Skip to main content

Melanocytic Neoplasms II: Molecular Staging

  • Chapter
  • First Online:

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

The TNM staging categories and groupings of the updated 2009 American Joint Committee on Cancer (AJCC) Melanoma Staging System are outlined in Tables 6.1 and 6.2 [1]. “T  ” parameters are defined by primary tumor thickness, ulceration, and mitotic status; “N” parameters by the number of lymph nodes with metastatic disease and extent of metastatic burden; and “M” parameters by the site(s) of the metastases and serum lactate dehydrogenase (LDH) levels [1]. The 5-year survival rate is ∼90% for AJCC stage I melanoma and ∼70% for AJCC stage II melanoma, but decreases significantly to 25–50% for AJCC stage III melanoma (depending on the number of lymph nodes involved), and ∼10% for stage IV disease [2]. Because the identification of metastatic disease is a major prognostic factor for melanoma recurrence and outcome, accurate staging of this disease is important for optimal management of these patients. The clinical and histopathological features cannot accurately predict the behavior of melanoma in all cases [3]. Therefore, a need exists for biomarkers which would help to identify patients at risk for disease progression, in addition to those individuals whose disease has already progressed subclinically [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27:6199–206.

    PubMed  Google Scholar 

  2. Balch CM, Buzaid AC, Soong SJ, et al. Final version of the American Joint Committee on cancer staging system for cutaneous melanoma. J Clin Oncol. 2001;19:3635–48.

    PubMed  CAS  Google Scholar 

  3. Carlson JA, Slominski A, Linette GP, et al. Biomarkers in melanoma: staging, prognosis and detection of early metastases. Expert Rev Mol Diagn. 2003;3:303–30.

    PubMed  Google Scholar 

  4. Waldmann V, Wacker J, Deichmann M, et al. Prognosis of metastatic melanoma: no correlation of tyrosinase mRNA in bone marrow and survival time. Recent Results Cancer Res. 2001;158:118–25.

    PubMed  CAS  Google Scholar 

  5. Savoia P, Quaglino P, Osella-Abate S, et al. Tyrosinase mRNA RT-PCR analysis as an additional diagnostic tool for the identification of melanoma cells in biological fluid samples other than blood: a preliminary report. Int J Biol Markers. 2005;20:11–7.

    PubMed  CAS  Google Scholar 

  6. Hoon DS, Kuo CT, Wascher RA, et al. Molecular detection of metastatic melanoma cells in cerebrospinal fluid in melanoma patients. J Invest Dermatol. 2001;117:375–8.

    PubMed  CAS  Google Scholar 

  7. Mocellin S, Hoon DS, Pilati P, et al. Sentinel lymph node molecular ultrastaging in patients with melanoma: a systematic review and meta-analysis of prognosis. J Clin Oncol. 2007;25:1588–95.

    PubMed  Google Scholar 

  8. Palmieri G, Casula M, Sini MC, et al. Issues affecting molecular staging in the management of patients with melanoma. J Cell Mol Med. 2007;11:1052–68.

    PubMed  CAS  Google Scholar 

  9. Nezos A, Lembessis P, Sourla A, et al. Molecular markers detecting circulating melanoma cells by reverse transcription polymerase chain reaction: methodological pitfalls and clinical relevance. Clin Chem Lab Med. 2009;47:1–11.

    PubMed  CAS  Google Scholar 

  10. Medic S, Pearce RL, Heenan PJ, et al. Molecular markers of circulating melanoma cells. Pigment Cell Res. 2007;20:80–91.

    PubMed  CAS  Google Scholar 

  11. Wang X, Heller R, VanVoorhis N, et al. Detection of submicroscopic lymph node metastases with polymerase chain reaction in patients with malignant melanoma. Ann Surg. 1994;220:768–74.

    PubMed  CAS  Google Scholar 

  12. Shivers SC, Li W, Lin J, et al. The clinical relevance of molecular staging for melanoma. Recent Results Cancer Res. 2001;158:187–99.

    PubMed  CAS  Google Scholar 

  13. Takata M. Genetic/epigenetic markers to distinguish melanomas from other melanocytic neoplasms. In: Murphy M, editor. Diagnostic and prognostic biomarkers and therapeutic targets in Melanoma. New York: Humana Press; 2011 (in press).

    Google Scholar 

  14. Carlson JA, Slominski A, Linette GP, et al. Malignant melanoma 2003: predisposition, diagnosis, prognosis, and staging. Am J Clin Pathol. 2003;120(Suppl):S101–27.

    PubMed  Google Scholar 

  15. Martinez SR, Hoon DS. Molecular markers in malignant cutaneous melanoma: gift horse or one-trick pony? J Cell Biochem. 2005;96:473–83.

    PubMed  CAS  Google Scholar 

  16. Morton DL, Wen DR, Wong JH, et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127:392–9.

    PubMed  CAS  Google Scholar 

  17. Cochran AJ, Roberts A, Wen DR, et al. Update on lymphatic mapping and sentinel node biopsy in the management of patients with melanocytic tumours. Pathology. 2004;36:478–84.

    PubMed  Google Scholar 

  18. Phan GQ, Messina JL, Sondak VK, et al. Sentinel lymph node biopsy for melanoma: indications and rationale. Cancer Control. 2009;16:234–9.

    PubMed  Google Scholar 

  19. Leiter U, Meier F, Schittek B, et al. The natural course of cutaneous melanoma. J Surg Oncol. 2004;86:172–8.

    PubMed  Google Scholar 

  20. Perrott RE, Glass LF, Reintgen DS, et al. Reassessing the role of lymphatic mapping and sentinel lymphadenectomy in the management of cutaneous malignant melanoma. J Am Acad Dermatol. 2003;49:567–88.

    PubMed  Google Scholar 

  21. Morton DL, Hoon DS, Cochran AJ, et al. Lymphatic mapping and sentinel lymphadenectomy for early-stage melanoma: therapeutic utility and implications of nodal microanatomy and molecular staging for improving the accuracy of detection of nodal micrometastases. Ann Surg. 2003;238:538–49.

    PubMed  Google Scholar 

  22. Lewis TB, Robison JE, Bastien R, et al. Molecular classification of melanoma using real-time quantitative reverse transcriptase-polymerase chain reaction. Cancer. 2005;104:1678–86.

    PubMed  CAS  Google Scholar 

  23. Russell-Jones R. Sentinel node and survival in melanoma. Br J Dermatol. 2005;153:1093–5.

    PubMed  CAS  Google Scholar 

  24. Gutzmer R, Al Ghazal M, Geerlings H, et al. Sentinel node biopsy in melanoma delays recurrence but does not change melanoma-related survival: a retrospective analysis of 673 patients. Br J Dermatol. 2005;153:1137–41.

    PubMed  CAS  Google Scholar 

  25. Roka F, Kittler H, Cauzig P, et al. Sentinel node status in melanoma patients is not predictive for overall survival upon multivariate analysis. Br J Cancer. 2005;92:662–7.

    PubMed  CAS  Google Scholar 

  26. Carlson JA, Ross JS, Slominski AJ. New techniques in dermatopathology that help to diagnose and prognosticate melanoma. Clin Dermatol. 2009;27:75–102.

    PubMed  Google Scholar 

  27. Hilari JM, Mangas C, Xi L, et al. Molecular staging of pathologically negative sentinel lymph nodes from melanoma patients using multimarker, quantitative real-time rt-PCR. Ann Surg Oncol. 2009;16:177–85.

    PubMed  Google Scholar 

  28. Prichard RS, Dijkstra B, McDermott EW, et al. The role of molecular staging in malignant melanoma. Eur J Surg Oncol. 2003;29:306–14.

    PubMed  CAS  Google Scholar 

  29. Nowecki ZI, Rutkowski P, Kulik J, et al. Molecular and biochemical testing in stage III melanoma: multimarker reverse transcriptase-polymerase chain reaction assay of lymph fluid after lymph node dissection and preoperative serum lactate dehydrogenase level. Br J Dermatol. 2008;159:597–605.

    PubMed  CAS  Google Scholar 

  30. Starz H, Haas CJ, Schulz GM, et al. Tyrosinase RT-PCR as a supplement to histology for detecting melanoma and nevus cells in paraffin sections of sentinel lymph nodes. Mod Pathol. 2003;16:920–9.

    PubMed  Google Scholar 

  31. Hochberg M, Lotem M, Gimon Z, et al. Expression of tyrosinase, MIA and MART-1 in sentinel lymph nodes of patients with malignant melanoma. Br J Dermatol. 2002;146:244–9.

    PubMed  CAS  Google Scholar 

  32. Kuo CT, Hoon DS, Takeuchi H, et al. Prediction of disease outcome in melanoma patients by molecular analysis of paraffin-embedded sentinel lymph nodes. J Clin Oncol. 2003;21:3566–72.

    PubMed  Google Scholar 

  33. Rimoldi D, Lemoine R, Kurt AM, et al. Detection of micrometastases in sentinel lymph nodes from melanoma patients: direct comparison of multimarker molecular and immunopathological methods. Melanoma Res. 2003;13:511–20.

    PubMed  CAS  Google Scholar 

  34. Takeuchi H, Morton DL, Kuo C, et al. Prognostic significance of molecular upstaging of paraffin-embedded sentinel lymph nodes in melanoma patients. J Clin Oncol. 2004;22:2671–80.

    PubMed  CAS  Google Scholar 

  35. Kammula US, Ghossein R, Bhattacharya S, et al. Serial follow-up and the prognostic significance of reverse transcriptase-polymerase chain reaction–staged sentinel lymph nodes from melanoma patients. J Clin Oncol. 2004;22:3989–96.

    PubMed  Google Scholar 

  36. Mangas C, Hilari JM, Paradelo C, et al. Prognostic significance of molecular staging study of sentinel lymph nodes by reverse transcriptase-polymerase chain reaction for tyrosinase in melanoma patients. Ann Surg Oncol. 2006;13:910–8.

    PubMed  Google Scholar 

  37. Scoggins CR, Ross MI, Reintgen DS, et al. Prospective multi-institutional study of reverse transcriptase polymerase chain reaction for molecular staging of melanoma. J Clin Oncol. 2006;24:2849–57.

    PubMed  CAS  Google Scholar 

  38. Blaheta HJ, Schittek B, Breuninger H, et al. Detection of melanoma micrometastasis in sentinel nodes by reverse transcription-polymerase chain reaction correlates with tumor thickness and is predictive of micrometastatic disease in the lymph node basin. Am J Surg Pathol. 1999;23:822–8.

    PubMed  CAS  Google Scholar 

  39. Soikkeli J, Lukk M, Nummela P, et al. Systematic search for the best gene expression markers for melanoma micrometastasis detection. J Pathol. 2007;213:180–9.

    PubMed  CAS  Google Scholar 

  40. Ma Z, Lui WO, Fire A, et al. Profiling and discovery of novel miRNAs from formalin-fixed, paraffin-embedded melanoma and nodal specimens. J Mol Diagn. 2009;11:420–9.

    PubMed  CAS  Google Scholar 

  41. Torisu-Itakura H, Lee JH, Scheri RP, et al. Molecular characterization of inflammatory genes in sentinel and nonsentinel nodes in melanoma. Clin Cancer Res. 2007;13:3125–32.

    PubMed  CAS  Google Scholar 

  42. Sarff M, Edwards D, Dhungel B, et al. OX40 (CD134) expression in sentinel lymph nodes correlates with prognostic features of primary melanomas. Am J Surg. 2008;195:621–5.

    PubMed  CAS  Google Scholar 

  43. John T, Black MA, Toro TT, et al. Predicting clinical outcome through molecular profiling in stage III melanoma. Clin Cancer Res. 2008;14:5173–80.

    PubMed  CAS  Google Scholar 

  44. Winnepenninckx V, Lazar V, Michiels S, et al. Melanoma Group of the European Organization for research and treatment of cancer. Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst. 2006;98:472–82.

    PubMed  CAS  Google Scholar 

  45. Mandruzzato S, Callegaro A, Turcatel G, et al. A gene expression signature associated with survival in metastatic melanoma. J Transl Med. 2006;4:50.

    PubMed  Google Scholar 

  46. Gradilone A, Gazzaniga P, Ribuffo D, et al. Survivin, bcl-2, bax, and bcl-X gene expression in sentinel lymph nodes from melanoma patients. J Clin Oncol. 2003;21:306–12.

    PubMed  CAS  Google Scholar 

  47. Vitoux D, Mourah S, Kerob D, et al. Highly sensitive multivariable assay detection of melanocytic differentiation antigens and angiogenesis biomarkers in sentinel lymph nodes with melanoma micrometastases. Arch Dermatol. 2009;145:1105–13.

    PubMed  CAS  Google Scholar 

  48. Fujimoto A, Takeuchi H, Taback B, et al. Allelic imbalance of 12q22-23 associated with APAF-1 locus correlates with poor disease outcome in cutaneous melanoma. Cancer Res. 2004;64:2245–50.

    PubMed  CAS  Google Scholar 

  49. Dalton SR, Gerami P, Kolaitis NA, et al. Use of fluorescence in-situ hybridization (FISH) to distinguish intranodal nevus from metastatic melanoma. Am J Surg Pathol. 2010;34:231–7.

    PubMed  Google Scholar 

  50. Carlson JA. Tumor doubling time of cutaneous melanoma and its metastasis. Am J Dermatopathol. 2003;25:291–9.

    PubMed  Google Scholar 

  51. Abrahamsen HN, Sorensen BS, Nexo E, et al. Pathologic assessment of melanoma sentinel nodes: a role for molecular analysis using quantitative real-time reverse transcription-PCR for MART-1 and tyrosinase messenger RNA. Clin Cancer Res. 2005;11:1425–33.

    PubMed  CAS  Google Scholar 

  52. Abrahamsen HN, Nexo E, Steiniche T, et al. Quantification of melanoma mRNA markers in sentinel nodes: pre-clinical evaluation of a single-step real-time reverse transcriptase-polymerase chain reaction assay. J Mol Diagn. 2004;6:253–9.

    PubMed  CAS  Google Scholar 

  53. Lens MB, Dawes M, Newton-Bishop JA, et al. Tumour thickness as a predictor of occult lymph node metastases in patients with stage I and II melanoma undergoing sentinel lymph node biopsy. Br J Surg. 2002;89:1223–7.

    PubMed  CAS  Google Scholar 

  54. Li W, Stall A, Shivers SC, et al. Clinical relevance of molecular staging for melanoma: comparison of RT-PCR and immunohistochemistry staining in sentinel lymph nodes of patients with melanoma. Ann Surg. 2000;231:795–803.

    PubMed  CAS  Google Scholar 

  55. Giese T, Engstner M, Mansmann U, et al. Quantification of melanoma micrometastases in sentinel lymph nodes using real-time RT-PCR. J Invest Dermatol. 2005;124:633–7.

    PubMed  CAS  Google Scholar 

  56. Reed W, Bohler PJ, Sandstad B, et al. Occult metastases in axillary lymph nodes as a predictor of survival in node-negative breast carcinoma with long-term follow-up. Breast J. 2004;10:174–80.

    PubMed  Google Scholar 

  57. Thomas JM. Caution with sentinel node biopsy in cutaneous melanoma. Br J Surg. 2006;93:129–30.

    PubMed  CAS  Google Scholar 

  58. van Akkooi AC, de Wilt JH, Verhoef C, et al. Clinical relevance of melanoma micrometastases (<0.1 mm) in sentinel nodes: are these nodes to be considered negative? Ann Oncol. 2006;17:1578–85.

    PubMed  Google Scholar 

  59. Govindarajan A, Ghazarian DM, McCready DR, et al. Histological features of melanoma sentinel lymph node metastases associated with status of the completion lymphadenectomy and rate of subsequent relapse. Ann Surg Oncol. 2007;14:906–12.

    PubMed  Google Scholar 

  60. Scheri RP, Essner R, Turner RR, et al. Isolated tumor cells in the sentinel node affect long-term prognosis of patients with melanoma. Ann Surg Oncol. 2007;14:2861–6.

    PubMed  Google Scholar 

  61. Davids V, Kidson SH, Hanekom GS. Melanoma patient staging: histopathological versus molecular evaluation of the sentinel node. Melanoma Res. 2003;13:313–24.

    PubMed  CAS  Google Scholar 

  62. Davids V, Kidson SH, Hanekom GS. Accurate molecular detection of melanoma nodal metastases: an assessment of multimarker assay specificity, sensitivity, and detection rate. Mol Pathol. 2003;56:43–51.

    PubMed  CAS  Google Scholar 

  63. Lukowsky A, Bellmann B, Ringk A, et al. Detection of melanoma micrometastases in the sentinel lymph node and in nonsentinel nodes by tyrosinase polymerase chain reaction. J Invest Dermatol. 1999;113:554–9.

    PubMed  CAS  Google Scholar 

  64. Gjerdrum LM, Abrahamsen HN, Villegas B, et al. The influence of immunohistochemistry on mRNA recovery from microdissected frozen and formalin-fixed, paraffin-embedded sections. Diagn Mol Pathol. 2004;13:224–33.

    PubMed  CAS  Google Scholar 

  65. Talantov D, Mazumder A, Yu JX, et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 2005;11:7234–42.

    PubMed  CAS  Google Scholar 

  66. de Wit NJ, Rijntjes J, Diepstra JH, et al. Analysis of differential gene expression in human melanocytic tumour lesions by custom made oligonucleotide arrays. Br J Cancer. 2005;92:2249–61.

    PubMed  Google Scholar 

  67. Solassol J, Mangé A. Identification of serum melanoma progression biomarkers through proteomic-based approaches. Expert Rev Proteomics. 2009;6:341–3.

    PubMed  CAS  Google Scholar 

  68. Ugurel S, Utikal J, Becker JC. Tumor biomarkers in melanoma. Cancer Control. 2009;16:219–24.

    PubMed  Google Scholar 

  69. Findeisen P, Peccerella T, Neumaier M, et al. Proteomics for biomarker discovery in malignant melanoma. Expert Rev Dermatol. 2008;3:209–20.

    CAS  Google Scholar 

  70. Mellado B, Del Carmen MV, Colomer D, et al. Tyrosinase mRNA in blood of patients with melanoma treated with adjuvant interferon. J Clin Oncol. 2002;20:4032–9.

    PubMed  CAS  Google Scholar 

  71. Reynolds SR, Albrecht J, Shapiro RL, et al. Changes in the presence of multiple markers of circulating melanoma cells correlate with clinical outcome in patients with melanoma. Clin Cancer Res. 2003;9:1497–502.

    PubMed  CAS  Google Scholar 

  72. Wascher RA, Morton DL, Kuo C, et al. Molecular tumor markers in the blood: early prediction of disease outcome in melanoma patients treated with a melanoma vaccine. J Clin Oncol. 2003;21:2558–63.

    PubMed  CAS  Google Scholar 

  73. Keilholz U, Goldin-Lang P, Bechrakis NE, et al. Quantitative detection of circulating tumor cells in cutaneous and ocular melanoma and quality assessment by real-time reverse transcriptase-polymerase chain reaction. Clin Cancer Res. 2004;10:1605–12.

    PubMed  CAS  Google Scholar 

  74. Koyanagi K, Kuo C, Nakagawa T, et al. Multimarker quantitative real-time PCR detection of circulating melanoma cells in peripheral blood: relation to disease stage in melanoma patients. Clin Chem. 2005;51:981–8.

    PubMed  CAS  Google Scholar 

  75. Koyanagi K, O’Day SJ, Gonzalez R, et al. Microphthalmia transcription factor as a molecular marker for circulating tumor cell detection in blood of melanoma patients. Clin Cancer Res. 2006;12:1137–43.

    PubMed  CAS  Google Scholar 

  76. Strohal R, Mosser R, Kittler H, et al. MART-1/Melan-A and tyrosinase transcripts in peripheral blood of melanoma patients: PCR analyses and follow-up testing in relation to clinical stage and disease progression. Melanoma Res. 2001;11:543–8.

    PubMed  CAS  Google Scholar 

  77. Brownbridge GG, Gold J, Edward M, et al. Evaluation of the use of tyrosinase-specific and melanA/MART-1-specific reverse transcriptase-coupled–polymerase chain reaction to detect melanoma cells in peripheral blood samples from 299 patients with malignant melanoma. Br J Dermatol. 2001;144:279–87.

    PubMed  CAS  Google Scholar 

  78. Palmieri G, Ascierto PA, Perrone F, et al. Prognostic value of circulating melanoma cells detected by reverse transcriptase-polymerase chain reaction. J Clin Oncol. 2003;21:767–73.

    PubMed  CAS  Google Scholar 

  79. Koyanagi K, O’Day SJ, Gonzalez R, et al. Serial monitoring of circulating melanoma cells during neoadjuvant biochemotherapy for stage III melanoma: outcome prediction in a multicenter trial. J Clin Oncol. 2005;23:8057–64.

    PubMed  Google Scholar 

  80. Fidler IJ. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes Memorial Award Lecture. Cancer Res. 1990;50:6130–8.

    PubMed  CAS  Google Scholar 

  81. Osella-Abate S, Savoia P, Quaglino P, et al. Tyrosinase expression in the peripheral blood of stage III melanoma patients is associated with a poor prognosis: a clinical follow-up study of 110 patients. Br J Cancer. 2003;89:1457–62.

    PubMed  CAS  Google Scholar 

  82. Quaglino P, Savoia P, Osella-Abate S, et al. RT-PCR tyrosinase expression in the peripheral blood of melanoma patients. Expert Rev Mol Diagn. 2004;4:727–41.

    PubMed  CAS  Google Scholar 

  83. Voit C, Kron M, Rademaker J, et al. Molecular staging in stage II and III melanoma patients and its effect on long-term survival. J Clin Oncol. 2005;23:1218–27.

    PubMed  CAS  Google Scholar 

  84. Palmieri G, Satriano SM, Budroni M, et al. Serial detection of circulating tumour cells by reverse transcriptase-polymerase chain reaction assays is a marker for poor outcome in patients with malignant melanoma. BMC Cancer. 2006;6:266.

    PubMed  Google Scholar 

  85. Fusi A, Collette S, Busse A, et al. Circulating melanoma cells and distant metastasis-free survival in stage III melanoma patients with or without adjuvant interferon treatment (EORTC 18991 side study). Eur J Cancer. 2009;45:3189–97.

    PubMed  CAS  Google Scholar 

  86. Leidinger P, Keller A, Borries A, et al. High-throughput miRNA profiling of human melanoma blood samples. BMC Cancer. 2010;10:262.

    PubMed  Google Scholar 

  87. Heneghan HM, Miller N, Kelly R, et al. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist. 2010;15:673–82.

    PubMed  Google Scholar 

  88. Pretlow TP, Bailey JM, Herrera GA, et al. Culture in soft agar of melanoma cells separated from human peripheral blood. Br J Cancer. 1986;53:411–4.

    PubMed  CAS  Google Scholar 

  89. Benez A, Schiebel U, Fierlbeck G. Morphologically intact melanoma cells may be detected in peripheral blood of melanoma patients. Recent Results Cancer Res. 2001;158:113–7.

    PubMed  CAS  Google Scholar 

  90. Ulmer A, Schmidt-Kittler O, Fischer J, et al. Immunomagnetic enrichment, genomic characterization, and prognostic impact of circulating melanoma cells. Clin Cancer Res. 2004;10:531–7.

    PubMed  CAS  Google Scholar 

  91. Kitago M, Koyanagi K, Nakamura T, et al. mRNA expression and BRAF mutation in circulating melanoma cells isolated from peripheral blood with high molecular weight melanoma-associated antigen-specific monoclonal antibody beads. Clin Chem. 2009;55:757–64.

    PubMed  CAS  Google Scholar 

  92. Ziegler A, Zangemeister-Wittke U, Stahel RA. Circulating DNA: a new diagnostic gold mine? Cancer Treat Rev. 2002;28:255–71.

    PubMed  CAS  Google Scholar 

  93. Shinozaki M, O’Day SJ, Kitago M, et al. Utility of circulating B-RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy. Clin Cancer Res. 2007;13:2068–74.

    PubMed  CAS  Google Scholar 

  94. Takeuchi H, Fujimoto A, Hoon DS. Detection of mitochondrial DNA alterations in plasma of malignant melanoma patients. Ann NY Acad Sci. 2004;1022:50–4.

    PubMed  CAS  Google Scholar 

  95. Fujiwara Y, Chi DD, Wang H, et al. Plasma DNA microsatellites as tumor-specific markers and indicators of tumor progression in melanoma patients. Cancer Res. 1999;59:1567–71.

    PubMed  CAS  Google Scholar 

  96. Taback B, Fujiwara Y, Wang HJ, et al. Prognostic significance of circulating microsatellite markers in the plasma of melanoma patients. Cancer Res. 2001;61:5723–6.

    PubMed  CAS  Google Scholar 

  97. Taback B, O’Day SJ, Boasberg PD, et al. Circulating DNA microsatellites: molecular determinants of response to biochemotherapy in patients with metastatic melanoma. J Natl Cancer Inst. 2004;96:152–6.

    PubMed  CAS  Google Scholar 

  98. Fujimoto A, O’Day SJ, Taback B, et al. Allelic imbalance on 12q22-23 in serum circulating DNA of melanoma patients predicts disease outcome. Cancer Res. 2004;64:4085–8.

    PubMed  CAS  Google Scholar 

  99. Mori T, O’Day SJ, Umetani N, et al. Predictive utility of circulating methylated DNA in serum of melanoma patients receiving biochemotherapy. J Clin Oncol. 2005;23:9351–8.

    PubMed  CAS  Google Scholar 

  100. Mori T, Martinez SR, O’Day SJ, et al. Estrogen receptor-alpha methylation predicts melanoma progression. Cancer Res. 2006;66:6692–8.

    PubMed  CAS  Google Scholar 

  101. Marini A, Mirmohammadsadegh A, Nambiar S, et al. Epigenetic inactivation of tumor suppressor genes in serum of patients with cutaneous melanoma. J Invest Dermatol. 2006;126:422–31.

    PubMed  CAS  Google Scholar 

  102. Edinger JT, Radfar A, Jukic DM. Two cutaneous malignant melanomas at the same anatomic site: a case report with molecular evaluation. J Cutan Pathol. 2009;36(Suppl 1):74–9.

    PubMed  Google Scholar 

  103. Bahrami S, Cheng L, Wang M, et al. Clonal relationships between epidermotropic metastatic melanomas and their primary lesions: a loss of heterozygosity and X-chromosome inactivation-based analysis. Mod Pathol. 2007;20:821–7.

    PubMed  CAS  Google Scholar 

  104. Katona TM, Jones TD, Wang M, et al. Genetically heterogeneous and clonally unrelated metastases may arise in patients with cutaneous melanoma. Am J Surg Pathol. 2007;31:1029–37.

    PubMed  Google Scholar 

  105. Savoia P, Fava P, Nardò T, et al. Skin metastases of malignant melanoma: a clinical and prognostic survey. Melanoma Res. 2009;19:321–6.

    PubMed  Google Scholar 

  106. Guerriere-Kovach PM, Hunt EL, Patterson JW, et al. Primary melanoma of the skin and cutaneous melanomatous metastases: comparative histologic features and immunophenotypes. Am J Clin Pathol. 2004;122:70–7.

    PubMed  Google Scholar 

  107. Orlow I, Tommasi DV, Bloom B, et al. Evaluation of the clonal origin of multiple primary melanomas using molecular profiling. J Invest Dermatol. 2009;129:1972–82.

    PubMed  CAS  Google Scholar 

  108. Quezado MM, Abati AD, Albuquerque AV, et al. Morphologic diversity in malignant melanoma: the potential use of microdissection and the polymerase chain reaction for diagnosis. Mod Pathol. 1998;11:1010–5.

    PubMed  CAS  Google Scholar 

  109. Blokx WA, Lesterhuis WJ, Andriessen MP, et al. CDKN2A (INK4A-ARF) mutation analysis to distinguish cutaneous melanoma metastasis from a second primary melanoma. Am J Surg Pathol. 2007;31:637–41. Erratum in: Am J Surg Pathol. 2007;31:1137. Lesterhuis, Joost J [corrected to Lesterhuis, W Joost]; Punt, Kees J A ­[corrected to Punt, Cornelis J A].

    Google Scholar 

  110. Wang E, Panelli MC, Zavaglia K, et al. Melanoma-restricted genes. J Transl Med. 2004;2:34.

    PubMed  Google Scholar 

  111. Balaban GB, Herlyn M, Clark Jr WH, et al. Karyotypic evolution in human malignant melanoma. Cancer Genet Cytogenet. 1986;19:113–22.

    PubMed  CAS  Google Scholar 

  112. Balázs M, Adám Z, Treszl A, et al. Chromosomal imbalances in primary and metastatic melanomas revealed by comparative genomic hybridization. Cytometry. 2001;46:222–32.

    PubMed  Google Scholar 

  113. Balázs M, Adám Z, Bégány A, et al. Involvement of chromosome losses in the progression and metastasis formation of a human malignant melanoma. Cancer Genet Cytogenet. 1999;109:114–8.

    PubMed  Google Scholar 

  114. Morita R, Fujimoto A, Hatta N, et al. Comparison of genetic profiles between primary melanomas and their metastases reveals genetic alterations and clonal evolution during progression. J Invest Dermatol. 1998;111:919–24.

    PubMed  CAS  Google Scholar 

  115. Küsters-Vandevelde HV, Keunen JE, Wesseling P, et al. Occurrence of ocular melanoma thirteen years after skin melanoma: two separate primaries or metastatic disease? A case solved with NRAS and CDKN2A (INK4A-ARF) mutational analysis. Virchows Arch. 2008;452:331–6.

    PubMed  Google Scholar 

  116. Torres-Cabala CA, Wang WL, Trent J, et al. Correlation between KIT expression and KIT mutation in melanoma: a study of 173 cases with emphasis on the acral-lentiginous/mucosal type. Mod Pathol. 2009;22:1446–56.

    PubMed  CAS  Google Scholar 

  117. Haqq C, Nosrati M, Sudilovsky D, et al. The gene expression signatures of melanoma progression. Proc Natl Acad Sci USA. 2005;102:6092–7.

    PubMed  CAS  Google Scholar 

  118. Kauffmann A, Rosselli F, Lazar V, et al. High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene. 2008;27:565–73.

    PubMed  CAS  Google Scholar 

  119. North JP, Kageshita T, Pinkel D, et al. Distribution and significance of occult intraepidermal tumor cells surrounding primary melanoma. J Invest Dermatol. 2008;128:2024–30.

    PubMed  CAS  Google Scholar 

  120. Russo AE, Torrisi E, Bevelacqua Y, et al. Melanoma: molecular pathogenesis and emerging target therapies (review). Int J Oncol. 2009;34:1481–9.

    PubMed  CAS  Google Scholar 

  121. Flaherty KT, Hodi FS, Bastian BC. Mutation-driven drug development in melanoma. Curr Opin Oncol. 2010;22:178–83.

    PubMed  CAS  Google Scholar 

  122. Begg CB, Eng KH, Hummer AJ. Statistical tests for clonality. Biometrics. 2007;63:522–30.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Murphy, M.J., Carlson, J.A. (2011). Melanocytic Neoplasms II: Molecular Staging. In: Murphy, M. (eds) Molecular Diagnostics in Dermatology and Dermatopathology. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-60761-171-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-171-4_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-170-7

  • Online ISBN: 978-1-60761-171-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics