Skip to main content

Melanocytic Neoplasms I: Molecular Diagnosis

  • Chapter
  • First Online:
Molecular Diagnostics in Dermatology and Dermatopathology

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

There are many possible indications and potential uses for molecular diagnostic techniques in the evaluation and management of melanocytic neoplasms. These include: (a) the identification of better diagnostic, staging, and prognostic markers; (b) the discovery of novel therapeutic targets; (c) the development of a molecular classification scheme, with the potential to stratify melanomas into subtypes which have similar pathogenesis, prognosis, and treatment responses; (d) the determination of patterns of genetic deletions and/or gains that are associated with different clinical outcomes in patients with metastatic melanoma; (e) an improvement in our ability to accurately classify melanocytic lesions that are currently considered morphologically ambiguous, such as atypical Spitz tumors; (f) the identification of individuals and populations at high-risk for melanoma development; and (g) the application of genetic testing to help identify candidates requiring more comprehensive clinical screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society. Available at http://www.cancer.org/Cancer/SkinCancer-Melanoma/DetailedGuide/melanoma-skin-cancer-key-statistics. Accessed 24 Augt 2010.

  2. Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.

    PubMed  CAS  Google Scholar 

  3. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    PubMed  CAS  Google Scholar 

  4. Pollock PM, Harper UL, Hansen KS, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33:19–20.

    PubMed  CAS  Google Scholar 

  5. Da Forno PD, Fletcher A, Pringle JH, et al. Understanding spitzoid tumours: new insights from molecular pathology. Br J Dermatol. 2008;158:4–14.

    PubMed  Google Scholar 

  6. Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436:720–4.

    PubMed  CAS  Google Scholar 

  7. Wajapeyee N, Serra RW, Zhu X, et al. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132:363–74.

    PubMed  CAS  Google Scholar 

  8. Scurr LL, Pupo GM, Becker TM, et al. IGFBP7 is not required for B-RAF-induced melanocyte senescence. Cell. 2010;141:717–27.

    PubMed  CAS  Google Scholar 

  9. Viros A, Fridlyand J, Bauer J, et al. Improving melanoma classification by integrating genetic and morphologic features. PLoS Med. 2008;5:e120.

    PubMed  Google Scholar 

  10. Edlundh-Rose E, Egyházi S, Omholt K, et al. NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. Melanoma Res. 2006;16:471–8.

    PubMed  CAS  Google Scholar 

  11. Akslen LA, Angelini S, Straume O, et al. BRAF and NRAS mutations are frequent in nodular melanoma but are not associated with tumor cell proliferation or patient survival. J Invest Dermatol. 2005;125:312–7.

    PubMed  CAS  Google Scholar 

  12. Kannengiesser C, Spatz A, Michiels S, et al. Gene expression signature associated with BRAF mutations in human primary cutaneous melanomas. Mol Oncol. 2008;1:425–30.

    PubMed  Google Scholar 

  13. Greene VR, Johnson MM, Grimm EA, et al. Frequencies of NRAS and BRAF mutations increase from the radial to the vertical growth phase in cutaneous melanoma. J Invest Dermatol. 2009;129:1483–8.

    PubMed  CAS  Google Scholar 

  14. Ji Z, Flaherty KT, Tsao H. Molecular therapeutic approaches to melanoma. Mol Aspects Med. 2010;31:194–204.

    PubMed  CAS  Google Scholar 

  15. Flaherty KT, Hodi FS, Bastian BC. Mutation-driven drug development in melanoma. Curr Opin Oncol. 2010;22:178–83.

    PubMed  CAS  Google Scholar 

  16. Flaherty KT, McArthur G. BRAF, a target in melanoma: implications for solid tumor drug development. Cancer. 2010;116:4902–13.

    Google Scholar 

  17. Celebi JT, Ward KM, Wanner M, et al. Evaluation of germline CDKN2A, ARF, CDK4, PTEN, and BRAF alterations in atypical mole syndrome. Clin Exp Dermatol. 2005;30:68–70.

    PubMed  CAS  Google Scholar 

  18. Gast A, Scherer D, Chen B, et al. Somatic alterations in the melanoma genome: a high-resolution array-based comparative genomic hybridization study. Genes Chromosomes Cancer. 2010;49:733–45.

    PubMed  CAS  Google Scholar 

  19. Daniotti M, Oggionni M, Ranzani T, et al. BRAF alterations are associated with complex mutational profiles in malignant melanoma. Oncogene. 2004;23:5968–77.

    PubMed  CAS  Google Scholar 

  20. Jönsson G, Dahl C, Staaf J, et al. Genomic profiling of malignant melanoma using tiling-resolution arrayCGH. Oncogene. 2007;26:4738–48.

    PubMed  Google Scholar 

  21. Eskandarpour M, Kiaii S, Zhu C, et al. Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. Int J Cancer. 2005;115:65–73.

    PubMed  CAS  Google Scholar 

  22. Eskandarpour M, Huang F, Reeves KA, et al. Oncogenic NRAS has multiple effects on the malignant phenotype of human melanoma cells cultured in vitro. Int J Cancer. 2009;124:16–26.

    PubMed  CAS  Google Scholar 

  23. Goel VK, Lazar AJ, Warneke CL, et al. Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Invest Dermatol. 2006;126:154–60.

    PubMed  CAS  Google Scholar 

  24. Platz A, Egyhazi S, Ringborg U, et al. Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol Oncol. 2008;1:395–405.

    PubMed  Google Scholar 

  25. Poynter JN, Elder JT, Fullen DR, et al. BRAF and NRAS mutations in melanoma and melanocytic nevi. Melanoma Res. 2006;16:267–73.

    PubMed  Google Scholar 

  26. Rosso R, Romagosa Y, Kirsner RS. Progression of NRAS and BRAF mutations in cutaneous melanoma. J Invest Dermatol. 2009;129:1318.

    PubMed  CAS  Google Scholar 

  27. Ichii-Nakato N, Takata M, Takayanagi S, et al. High frequency of BRAFV600E mutation in acquired nevi and small congenital nevi, but low frequency of mutation in medium-sized congenital nevi. J Invest Dermatol. 2006;126:2111–8.

    PubMed  CAS  Google Scholar 

  28. Bauer J, Curtin JA, Pinkel D, et al. Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol. 2007;127:179–82.

    PubMed  CAS  Google Scholar 

  29. Curtin JA, Busam K, Pinkel D, et al. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24:4340–6.

    PubMed  CAS  Google Scholar 

  30. Davies MA, Samuels Y. Analysis of the genome to personalize therapy for melanoma. Oncogene. 2010;29:5545–55.

    Google Scholar 

  31. Blokx WA, van Dijk MC, Ruiter DJ. Molecular cytogenetics of cutaneous melanocytic lesions – diagnostic, prognostic and therapeutic aspects. Histopathology. 2010;56:121–32.

    PubMed  Google Scholar 

  32. Torres-Cabala CA, Wang WL, Trent J, et al. Correlation between KIT expression and KIT mutation in melanoma: a study of 173 cases with emphasis on the acral-lentiginous/mucosal type. Mod Pathol. 2009;22:1446–56.

    PubMed  CAS  Google Scholar 

  33. Ashida A, Takata M, Murata H, et al. Pathological activation of KIT in metastatic tumors of acral and mucosal melanomas. Int J Cancer. 2009;124:862–8.

    PubMed  CAS  Google Scholar 

  34. Rivera RS, Nagatsuka H, Gunduz M, et al. C-kit protein expression correlated with activating mutations in KIT gene in oral mucosal melanoma. Virchows Arch. 2008;452:27–32.

    PubMed  CAS  Google Scholar 

  35. Fisher DE. Microphthalmia: a signal responsive transcriptional regulator in development. Pigment Cell Res. 2000;13 Suppl 8:145–9.

    PubMed  Google Scholar 

  36. Jiang X, Zhou J, Yuen NK, et al. Imatinib targeting of KIT-mutant oncoprotein in melanoma. Clin Cancer Res. 2008;14:7726–32.

    PubMed  CAS  Google Scholar 

  37. Hodi FS, Friedlander P, Corless CL, et al. Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol. 2008;26:2046–51.

    PubMed  CAS  Google Scholar 

  38. Lutzky J, Bauer J, Bastian BC. Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res. 2008;21:492–3.

    PubMed  Google Scholar 

  39. Quintás-Cardama A, Lazar AJ, Woodman SE, et al. Complete response of stage IV anal mucosal melanoma expressing KIT Val560Asp to the multikinase inhibitor sorafenib. Nat Clin Pract Oncol. 2008;5:737–40.

    PubMed  Google Scholar 

  40. Wyman K, Atkins MB, Prieto V, et al. Multicenter Phase II trial of high-dose imatinib mesylate in metastatic melanoma: significant toxicity with no clinical efficacy. Cancer. 2006;106:2005–11.

    PubMed  CAS  Google Scholar 

  41. Hofmann UB, Kauczok-Vetter CS, Houben R, et al. Overexpression of the KIT/SCF in uveal melanoma does not translate into clinical efficacy of imatinib mesylate. Clin Cancer Res. 2009;15:324–9.

    PubMed  CAS  Google Scholar 

  42. Ivan D, Niveiro M, Diwan AH, et al. Analysis of protein tyrosine kinases expression in the melanoma metastases of patients treated with Imatinib Mesylate (STI571, Gleevec). J Cutan Pathol. 2006;33:280–5.

    PubMed  Google Scholar 

  43. Dankort D, Curley DP, Cartlidge RA, et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet. 2009;41:544–52.

    PubMed  CAS  Google Scholar 

  44. Madhunapantula SV, Robertson GP. The PTEN-AKT3 signaling cascade as a therapeutic target in melanoma. Pigment Cell Melanoma Res. 2009;22:400–19.

    PubMed  CAS  Google Scholar 

  45. Bastian BC, Wesselmann U, Pinkel D, et al. Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma. J Invest Dermatol. 1999;113:1065–9.

    PubMed  CAS  Google Scholar 

  46. Bastian BC, LeBoit PE, Pinkel D. Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am J Pathol. 2000;157:967–72.

    PubMed  CAS  Google Scholar 

  47. Van Raamsdonk CD, Bezrookove V, Green G, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457:599–602.

    PubMed  Google Scholar 

  48. Gerami P, Pouryazdanparast P, Vemula S, et al. Molecular analysis of a case of nevus of Ota showing progressive evolution to melanoma with intermediate stages resembling cellular blue nevus. Am J Dermatopathol. 2010;32:301–5.

    PubMed  Google Scholar 

  49. Leachman SA, Carucci J, Kohlmann W, et al. Selection criteria for genetic assessment of patients with familial melanoma. J Am Acad Dermatol. 2009;61:677.e1–14.

    PubMed  Google Scholar 

  50. Udayakumar D, Tsao H. Melanoma genetics: an update on risk-associated genes. Hematol Oncol Clin North Am. 2009;23:415–29.vii.

    PubMed  Google Scholar 

  51. Kohlmann W, Dunn K, Leachman S. Role of genetic testing in hereditary melanoma. Expert Rev Dermatol. 2008;3:639–43.

    Google Scholar 

  52. Pho LN, Leachman SA. Genetics of pigmentation and melanoma predisposition. G Ital Dermatol Venereol. 2010;145:37–45.

    PubMed  CAS  Google Scholar 

  53. Valverde P, Healy E, Sikkink S, et al. The Asp84Glu variant of the melanocortin 1 receptor (MC1R) is associated with melanoma. Hum Mol Genet. 1996;5:1663–6.

    PubMed  CAS  Google Scholar 

  54. Kennedy C, ter Huurne J, Berkhout M, et al. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J Invest Dermatol. 2001;117:294–300.

    PubMed  CAS  Google Scholar 

  55. Box NF, Duffy DL, Chen W, et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet. 2001;69:765–73.

    PubMed  CAS  Google Scholar 

  56. Landi MT, Bauer J, Pfeiffer RM, et al. MC1R germline variants confer risk for BRAF-mutant melanoma. Science. 2006;313:521–2.

    PubMed  CAS  Google Scholar 

  57. Fargnoli MC, Pike K, Pfeiffer RM, et al. MC1R variants increase risk of melanomas harboring BRAF mutations. J Invest Dermatol. 2008;128:2485–90.

    PubMed  CAS  Google Scholar 

  58. Hansen C, Wilkinson D, Hansen M, et al. How good are skin cancer clinics at melanoma detection? Number needed to treat variability across a national clinic group in Australia. J Am Acad Dermatol. 2009;61:599–604.

    PubMed  Google Scholar 

  59. Piepkorn M, Busam KJ, Barnhill R, editors. Pathology of melanocytic nevi and malignant melanoma. 2nd ed. New York: Springer; 2004.

    Google Scholar 

  60. Massi D, LeBoit P, editors. Histological diagnosis of nevi and melanoma. Wurzburg, Germany: Steinkopff Verlag Darmstadt; 2004.

    Google Scholar 

  61. Mooi WJ, Krausz T, editors. Pathology of melanocytic disorders. 2nd ed. New York: Oxford University Press; 2007.

    Google Scholar 

  62. McGinnis KS, Lessin SR, Elder DE, et al. Pathology review of cases presenting to a multidisciplinary pigmented lesion clinic. Arch Dermatol. 2002;138:617–21.

    PubMed  Google Scholar 

  63. Lodha S, Saggar S, Celebi JT, et al. Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in the clinical setting. J Cutan Pathol. 2008;35:349–52.

    PubMed  Google Scholar 

  64. Barnhill RL, Argenyi ZB, From L, et al. Atypical Spitz nevi/tumors: lack of consensus for diagnosis, discrimination from melanoma, and prediction of outcome. Hum Pathol. 1999;30:513–20.

    PubMed  CAS  Google Scholar 

  65. Ludgate MW, Fullen DR, Lee J, et al. The atypical Spitz tumor of uncertain biologic potential: a series of 67 patients from a single institution. Cancer. 2009;115:631–41.

    PubMed  Google Scholar 

  66. Mandal RV, Murali R, Lundquist KF, et al. Pigmented epithelioid melanocytoma: favorable outcome after 5-year follow-up. Am J Surg Pathol. 2009;33:1778–82.

    PubMed  Google Scholar 

  67. Prieto VG, Shea CR. Use of immunohistochemistry in melanocytic lesions. J Cutan Pathol. 2008;35 Suppl 2:1–10.

    PubMed  Google Scholar 

  68. Horst B, Ohsie S, Binder SW. Protein biomarkers: differentiation of melanocytic tumors. In: Murphy M, editor. Diagnostic and prognostic biomarkers and therapeutic targets in melanoma. New York: Springer; in press.

    Google Scholar 

  69. Horst B, Ohsie S, Binder SW. Protein biomarkers: prognostication of melanoma. In: Murphy M, editor. Diagnostic and prognostic biomarkers and therapeutic targets in melanoma. New York: Springer; in press.

    Google Scholar 

  70. Gould Rothberg BE, Rimm DL. Biomarkers: the useful and the not so useful – an assessment of molecular prognostic markers for cutaneous melanoma. J Invest Dermatol. 2010;130:1971–87.

    PubMed  CAS  Google Scholar 

  71. Gould BER, Bracken MB, Rimm DL. Tissue biomarkers for prognosis in cutaneous melanoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2009;101:452–74.

    Google Scholar 

  72. Bastian BC, LeBoit PE, Hamm H, et al. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res. 1998;58:2170–5.

    PubMed  CAS  Google Scholar 

  73. Ali L, Helm T, Cheney R, et al. Correlating array comparative genomic hybridization findings with histology and outcome in spitzoid melanocytic neoplasms. Int J Clin Exp Pathol. 2010;3:593–9.

    PubMed  Google Scholar 

  74. Vincek V, Xu S, Fan YS. Comparative genome hybridization analysis of laser-capture microdissected in situ melanoma. J Cutan Pathol. 2010;37:3–7.

    Google Scholar 

  75. Takata M, Maruo K, Kageshita T, et al. Two cases of unusual acral melanocytic tumors: illustration of molecular cytogenetics as a diagnostic tool. Hum Pathol. 2003;34:89–92.

    PubMed  CAS  Google Scholar 

  76. Harvell JD, Kohler S, Zhu S, et al. High-resolution array-based comparative genomic hybridization for distinguishing paraffin-embedded Spitz nevi and melanomas. Diagn Mol Pathol. 2004;13:22–5.

    PubMed  Google Scholar 

  77. Mihic-Probst D, Zhao J, Saremaslani P, et al. Spitzoid malignant melanoma with lymph-node metastasis. Is a copy-number loss on chromosome 6q a marker of malignancy? Virchows Arch. 2001;439:823–6.

    PubMed  CAS  Google Scholar 

  78. Balázs M, Adám Z, Treszl A, et al. Chromosomal imbalances in primary and metastatic melanomas revealed by comparative genomic hybridization. Cytometry. 2001;46:222–32.

    PubMed  Google Scholar 

  79. Maize Jr JC, McCalmont TH, Carlson JA, et al. Genomic analysis of blue nevi and related dermal melanocytic proliferations. Am J Surg Pathol. 2005;29:1214–20.

    PubMed  Google Scholar 

  80. Bastian BC, Xiong J, Frieden IJ, et al. Genetic changes in neoplasms arising in congenital melanocytic nevi: differences between nodular proliferations and melanomas. Am J Pathol. 2002;161:1163–9.

    PubMed  CAS  Google Scholar 

  81. Murphy MJ, Jen M, Chang MW, et al. Molecular diagnosis of a benign proliferative nodule developing in a congenital melanocytic nevus in a 3-month-old infant. J Am Acad Dermatol. 2008;59:518–23.

    PubMed  Google Scholar 

  82. Gaiser T, Kutzner H, Palmedo G, et al. Classifying ambiguous melanocytic lesions with FISH and correlation with clinical long-term follow up. Mod Pathol. 2010;23:413–9.

    PubMed  CAS  Google Scholar 

  83. Gerami P, Jewell SS, Morrison LE, et al. Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol. 2009;33:1146–56. Erratum in: Am J Surg Pathol. 2010;34:688.

    PubMed  Google Scholar 

  84. Gerami P, Wass A, Mafee M, et al. Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Am J Surg Pathol. 2009;33:1783–8.

    PubMed  Google Scholar 

  85. Pouryazdanparast P, Newman M, Mafee M, et al. Distinguishing epithelioid blue nevus from blue nevus-like cutaneous melanoma metastasis using fluorescence in situ hybridization. Am J Surg Pathol. 2009;33:1396–400.

    PubMed  Google Scholar 

  86. Dalton SR, Gerami P, Kolaitis NA, et al. Use of fluorescence in situ hybridization (FISH) to distinguish intranodal nevus from metastatic melanoma. Am J Surg Pathol. 2010;34:231–7.

    PubMed  Google Scholar 

  87. Gerami P, Barnhill RL, Beilfuss BA, et al. Superficial melanocytic neoplasms with pagetoid melanocytosis: a study of interobserver concordance and correlation with FISH. Am J Surg Pathol. 2010;34:816–21.

    PubMed  Google Scholar 

  88. Newman MD, Lertsburapa T, Mirzabeigi M, et al. Fluorescence in situ hybridization as a tool for microstaging in malignant melanoma. Mod Pathol. 2009;22:989–95.

    PubMed  CAS  Google Scholar 

  89. Newman MD, Mirzabeigi M, Gerami P. Chromosomal copy number changes supporting the classification of lentiginous junctional melanoma of the elderly as a subtype of melanoma. Mod Pathol. 2009;22:1258–62.

    PubMed  CAS  Google Scholar 

  90. Busam KJ, Fang Y, Jhanwar SC, et al. Distinction of conjunctival melanocytic nevi from melanomas by fluorescence in situ hybridization. J Cutan Pathol. 2010;37:196–203.

    PubMed  Google Scholar 

  91. Clemente C, Bettio D, Venci A, et al. A fluorescence in situ hybridization (FISH) procedure to assist in differentiating benign from malignant melanocytic lesions. Pathologica. 2009;101:169–74.

    PubMed  CAS  Google Scholar 

  92. Morey AL, Murali R, McCarthy SW, et al. Diagnosis of cutaneous melanocytic tumours by four-colour fluorescence in situ hybridisation. Pathology. 2009;41:383–7.

    PubMed  CAS  Google Scholar 

  93. Zimmermann AK, Hirschmann A, Pfeiffer D, et al. FISH analysis for diagnostic evaluation of challenging melanocytic lesions. Histol Histopathol. 2010;25:1139–47.

    PubMed  CAS  Google Scholar 

  94. Boi S, Leonardi E, Fasanella S, et al. The four-color FISH probe in the diagnosis of melanocytic lesions. J Eur Acad Dermatol Venereol. 2010;24:1235–6.

    Google Scholar 

  95. Battistella M, Prochazkova-Carlotti M, Berrebi D, et al. Two congenital cases of pigmented epithelioid melanocytoma studied by fluorescent in situ hybridization for melanocytic tumors: case reports and review of these recent topics. Dermatology. 2010;221:97–106.

    Google Scholar 

  96. Yamaura M, Takata M, Miyazaki A, et al. Specific dermoscopy patterns and amplifications of the cyclin D1 gene to define histopathologically unrecognizable early lesions of acral melanoma in situ. Arch Dermatol. 2005;141:1413–8.

    PubMed  CAS  Google Scholar 

  97. North JP, Kageshita T, Pinkel D, et al. Distribution and significance of occult intraepidermal tumor cells surrounding primary melanoma. J Invest Dermatol. 2008;128:2024–30.

    PubMed  CAS  Google Scholar 

  98. Isaac AK, Lertsburapa T, Pathria JM, et al. Polyploidy in Spitz nevi: a not uncommon karyotypic abnormality identifiable by fluorescence in situ hybridization. Am J Dermatopathol. 2010;32:144–8.

    PubMed  Google Scholar 

  99. Gerami P, Mafee M, Lurtsbarapa T, et al. Sensitivity of fluorescence in situ hybridization for melanoma diagnosis using RREB1, MYB, Cep6, and 11q13 probes in melanoma subtypes. Arch Dermatol. 2010;146:273–8.

    PubMed  Google Scholar 

  100. Glatz-Krieger K, Pache M, Tapia C, et al. Anatomic site-specific patterns of gene copy number gains in skin, mucosal, and uveal melanomas detected by fluorescence in situ hybridization. Virchows Arch. 2006;449:328–33.

    PubMed  CAS  Google Scholar 

  101. Pouryazdanparast P, Newman M, Mafee M, et al. Malignant melanoma with monster cells showing massive cyclin D1 amplification. Am J Dermatopathol. 2009;31:402–3.

    PubMed  Google Scholar 

  102. Gerami P, Guitart J, Martini M, et al. Cyclin D1 homogeneous staining regions by fluorescent in situ hybridization: a possible indicator of aggressive behavior in melanomas. Arch Dermatol. 2008;144:1235–6.

    PubMed  Google Scholar 

  103. Rákosy Z, Vízkeleti L, Ecsedi S, et al. Characterization of 9p21 copy number alterations in human melanoma by fluorescence in situ hybridization. Cancer Genet Cytogenet. 2008;182:116–21.

    PubMed  Google Scholar 

  104. Cesinaro AM, Schirosi L, Bettelli S, et al. Alterations of 9p21 analysed by FISH and MLPA distinguish atypical spitzoid melanocytic tumours from conventional Spitz’s nevi but do not predict their biological behaviour. Histopathology. 2010;57:515–27.

    Google Scholar 

  105. Ryan D, Rafferty M, Hegarty S, et al. Topoisomerase I amplification in melanoma is associated with more advanced tumours and poor prognosis. Pigment Cell Melanoma Res. 2010;23:542–53.

    PubMed  CAS  Google Scholar 

  106. Casorzo L, Luzzi C, Nardacchione A, et al. Fluorescence in situ hybridization (FISH) evaluation of chromosomes 6, 7, 9 and 10 throughout human melanocytic tumorigenesis. Melanoma Res. 2005;15:155–60.

    PubMed  CAS  Google Scholar 

  107. Wettengel GV, Draeger J, Kiesewetter F, et al. Differentiation between Spitz nevi and malignant melanomas by interphase fluorescence in situ hybridization. Int J Oncol. 1999;14:1177–83.

    PubMed  CAS  Google Scholar 

  108. Moore SR, Persons DL, Sosman JA, et al. Detection of copy number alterations in metastatic melanoma by a DNA fluorescence in situ hybridization probe panel and array comparative genomic hybridization: a southwest oncology group study (S9431). Clin Cancer Res. 2008;14:2927–35.

    PubMed  CAS  Google Scholar 

  109. Sini MC, Manca A, Cossu A, et al. Molecular alterations at chromosome 9p21 in melanocytic naevi and melanoma. Br J Dermatol. 2008;158:243–50.

    PubMed  CAS  Google Scholar 

  110. Hammock L, Cohen C, Carlson G, et al. Chromogenic in situ hybridization analysis of melastatin mRNA expression in melanomas from American Joint Committee on Cancer stage I and II patients with recurrent melanoma. J Cutan Pathol. 2006;33:599–607.

    PubMed  CAS  Google Scholar 

  111. Song JS, Choi J, Kim JH, et al. Diagnostic utility of EWS break-apart fluorescence in situ hybridization in distinguishing between non-cutaneous melanoma and clear cell sarcoma. Pathol Int. 2010;60:608–13.

    PubMed  CAS  Google Scholar 

  112. Hisaoka M, Ishida T, Kuo TT, et al. Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol. 2008;32:452–60.

    PubMed  Google Scholar 

  113. Wang WL, Mayordomo E, Zhang W, et al. Detection and characterization of EWSR1/ATF1 and EWSR1/CREB1 chimeric transcripts in clear cell sarcoma (melanoma of soft parts). Mod Pathol. 2009;22:1201–9.

    PubMed  CAS  Google Scholar 

  114. Antonescu CR, Nafa K, Segal NH, et al. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma–association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res. 2006;12:5356–62.

    PubMed  CAS  Google Scholar 

  115. Antonescu CR, Tschernyavsky SJ, Woodruff JM, et al. Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn. 2002;4:44–52.

    PubMed  CAS  Google Scholar 

  116. Covinsky M, Gong S, Rajaram V, et al. EWS-ATF1 fusion transcripts in gastrointestinal tumors previously diagnosed as malignant melanoma. Hum Pathol. 2005;36:74–81.

    PubMed  CAS  Google Scholar 

  117. Modrek B, Ge L, Pandita A, Lin E, et al. Oncogenic activating mutations are associated with local copy gain. Mol Cancer Res. 2009;7:1244–52.

    PubMed  CAS  Google Scholar 

  118. Chiorino G, Scatolini M. mRNA biomarkers: gene expression profiling studies. In: Murphy M, editor. Diagnostic and prognostic biomarkers and therapeutic targets in melanoma. New York: Springer; in press.

    Google Scholar 

  119. Hoek KS. DNA microarray analyses of melanoma gene expression: a decade in the mines. Pigment Cell Res. 2007;20:466–84.

    PubMed  CAS  Google Scholar 

  120. Ren S, Liu S, Howell Jr P, et al. The impact of genomics in understanding human melanoma progression and metastasis. Cancer Control. 2008;15:202–15.

    PubMed  Google Scholar 

  121. Scatolini M, Grand MM, Grosso E, et al. Altered molecular pathways in melanocytic lesions. Int J Cancer. 2010;126:1869–81.

    PubMed  CAS  Google Scholar 

  122. Riker AI, Enkemann SA, Fodstad O, et al. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics. 2008;1:13.

    PubMed  Google Scholar 

  123. Hoek KS, Eichhoff OM, Schlegel NC, et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 2008;68:650–6.

    PubMed  CAS  Google Scholar 

  124. Talantov D, Mazumder A, Yu JX, et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 2005;11:7234–42.

    PubMed  CAS  Google Scholar 

  125. Koh SS, Opel ML, Wei JP, et al. Molecular classification of melanomas and nevi using gene expression microarray signatures and formalin-fixed and paraffin-embedded tissue. Mod Pathol. 2009;22:538–46.

    PubMed  CAS  Google Scholar 

  126. Kashani-Sabet M, Rangel J, Torabian S, et al. A multi-marker assay to distinguish malignant melanomas from benign nevi. Proc Natl Acad Sci USA. 2009;106:6268–72.

    PubMed  CAS  Google Scholar 

  127. Haqq C, Nosrati M, Sudilovsky D, et al. The gene expression signatures of melanoma progression. Proc Natl Acad Sci USA. 2005;102:6092–7.

    PubMed  CAS  Google Scholar 

  128. Melanoma Diagnostics. http://www.melanomadiagnostics.com/clinical/. Accessed 2 Sept 2010.

  129. DermTech International. http://dermtech.com/technology/melanoma-detection/index.php. Accessed 2 Sept 2010.

  130. Winnepenninckx V, Lazar V, Michiels S, et al. Melanoma Group of the European Organization for Research and Treatment of Cancer. Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst. 2006;98:472–82.

    PubMed  CAS  Google Scholar 

  131. Kauffmann A, Rosselli F, Lazar V, et al. High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene. 2008;27:565–73.

    PubMed  CAS  Google Scholar 

  132. Conway C, Mitra A, Jewell R, et al. Gene expression profiling of paraffin-embedded primary melanoma using the DASL assay identifies increased osteopontin expression as predictive of reduced relapse-free survival. Clin Cancer Res. 2009;15:6939–46.

    PubMed  CAS  Google Scholar 

  133. Jewell R, Conway C, Mitra A, et al. Patterns of expression of DNA repair genes and relapse from melanoma. Clin Cancer Res. 2010;16:5211–21.

    Google Scholar 

  134. Sarasin A, Kauffmann A. Overexpression of DNA repair genes is associated with metastasis: a new hypothesis. Mutat Res. 2008;659:49–55.

    PubMed  CAS  Google Scholar 

  135. Kashani-Sabet M, Venna S, Nosrati M, et al. A multimarker prognostic assay for primary cutaneous melanoma. Clin Cancer Res. 2009;15:6987–92.

    PubMed  CAS  Google Scholar 

  136. Mandruzzato S, Callegaro A, Turcatel G, et al. A gene expression signature associated with survival in metastatic melanoma. J Transl Med. 2006;4:50.

    PubMed  Google Scholar 

  137. John T, Black MA, Toro TT, et al. Predicting clinical outcome through molecular profiling in stage III melanoma. Clin Cancer Res. 2008;14:5173–80.

    PubMed  CAS  Google Scholar 

  138. Bogunovic D, O’Neill DW, Belitskaya-Levy I, et al. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci USA. 2009;106:20429–34.

    PubMed  CAS  Google Scholar 

  139. Jönsson G, Busch C, Knappskog S, et al. Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome. Clin Cancer Res. 2010;16:3356–67.

    PubMed  Google Scholar 

  140. Augustine CK, Jung SH, Sohn I, et al. Gene expression signatures as a guide to treatment strategies for in-transit metastatic melanoma. Mol Cancer Ther. 2010;9:779–90.

    PubMed  CAS  Google Scholar 

  141. Sigalotti L, Covre A, Fratta E, et al. Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies. J Transl Med. 2010;8:56.

    PubMed  Google Scholar 

  142. Howell Jr PM, Liu S, Ren S, et al. Epigenetics in human melanoma. Cancer Control. 2009;16:200–18.

    PubMed  Google Scholar 

  143. Liu S, Ren S, Howell Jr PM, Riker AI. Epigenetic biomarkers. In: Murphy M, editor. Diagnostic and prognostic biomarkers and therapeutic targets in melanoma. New York: Springer; in press.

    Google Scholar 

  144. Mueller DW, Bosserhoff AK. The evolving concept of ‘melano-miRs’- microRNAs in melanomagenesis. Pigment Cell Melanoma Res. 2010;23:620–6.

    Google Scholar 

  145. Mueller DW, Bosserhoff AK. Role of miRNAs in the progression of malignant melanoma. Br J Cancer. 2009;101:551–6.

    PubMed  CAS  Google Scholar 

  146. Takata M, Lin J, Takayanagi S, et al. Genetic and epigenetic alterations in the differential diagnosis of malignant melanoma and spitzoid lesion. Br J Dermatol. 2007;156:1287–94.

    PubMed  CAS  Google Scholar 

  147. Lahtz C, Stranzenbach R, Fiedler E, et al. Methylation of PTEN as a prognostic factor in malignant melanoma of the skin. J Invest Dermatol. 2010;130:620–2.

    PubMed  CAS  Google Scholar 

  148. Tanemura A, Terando AM, Sim MS, et al. CpG island methylator phenotype predicts progression of malignant melanoma. Clin Cancer Res. 2009;15:1801–7.

    PubMed  CAS  Google Scholar 

  149. Mori T, Martinez SR, O’Day SJ, et al. Estrogen receptor-alpha methylation predicts melanoma progression. Cancer Res. 2006;66:6692–8.

    PubMed  CAS  Google Scholar 

  150. Mori T, O’Day SJ, Umetani N, et al. Predictive utility of circulating methylated DNA in serum of melanoma patients receiving biochemotherapy. J Clin Oncol. 2005;23:9351–8.

    PubMed  CAS  Google Scholar 

  151. Shen L, Kondo Y, Ahmed S, et al. Drug sensitivity prediction by CpG island methylation profile in the NCI-60 cancer cell line panel. Cancer Res. 2007;67:11335–43.

    PubMed  CAS  Google Scholar 

  152. Rietschel P, Wolchok JD, Krown S, et al. Phase II study of extended-dose temozolomide in patients with melanoma. J Clin Oncol. 2008;26:2299–304.

    PubMed  CAS  Google Scholar 

  153. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    PubMed  CAS  Google Scholar 

  154. Rosenfeld N, Aharonov R, Meiri E, et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol. 2008;26:462–9.

    PubMed  CAS  Google Scholar 

  155. Satzger I, Mattern A, Kuettler U, et al. MicroRNA-15b represents an independent prognostic parameter and is correlated with tumor cell proliferation and apoptosis in malignant melanoma. Int J Cancer. 2010;126:2553–62.

    PubMed  CAS  Google Scholar 

  156. Jukic DM, Rao UN, Kelly L, et al. MicroRNA profiling analysis of differences between the melanoma of young adults and older adults. J Transl Med. 2010;8:27.

    PubMed  Google Scholar 

  157. Schultz J, Lorenz P, Gross G, et al. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res. 2008;18:549–57.

    PubMed  CAS  Google Scholar 

  158. Segura MF, Belitskaya-Lévy I, Rose AE, et al. Melanoma MicroRNA signature predicts post-recurrence survival. Clin Cancer Res. 2010;16:1577–86.

    PubMed  CAS  Google Scholar 

  159. Caramuta S, Egyházi S, Rodolfo M, et al. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol. 2010;130:2062–70.

    PubMed  CAS  Google Scholar 

  160. Leidinger P, Keller A, Borries A, et al. High-throughput miRNA profiling of human melanoma blood samples. BMC Cancer. 2010;10:262.

    PubMed  Google Scholar 

  161. Heneghan HM, Miller N, Kelly R, et al. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist. 2010;15:673–82.

    PubMed  Google Scholar 

  162. Healy E, Belgaid CE, Takata M, et al. Allelotypes of primary cutaneous melanoma and benign melanocytic nevi. Cancer Res. 1996;56:589–93.

    PubMed  CAS  Google Scholar 

  163. van Dijk MC, Rombout PD, Mooi WJ, et al. Allelic imbalance in the diagnosis of benign, atypical and malignant Spitz tumours. J Pathol. 2002;197:170–8.

    PubMed  Google Scholar 

  164. Takata M, Suzuki T, Ansai S, et al. Genome profiling of melanocytic tumors using multiplex ligation-dependent probe amplification (MLPA): its usefulness as an adjunctive diagnostic tool for melanocytic tumors. J Dermatol Sci. 2005;40:51–7.

    PubMed  CAS  Google Scholar 

  165. van Dijk MC, Rombout PD, Boots-Sprenger SH, et al. Multiplex ligation-dependent probe amplification for the detection of chromosomal gains and losses in formalin-fixed tissue. Diagn Mol Pathol. 2005;14:9–16.

    PubMed  Google Scholar 

  166. Kauffman L, Palma J, Wang Y, et al. Gene expression markers to facilitate melanoma diagnosis in skin biopsies [abstract]. J Cutan Pathol. 2009;36:110.

    Google Scholar 

  167. Lewis TB, Robison JE, Bastien R, et al. Molecular classification of melanoma using real-time quantitative reverse transcriptase-polymerase chain reaction. Cancer. 2005;104:1678–86.

    PubMed  CAS  Google Scholar 

  168. Dadzie OE, Yang S, Emley A, et al. RAS and RAF mutations in banal melanocytic aggregates contiguous with primary cutaneous melanoma: clues to melanomagenesis. Br J Dermatol. 2009;160:368–75.

    PubMed  CAS  Google Scholar 

  169. Rezaul K, Murphy M, Lundgren DH, et al. Combined mass spectrometry- and immunohistochemistry-based approach to determine protein expression in archival melanoma. Pigment Cell Melanoma Res. 2010;23:849–52.

    Google Scholar 

  170. Nathanson KL. Using genetics and genomics strategies to personalize therapy for cancer: focus on melanoma. Biochem Pharmacol. 2010;80:755–61.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedram Gerami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gerami, P., Gammon, B., Murphy, M.J. (2011). Melanocytic Neoplasms I: Molecular Diagnosis. In: Murphy, M. (eds) Molecular Diagnostics in Dermatology and Dermatopathology. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-60761-171-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-171-4_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-170-7

  • Online ISBN: 978-1-60761-171-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics