Cassidy J et al (2006) Chk1-dependent slowing of S-phase progression protects DT40 B-lymphoma cells against killing by the nucleoside analogue 5-fluorouracil. Oncogene 25(39):5359–5369

    CAS  PubMed  Google Scholar 

  133. Xie G, Habbersett RC, Jia Y, Peterson SR, Lehnert BE, Bradbury EM et al (1998) Requirements for p53 and the ATM gene product in the regulation of G1/S and S phase checkpoints. Oncogene 16(6):721–736

    CAS  PubMed  Google Scholar 

  134. Kurz EU, Douglas P, Lees-Miller SP (2004) Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem 279(51):53272–53281

    CAS  PubMed  Google Scholar 

  135. Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6(12):909–923

    CAS  PubMed  Google Scholar 

  136. Meek DW (2004) The p53 response to DNA damage. DNA Repair (Amst) 3(8–9):1049–1056

    CAS  Google Scholar 

  137. Acharya MR, Sparreboom A, Venitz J, Figg WD (2005) Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharmacol 68(4):917–932

    CAS  PubMed  Google Scholar 

  138. Nawrocki ST, Carew JS, Douglas L, Cleveland JL, Humphreys R, Houghton JA (2007) Histone deacetylase inhibitors enhance lexatumumab-induced apoptosis via a p21Cip1-dependent decrease in survivin levels. Cancer Res 67(14):6987–6994

    CAS  PubMed  Google Scholar 

  139. Carew JS, Giles FJ, Nawrocki ST (2008) Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 269(1):7–17

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements:

Supported by NIH Grant RO1 CA127263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahid H. Siddik Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Siddik, Z.H. (2010). Targeting p21-Dependent Pathways for Cell Death in Cancer Therapy. In: Siddik, Z. (eds) Checkpoint Controls and Targets in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60761-178-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-178-3_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-177-6

  • Online ISBN: 978-1-60761-178-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics