Skip to main content

Pharmacogenetics and Pharmacogenomics I: Linking Diagnostic Classification to Therapeutic Decisions

  • Chapter
  • First Online:
Molecular Diagnostics in Dermatology and Dermatopathology

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

Innovations in medical therapy have been associated with increasing life expectancy, improved quality of life, and with a decreasing need for hospitalizations and surgery. However, these benefits are not achieved without significant drawbacks. Medications are not completely safe and effective for everyone. Spear et al. [1] analyzed the efficacy of major drugs used to treat several important diseases. The heterogeneity of therapeutic responses was evident, ranging from a low of 25% (for cancer chemotherapeutics) to a high of 80% (for COX-2 inhibitors), with response rates for most drugs falling in the range of 50–75% [1]. Adverse drug reactions (ADRs) represent another important problem, leading to ∼6% of hospitalizations (>2 million per year) and annual health care costs estimated at $1.5–$4 billion in the United States [2–4]. ADRs are now the fourth leading cause of mortality in the United States, resulting in >100,000 deaths per year [2–4]. Drug efficacy and toxicity are affected by a number of factors, including patient age, sex, hepatic and renal function, drug–drug interactions, diet, lifestyle, and comorbidities. Many drugs also have narrow therapeutic indices (i.e., the therapeutic dose is close to the toxic dose). In addition, DNA sequence variations are known to play a major role in the inter-individual variability of drug response and ADRs [1]. Pharmacogenomic testing could facilitate a more targeted approach to treatment, by predicting which patients are more likely to respond to a drug, as well as those at increased risk for developing an ADR [1]. The tailoring of drug therapy to the individual patient (“personalized medicine”) is an exciting possibility for clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spear BB, Heath-Chiozzi M, Huff J. Clinical application of pharmacogenetics. Trends Mol Med. 2001;7:201–4.

    Article  PubMed  CAS  Google Scholar 

  2. Griffin JP. The cost of adverse drug reactions. Adverse Drug React Toxicol Rev. 1997;16:75–8.

    PubMed  CAS  Google Scholar 

  3. Pirmohamed M, Breckenridge AM, Kitteringham NR, et al. Fortnightly review: adverse drug reactions. BMJ. 1998;316:1295–8.

    PubMed  CAS  Google Scholar 

  4. Lazarou J, Pomerantz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998;279:1200–5.

    Article  PubMed  CAS  Google Scholar 

  5. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11.

    Article  PubMed  CAS  Google Scholar 

  6. The International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437:1299–320.

    Article  CAS  Google Scholar 

  7. Huang RS, Ratain MJ. Pharmacogenetics and pharmacogenomics of anticancer agents. CA Cancer J Clin. 2009;59:42–55.

    Article  PubMed  Google Scholar 

  8. Nakamura Y. DNA variations in human and medical genetics: 25 years of my experience. J Hum Genet. 2009;54:1–8.

    Article  PubMed  CAS  Google Scholar 

  9. Yamayoshi Y, Iida E, Tanigawara Y. Cancer pharmacogenomics: international trends. Int J Clin Oncol. 2005;10:5–13.

    Article  PubMed  Google Scholar 

  10. Ryan C, Menter A, Warren RB. The latest advances in pharmacogenetics and pharmacogenomics in the treatment of psoriasis. Mol Diagn Ther. 2010;14:81–93.

    PubMed  CAS  Google Scholar 

  11. International Conference on Harmonization (ICH) – Guidance for Industry: E15 definitions for genomic ­biomarkers, pharmacogenomics, pharmacogenetics, genomic data and sample coding categories. http://www.fda.gov/RegulatoryInformation/Guidances/ucm129286.htm. Accessed 15 Aug 2010.

  12. Grealy R, Griffiths LR. Current status of pharmacogenomics testing for anti-tumor drug therapies: approaches to non-melanoma skin cancer. Mol Diagn Ther. 2009;13:65–72.

    PubMed  CAS  Google Scholar 

  13. Stojadinovic O, Lee B, Vouthounis C, et al. Novel genomic effects of glucocorticoids in epidermal keratinocytes: inhibition of apoptosis, interferon-gamma pathway, and wound healing along with promotion of terminal ­differentiation. J Biol Chem. 2007;282:4021–34.

    Article  PubMed  CAS  Google Scholar 

  14. Nguyen VT, Arredondo J, Chernyavsky AI, et al. Pemphigus vulgaris IgG and methylprednisolone exhibit reciprocal effects on keratinocytes. J Biol Chem. 2004;279:2135–46.

    Article  PubMed  CAS  Google Scholar 

  15. Franchimont D, Galon J, Vacchio MS, et al. Positive effects of glucocorticoids on T cell function by ­up­regulation of IL-7 receptor alpha. J Immunol. 2002;168:2212–8.

    PubMed  CAS  Google Scholar 

  16. Rácz E, Prens EP. Molecular pathophysiology of psoriasis and molecular targets of antipsoriatic therapy. Expert Rev Mol Med. 2009;11:e38.

    Article  PubMed  Google Scholar 

  17. Elder JT, Bruce AT, Gudjonsson JE, et al. Molecular dissection of psoriasis: integrating genetics and biology. J Invest Dermatol. 2010;130:1213–26.

    Article  PubMed  CAS  Google Scholar 

  18. Das RP, Jain AK, Ramesh V. Current concepts in the pathogenesis of psoriasis. Indian J Dermatol. 2009;54:7–12.

    Article  PubMed  Google Scholar 

  19. Asumalahti K, Ameen M, Suomela S, et al. Genetic analysis of PSORS1 distinguishes guttate psoriasis and palmoplantar pustulosis. J Invest Dermatol. 2003;120:627–32.

    Article  PubMed  CAS  Google Scholar 

  20. Mossner R, Kingo K, Kleensang A, et al. Association of TNF -238 and -308 promoter polymorphisms with psoriasis vulgaris and psoriatic arthritis but not with pustulosis palmoplantaris. J Invest Dermatol. 2005;124:282–4.

    Article  PubMed  Google Scholar 

  21. Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol. 2009;129:1339–50.

    Article  PubMed  CAS  Google Scholar 

  22. Leon A, Nguyen A, Letsinger J, et al. An attempt to formulate an evidence-based strategy in the management of moderate-to-severe psoriasis: a review of the efficacy and safety of biologics and prebiologic options. Expert Opin Pharmacother. 2007;8:617–32.

    Article  PubMed  CAS  Google Scholar 

  23. Haider AS, Lowes MA, Gardner H, et al. Novel insight into the agonistic mechanism of alefacept in vivo: differentially expressed genes may serve as biomarkers of response in psoriasis patients. J Immunol. 2007;178:7442–9.

    PubMed  CAS  Google Scholar 

  24. Keeren K, Friedrich M, Gebuhr I, et al. Expression of tolerance associated gene-1, a mitochondrial protein inhibiting T cell activation, can be used to predict response to immune modulating therapies. J Immunol. 2009;183:4077–87.

    Article  PubMed  CAS  Google Scholar 

  25. Oestreicher JL, Walters IB, Kikuchi T, et al. Molecular classification of psoriasis disease-associated genes through pharmacogenomic expression profiling. Pharmacogenomics J. 2001;1:272–87.

    PubMed  CAS  Google Scholar 

  26. Hedrick MN, Lonsdorf AS, Hwang ST, et al. CCR6 as a possible therapeutic target in psoriasis. Expert Opin Ther Targets. 2010;14:911–22.

    Article  PubMed  CAS  Google Scholar 

  27. Lens MB, Dawes M. Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. Br J Dermatol. 2004;150:179–85.

    Article  PubMed  CAS  Google Scholar 

  28. Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  29. Ji Z, Flaherty KT, Tsao H. Molecular therapeutic approaches to melanoma. Mol Aspects Med. 2010;31:194–204.

    Article  PubMed  CAS  Google Scholar 

  30. Tarhini AA, Agarwala SS. Cutaneaus melanoma: available therapy for metastatic disease, Dermatol. Ther. 2006;19:19–25.

    Article  PubMed  CAS  Google Scholar 

  31. Certa U, Wilhelm-Seiler M, Foser S, et al. Expression modes of interferon-alpha inducible genes in sensitive and resistant human melanoma cells stimulated with regular and pegylated interferon-alpha. Gene. 2003;315:79–86.

    Article  PubMed  CAS  Google Scholar 

  32. Craven RA, Stanley AJ, Hanrahan S, et al. Identification of proteins regulated by interferon-alpha in resistant and sensitive malignant melanoma cell lines. Proteomics. 2004;4:3998–4009.

    Article  PubMed  CAS  Google Scholar 

  33. Certa U, Seiler M, Padovan E, et al. High density oligonucleotide array analysis of interferon-alpha2a sensitivity and transcriptional response in melanoma cells. Br J Cancer. 2001;85:107–14.

    Article  PubMed  CAS  Google Scholar 

  34. Certa U, Seiler M, Padovan E, et al. Interferon-a sensitivity in melanoma cells: detection of potential response marker genes. Recent Results Cancer Res. 2002;160:85–91.

    PubMed  CAS  Google Scholar 

  35. Krepler C, Certa U, Wacheck V, et al. Pegylated and conventional interferon-alpha induce comparable transcriptional responses and inhibition of tumor growth in a human melanoma SCID mouse xenotransplantation model. J Invest Dermatol. 2004;123:664–9.

    Article  PubMed  CAS  Google Scholar 

  36. Liu D, O’Day SJ, Yang D, et al. Impact of gene polymorphisms on clinical outcome for stage IV melanoma patients treated with biochemotherapy: an exploratory study. Clin Cancer Res. 2005;11:1237–46.

    PubMed  CAS  Google Scholar 

  37. Ugurel S, Schrama D, Keller G, et al. Impact of the CCR5 gene polymorphism on the survival of metastatic melanoma patients receiving immunotherapy. Cancer Immunol Immunother. 2008;57:685–91.

    Article  PubMed  CAS  Google Scholar 

  38. Clark Jr WH, From L, Bernardino EA, et al. The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res. 1969;29:705–27.

    PubMed  Google Scholar 

  39. Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.

    Article  PubMed  CAS  Google Scholar 

  40. Bastian BC, LeBoit PE, Hamm H, et al. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res. 1998;58:2170–5.

    PubMed  CAS  Google Scholar 

  41. Ren S, Liu S, Howell Jr P, et al. The impact of genomics in understanding human melanoma progression and metastasis. Cancer Control. 2008;15:202–15.

    PubMed  Google Scholar 

  42. Gerami P, Mafee M, Lurtsbarapa T, et al. Sensitivity of fluorescence in situ hybridization for melanoma ­diagnosis using RREB1, MYB, Cep6, and 11q13 probes in melanoma subtypes. Arch Dermatol. 2010;146:273–8.

    Article  PubMed  Google Scholar 

  43. Viros A, Fridlyand J, Bauer J, et al. Improving melanoma classification by integrating genetic and morphologic features. PLoS Med. 2008;5:e120.

    Article  PubMed  CAS  Google Scholar 

  44. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  PubMed  CAS  Google Scholar 

  45. Cohen C, Zavala-Pompa A, Sequeira JH, et al. Mitogen-actived protein kinase activation is an early event in melanoma progression. Clin Cancer Res. 2002;8:3728–33.

    PubMed  CAS  Google Scholar 

  46. Wellbrock C, Hurlstone A. BRAF as therapeutic target in melanoma. Biochem Pharmacol. 2010;80:561–7.

    Article  PubMed  CAS  Google Scholar 

  47. Shepherd C, Puzanov I, Sosman JA. B-RAF inhibitors: an evolving role in the therapy of malignant melanoma. Curr Oncol Rep. 2010;12:146–52.

    Article  PubMed  CAS  Google Scholar 

  48. Flaherty KT, Hodi FS, Bastian BC. Mutation-driven drug development in melanoma. Curr Opin Oncol. 2010;22:178–83.

    Article  PubMed  CAS  Google Scholar 

  49. Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445:851–7.

    Article  PubMed  CAS  Google Scholar 

  50. Nathanson KL. Using genetics and genomics strategies to personalize therapy for cancer: focus on melanoma. Biochem Pharmacol. 2010;80:755–61.

    Article  PubMed  CAS  Google Scholar 

  51. Davies MA, Samuels Y. Analysis of the genome to personalize therapy for melanoma. Oncogene. 2010;29:5545–55.

    Google Scholar 

  52. Lasota J, Miettinen M. Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology. 2008;53:245–66.

    Article  PubMed  CAS  Google Scholar 

  53. Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 2003;21:4342–9.

    Article  PubMed  CAS  Google Scholar 

  54. Frost MJ, Ferrao PT, Hughes TP, et al. Juxtamembrane mutant V560GKit is more sensitive to imatinib (STI571) compared with wild-type c-kit whereas the kinase domain mutant D816VKit is resistant. Mol Cancer Ther. 2002;1:1115–24.

    PubMed  CAS  Google Scholar 

  55. Ma YS, Zeng S, Metcalfe DD, et al. The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood. 2002;99:1741–4.

    Article  PubMed  CAS  Google Scholar 

  56. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24:4340–6.

    Article  PubMed  CAS  Google Scholar 

  57. Torres-Cabala CA, Wang WL, Trent J, et al. Correlation between KIT expression and KIT mutation in melanoma: a study of 173 cases with emphasis on the acral-lentiginous/mucosal type. Mod Pathol. 2009;22:1446–56.

    Article  PubMed  CAS  Google Scholar 

  58. Ashida A, Takata M, Murata H, et al. Pathological activation of KIT in metastatic tumors of acral and mucosal melanomas. Int J Cancer. 2009;124:862–8.

    Article  PubMed  CAS  Google Scholar 

  59. Rivera RS, Nagatsuka H, Gunduz M, et al. C-kit protein expression correlated with activating mutations in KIT gene in oral mucosal melanoma. Virchows Arch. 2008;452:27–32.

    Article  PubMed  CAS  Google Scholar 

  60. Fisher DE. Microphthalmia: a signal responsive transcriptional regulator in development. Pigment Cell Res. 2000;13 Suppl 8:145–9.

    Article  PubMed  Google Scholar 

  61. Jiang X, Zhou J, Yuen NK, et al. Imatinib targeting of KIT-mutant oncoprotein in melanoma. Clin Cancer Res. 2008;14:7726–32.

    Article  PubMed  CAS  Google Scholar 

  62. Hodi FS, Friedlander P, Corless CL, et al. Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol. 2008;26:2046–51.

    Article  PubMed  CAS  Google Scholar 

  63. Lutzky J, Bauer J, Bastian BC. Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res. 2008;21:492–3.

    Article  PubMed  Google Scholar 

  64. Quintás-Cardama A, Lazar AJ, Woodman SE, et al. Complete response of stage IV anal mucosal melanoma expressing KIT Val560Asp to the multikinase inhibitor sorafenib. Nat Clin Pract Oncol. 2008;5:737–40.

    Article  PubMed  CAS  Google Scholar 

  65. Wyman K, Atkins MB, Prieto V, et al. Multicenter Phase II trial of high-dose imatinib mesylate in metastatic melanoma: significant toxicity with no clinical efficacy. Cancer. 2006;106:2005–11.

    Article  PubMed  CAS  Google Scholar 

  66. Kim KB, Eton O, Davis DW, et al. Phase II trial of imatinib mesylate in patients with metastatic melanoma. Br J Cancer. 2008;99:734–40.

    Article  PubMed  CAS  Google Scholar 

  67. Ugurel S, Hildenbrand R, Zimpfer A, et al. Lack of clinical efficacy of imatinib in metastatic melanoma. Br J Cancer. 2005;92:1398–405.

    Article  PubMed  CAS  Google Scholar 

  68. Hofmann UB, Kauczok-Vetter CS, Houben R, et al. Overexpression of the KIT/SCF in uveal melanoma does not translate into clinical efficacy of imatinib mesylate. Clin Cancer Res. 2009;15:324–9.

    Article  PubMed  CAS  Google Scholar 

  69. Ivan D, Niveiro M, Diwan AH, et al. Analysis of protein tyrosine kinases expression in the melanoma ­metastases of patients treated with Imatinib Mesylate (STI571, Gleevec). J Cutan Pathol. 2006;33:280–5.

    Article  PubMed  Google Scholar 

  70. Banerji U. Heat shock protein 90 as a drug target: some like it hot. Clin Cancer Res. 2009;15:9–14.

    PubMed  CAS  Google Scholar 

  71. Sharp S, Workman P. Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res. 2006;95:323–48.

    Article  PubMed  CAS  Google Scholar 

  72. Banerji U, Affolter A, Judson I, et al. BRAF and NRAS mutations in melanoma: potential relationships to ­clinical response to HSP90 inhibitors. Mol Cancer Ther. 2008;7:737–9.

    Article  PubMed  CAS  Google Scholar 

  73. Smalley KSM, Haass NK, Brafford P, et al. Multiple signaling pathways must be targeted to overcome ­therapeutic resistance in cell lines derived from melanoma metastases. Mol Cancer Ther. 2006;5:1136–44.

    Article  PubMed  CAS  Google Scholar 

  74. Breunis WB, Tarazona-Santos E, Chen R, et al. Influence of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) common polymorphisms on outcome in treatment of melanoma patients with CTLA-4 blockade. J Immunother. 2008;31:586–90.

    Article  PubMed  CAS  Google Scholar 

  75. Fischkoff S, Hersch E, Weber J, et al. Durable responses and long-term progression-free survival observed in a phase II study of mdx-010 alone or in combination with dacarbazine (DTIC) in metastatic melanoma. 2005 ASCO Annual Meeting Proceedings. J Clin Oncol. 2005;23 Suppl 1:7525.

    Google Scholar 

  76. Maker AV, Phan GQ, Attia P, et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol. 2005;12:1005–16.

    Article  PubMed  Google Scholar 

  77. Attia P, Phan GQ, Maker AV, et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol. 2005;23:6043–53.

    Article  PubMed  CAS  Google Scholar 

  78. Weber JS, Targan S, Scotland R, et al. Phase II trial of extended dose CTLA-4 antibody ipilimumab (formerly MDX-010) with a multi-peptide vaccine for resected stages IIIC and IV melanoma. 2006 ASCO Annual Meeting Proceedings Part I. J Clin Oncol. 2006;24(Suppl):2510.

    Google Scholar 

  79. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  PubMed  CAS  Google Scholar 

  80. Ribas A, Camacho LH, Lopez-Berestein G, et al. Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675, 206. J Clin Oncol. 2005;23:8968–77.

    Article  PubMed  CAS  Google Scholar 

  81. Bulanhagui CA, Ribas A, Pavlov D, et al. Phase I clinical trials of ticilimumab: Tumor responses are sufficient but not necessary for prolonged survival. J Clin Oncol. 2006;24:461s.

    Google Scholar 

  82. Reuben M, Lee BN, Li C, et al. Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer. 2006;106:2437–44.

    Article  PubMed  CAS  Google Scholar 

  83. Gomez-Navarro J, Sharma A, Bozon VA, et al. Dose and schedule selection for the anti-CTLA4 monoclonal antibody ticilimumab in patients (pts) with metastatic melanoma. J Clin Oncol. 2006;24:460s.

    Article  CAS  Google Scholar 

  84. Sachs DL, Kang S, Hammerberg C, et al. Topical fluorouracil for actinic keratoses and photoaging: a clinical and molecular analysis. Arch Dermatol. 2009;145:659–66.

    Article  PubMed  Google Scholar 

  85. Torres A, Storey L, Anders M, et al. Microarray analysis of aberrant gene expression in actinic keratosis: effect of the Toll-like receptor-7 agonist imiquimod. Br J Dermatol. 2007;157:1132–47.

    Article  PubMed  CAS  Google Scholar 

  86. Torres A, Storey L, Anders M, et al. Immune-mediated changes in actinic keratosis following topical treatment with imiquimod 5% cream. J Transl Med. 2007;5:7.

    Article  PubMed  CAS  Google Scholar 

  87. Fenske NA, Spencer J, Adam F. Actinic keratoses: past, present and future. J Drugs Dermatol. 2010;9(5 Suppl):s45–9.

    PubMed  Google Scholar 

  88. Ulrich M, Drecoll U, Stockfleth E. Emerging drugs for actinic keratosis. Expert Opin Emerg Drugs. 2010;15:545–55.

    Google Scholar 

  89. Jacobs S, Grussendorf-Conen EI, Rösener I, et al. Molecular analysis of the effect of topical imiquimod treatment of HPV 2/27/57-induced common warts. Skin Pharmacol Physiol. 2004;17:258–66.

    Article  PubMed  CAS  Google Scholar 

  90. Urosevic M, Oberholzer PA, Maier T, et al. Imiquimod treatment induces expression of opioid growth factor receptor: a novel tumor antigen induced by interferon-alpha? Clin Cancer Res. 2004;10:4959–70.

    Article  PubMed  CAS  Google Scholar 

  91. Wuest M, Dummer R, Urosevic M. Induction of the members of Notch pathway in superficial basal cell carcinomas treated with imiquimod. Arch Dermatol Res. 2007;299:493–8.

    Article  PubMed  CAS  Google Scholar 

  92. So PL, Tang JY, Epstein EH. Novel investigational drugs for basal cell carcinoma. Expert Opin Investig Drugs. 2010;19:1099–112.

    Google Scholar 

  93. Dummer R, Karpova MB, Barysch MJ. Basal cell carcinomas: molecular abnormalities and molecularly targeted therapies. Expert Rev Dermatol. 2009;4:355–69.

    Article  CAS  Google Scholar 

  94. Walling HW, Fosko SW, Geraminejad PA, et al. Aggressive basal cell carcinoma: presentation, pathogenesis, and management. Cancer Metastasis Rev. 2004;23:389–402.

    Article  PubMed  Google Scholar 

  95. Kovarik CL, Stewart D, Barnard JJ. Lethal basal cell carcinoma secondary to cerebral invasion. J Am Acad Dermatol. 2005;52:149–51.

    Article  PubMed  Google Scholar 

  96. Wadhera A, Fazio M, Bricca G, et al. Metastatic basal cell carcinoma: a case report and literature review. How accurate is our incidence data? Dermatol Online J. 2006;12:7.

    PubMed  Google Scholar 

  97. Williams JA, Guicherit OM, Zaharian BI, et al. Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci USA. 2003;100:4616–21.

    Article  PubMed  CAS  Google Scholar 

  98. Tabs S, Avci O. Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur J Dermatol. 2004;14:96–102.

    PubMed  Google Scholar 

  99. Von Hoff DD, LoRusso PM, Rudin CM, et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009;361:1164–72.

    Article  Google Scholar 

  100. Rudin CM, Hann CL, Laterra J, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009;361:1173–8.

    Article  PubMed  CAS  Google Scholar 

  101. Yauch RL, Dijkgraaf GJ, Alicke B, et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science. 2009;326:572–4.

    Article  PubMed  CAS  Google Scholar 

  102. Dlugosz AA, Talpaz M. Following the hedgehog to new cancer therapies. N Engl J Med. 2009;361:1202–5.

    Article  PubMed  CAS  Google Scholar 

  103. US Food and Drug Administration. Drug development and drug interactions: regulatory guidance and manual for policies and procedures. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm093606.html. Accessed 11 Feb 2010.

  104. Ishiguro A, Toyoshima S, Uyama Y. Current Japanese regulatory situations of pharmacogenomics in drug administration. Expert Rev Clin Pharmacol. 2008;1:505–14.

    Article  CAS  Google Scholar 

  105. Netzer C, Biller-Andorno N. Pharmacogenetic testing, informed consent and the problem of secondary information. Bioethics. 2004;18:344–60.

    Article  PubMed  Google Scholar 

  106. Roses AD. Pharmacogenetics and future drug development and delivery. Lancet. 2000;355:1358–61.

    Article  PubMed  CAS  Google Scholar 

  107. Nuffield Council on Bioethics. Pharmacogenetis: ethical issues. London: Nuffield Council on Bioethics; 2003. http://www.nuffieldbioethics.org/go/ourwork/pharmacogenetics/publication_314.html. Accessed 11 Feb 2010.

  108. Marks AD, Steinberg KK. The ethics of access to online genetic databases: private or public? Am J Pharmacogenomics. 2002;2:207–12.

    Article  PubMed  Google Scholar 

  109. Roses AD. Pharmacogenetics and the practice of medicine. Nature. 2002;405:857–65.

    Article  CAS  Google Scholar 

  110. Fijal BA, Hall JM, Witte JS. Clinical trials in the genomic era: effects of protective genotypes on sample size and duration of trial 2000. Control Clin Trials. 2000;21:7–20.

    Article  PubMed  CAS  Google Scholar 

  111. Gudjonsson JE, Karason A, Runarsdottir EH, et al. Distinct clinical differences between HLA-Cw*0602 positive and negative psoriasis patients – an analysis of 1019 HLA-C- and HLA-B-typed patients. J Invest Dermatol. 2006;126:740–5.

    Article  PubMed  CAS  Google Scholar 

  112. Reich K, Mossner R, Konig IR, et al. Promoter polymorphisms of the genes encoding tumor necrosis factor-alpha and interleukin-1beta are associated with different subtypes of psoriasis characterized by early and late disease onset. J Invest Dermatol. 2002;118:155–63.

    Article  PubMed  CAS  Google Scholar 

  113. Kingo K, Kõks S, Silm H, et al. IL-10 promoter polymorphisms influence disease severity and course in psoriasis. Genes Immun. 2003;4:455–7.

    Article  PubMed  CAS  Google Scholar 

  114. Hensen P, Asadullah K, Windemuth C, et al. Interleukin-10 promoter polymorphism IL10.G and familial early onset psoriasis. Br J Dermatol. 2003;149:381–5.

    Article  PubMed  CAS  Google Scholar 

  115. Craven NM, Jackson CW, Kirby B, et al. Cytokine gene polymorphisms in psoriasis. Br J Dermatol. 2001;144:849–53.

    Article  PubMed  CAS  Google Scholar 

  116. Wongpiyabovorn J, Hirankarn N, Ruchusatsawat K, et al. Association of the interleukin-10 distal promoter (-2763A/C) polymorphism with late-onset psoriasis. Clin Exp Dermatol. 2008;33:186–9.

    Article  PubMed  CAS  Google Scholar 

  117. Young HS, Summers AM, Bhushan M, et al. Single-nucleotide polymorphisms of vascular endothelial growth factor in psoriasis of early onset. J Invest Dermatol. 2004;122:209–15.

    Article  PubMed  CAS  Google Scholar 

  118. Young HS, Summers AM, Read IR, et al. Interaction between genetic control of vascular endothelial growth factor production and retinoid responsiveness in psoriasis. J Invest Dermatol. 2006;126:453–9.

    Article  PubMed  CAS  Google Scholar 

  119. Nair RP, Duffin KC, Helms C, et al. Collaborative Association Study of Psoriasis. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009;41:199–204.

    Article  PubMed  CAS  Google Scholar 

  120. Capon F, Di Meglio P, Szaub J, et al. Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum Genet. 2007;122:201–6.

    Article  PubMed  CAS  Google Scholar 

  121. Cargill M, Schrodi SJ, Chang M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 2007;80:273–90.

    Article  PubMed  CAS  Google Scholar 

  122. Liu Y, Helms C, Liao W, et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 2008;4:e1000041.

    Article  PubMed  CAS  Google Scholar 

  123. Smith RL, Warren RB, Eyre S, et al. Polymorphisms in the IL-12beta and IL-23R genes are associated with psoriasis of early onset in a UK cohort. J Invest Dermatol. 2008;128:1325–7.

    Article  PubMed  CAS  Google Scholar 

  124. Duffin KC, Krueger GG. Genetic variations in cytokines and cytokine receptors associated with psoriasis found by genome-wide association. J Invest Dermatol. 2009;129:827–33.

    Article  PubMed  CAS  Google Scholar 

  125. Criswell LA, Lum RF, Turner KN, et al. The influence of genetic variation in the HLA-DRB1 and LTA-TNF regions on the response to treatment of early rheumatoid arthritis with methotrexate or etanercept. Arthritis Rheum. 2004;50:2750–6.

    Article  PubMed  CAS  Google Scholar 

  126. Padyukov L, Lampa J, Heimburger M, et al. Genetic markers for the efficacy of tumour necrosis factor blocking therapy in rheumatoid arthritis. Ann Rheum Dis. 2003;62:526–9.

    Article  PubMed  CAS  Google Scholar 

  127. Schotte H, Schluter B, Drynda S, et al. Interleukin 10 promoter microsatellite polymorphisms are associated with response to long term treatment with etanercept in patients with rheumatoid arthritis. Ann Rheum Dis. 2005;64:575–81.

    Article  PubMed  CAS  Google Scholar 

  128. Louis E, El Ghoul Z, Vermeire S, et al. Association between polymorphism in IgG Fc receptor IIIa coding gene and biological response to infliximab in Crohn’s disease. Aliment Pharmacol Ther. 2004;19:511–9.

    Article  PubMed  CAS  Google Scholar 

  129. Pierik M, Vermeire S, Steen KV, et al. Tumour necrosis factor-alpha receptor 1 and 2 polymorphisms in inflammatory bowel disease and their association with response to infliximab. Aliment Pharmacol Ther. 2004;20:303–10.

    Article  PubMed  CAS  Google Scholar 

  130. Taylor KD, Plevy SE, Yang H, et al. ANCA pattern and LTA haplotype relationship to clinical responses to anti-TNF antibody treatment in Crohn’s disease. Gastroenterology. 2001;120:1347–55.

    Article  PubMed  CAS  Google Scholar 

  131. Urcelay E, Mendoza JL, Martinez A, et al. IBD5 polymorphisms in inflammatory bowel disease: association with response to infliximab. World J Gastroenterol. 2005;11:1187–92.

    PubMed  CAS  Google Scholar 

  132. Jung M, Sabat R, Krätzschmar J, et al. Expression profiling of IL-10-regulated genes in human monocytes and peripheral blood mononuclear cells from psoriatic patients during IL-10 therapy. Eur J Immunol. 2004;34:481–93.

    Article  PubMed  CAS  Google Scholar 

  133. Chamian F, Lowes MA, Lin SL, et al. Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc Natl Acad Sci USA. 2005;102:2075–80.

    Article  PubMed  CAS  Google Scholar 

  134. Suárez-Fariñas M, Shah KR, Haider AS, et al. Personalized medicine in psoriasis: developing a genomic classifier to predict histological response to Alefacept. BMC Dermatol. 2010;10:1.

    Article  PubMed  CAS  Google Scholar 

  135. Haider AS, Lowes MA, Suárez-Fariñas M, et al. Identification of cellular pathways of “type 1,” Th17 T cells, and TNF- and inducible nitric oxide synthase-producing dendritic cells in autoimmune inflammation through pharmacogenomic study of cyclosporine A in psoriasis. J Immunol. 2008;180:1913–20.

    PubMed  CAS  Google Scholar 

  136. Rappersberger K, Komar M, Ebelin ME, et al. Pimecrolimus identifies a common genomic anti-inflammatory profile, is clinically highly effective in psoriasis and is well tolerated. J Invest Dermatol. 2002;119:876–87.

    Article  PubMed  CAS  Google Scholar 

  137. Koczan D, Guthke R, Thiesen HJ, et al. Gene expression profiling of peripheral blood mononuclear leukocytes from psoriasis patients identifies new immune regulatory molecules. Eur J Dermatol. 2005;15:251–7.

    PubMed  CAS  Google Scholar 

  138. Hochberg M, Zeligson S, Amariglio N, et al. Genomic-scale analysis of psoriatic skin reveals differentially expressed insulin-like growth factor-binding protein-7 after phototherapy. Br J Dermatol. 2007;156:289–300.

    Article  PubMed  CAS  Google Scholar 

  139. Eisen T, Ahmad T, Flaherty KT, et al. Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br J Cancer. 2006;95:581–6.

    Article  PubMed  CAS  Google Scholar 

  140. Flaherty KT, Brose M, Schuchter LM, et al. Sorafenib combined with carboplatin and paclitaxel for metastatic melanoma: progression-free survival and response versus B-raf status. Proc 4th International Conference on Targeted Anti-Cancer Therapy (TAT) 2006. Ann Oncol. 2006;17 Suppl 3:iii33.

    Google Scholar 

  141. Agarwala SS, Keilholz U, Hogg D, et al. Randomized phase III study of paclitaxel plus carboplatin with or without sorafenib as second-line treatment in patients with advanced melanoma. 2007 ASCO Annual Meeting Proceedings Part I. J Clin Oncol. 2007;25 Suppl 18:8510.

    Google Scholar 

  142. Eisen T, Ahmad T, Marais R, et al. Phase I trial of sorafenib (BAY-43-9006) combined with dacarbazine (DTIC) in patients with metastatic melanoma. Eur J Cancer Suppl. 2005;3:349.

    Google Scholar 

  143. McDermott DF, Sosman JA, Gonzalez R, et al. Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: a report from the 11715 Study Group. J Clin Oncol. 2008;26:2178–85.

    Article  PubMed  CAS  Google Scholar 

  144. Lorigan P, Corrie P, Chao D, et al. Phase II trial of sorafenib combined with dacarbazine in metastatic melanoma patients [abstract]. J Clin Oncol. 2006;24:8012.

    Google Scholar 

  145. Amaravadi R, Schuchter LM, McDermott DF, et al. Updated results of a randomized phase II study comparing two schedules of temozolomide in combination with sorafenib in patients with advanced melanoma. J Clin Oncol (ASCO Annu Meet Proc). 2007;25:8527.

    Google Scholar 

  146. Robert C, Lassau N, Angevin E, et al. Phase I trial of sorafenib (BAY 43-9006) in combination with interferon alpha 2a in patients with unresectable and/or metastatic renal cell carcinoma and malignant melanoma. Eur J Cancer Suppl. 2005;3:254.

    Google Scholar 

  147. Gollob JA, Rathmell WK, Richmond TM, et al. Phase II trial of sorafenib plus interferon alfa-2b as first- or second-line therapy in patients with metastatic renal cell cancer. J Clin Oncol. 2007;25:3288–95.

    Article  PubMed  CAS  Google Scholar 

  148. Ryan CW, Goldman BH, Lara Jr PN, et al. Sorafenib with interferon alfa-2b as first-line treatment of advanced renal carcinoma: a phase II study of the Southwest Oncology Group. J Clin Oncol. 2007;25:3296–301.

    Article  PubMed  CAS  Google Scholar 

  149. Bedikian AY, Millward M, Pehamberger H, et al. Oblimersen Melanoma Study Group. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol. 2006;24:4738–45.

    Article  PubMed  CAS  Google Scholar 

  150. Margolin K, Longmate J, Baratta T, et al. CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer. 2005;104:1045–8.

    Article  PubMed  CAS  Google Scholar 

  151. Markovic SN, Geyer SM, Dawkins F, et al. A phase II study of bortezomib in the treatment of metastatic malignant melanoma. Cancer. 2005;103:2584–9.

    Article  PubMed  CAS  Google Scholar 

  152. Kuenen BC, Tabernero J, Baselga J, et al. Efficacy and toxicity of the angiogenesis inhibitor SU5416 as a single agent in patients with advanced renal cell carcinoma, melanoma, and soft tissue sarcoma. Clin Cancer Res. 2003;9:1648–55.

    PubMed  CAS  Google Scholar 

  153. Peterson AC, Swiger S, Stadler WM, et al. Phase II study of the Flk-1 tyrosine kinase inhibitor SU5416 in advanced melanoma. Clin Cancer Res. 2004;10:4048–54.

    Article  PubMed  CAS  Google Scholar 

  154. Mita MM, Rowinsky EK, Forero L, et al. A phase II, pharmacokinetic, and biologic study of semaxanib and thalidomide in patients with metastatic melanoma. Cancer Chemother Pharmacol. 2007;59:165–74.

    Article  PubMed  CAS  Google Scholar 

  155. Lewis KD, Robinson WA, Millward MJ, et al. A phase II study of the heparanase inhibitor PI-88 in patients with advanced melanoma. Invest New Drugs. 2008;26:89–94.

    Article  PubMed  CAS  Google Scholar 

  156. Adjei AA, Cohen RB, Franklin W, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. Clin Oncol. 2008;26:2139–46.

    Article  CAS  Google Scholar 

  157. Lorusso P, Krishnamurthi S, Rinehart JR, et al. A phase 1-2 clinical study of a second generation oral MEK inhibitor, PD 0325901 in patients with advanced cancer [abstract 3011]. J Clin Oncol. 2005;23:16s.

    Article  CAS  Google Scholar 

  158. Varker KA, Biber JE, Kefauver C, et al. A randomized phase 2 trial of bevacizumab with or without daily low-dose interferon alfa-2b in metastatic malignant melanoma. Ann Surg Oncol. 2007;14:2367–76.

    Article  PubMed  Google Scholar 

  159. Banerji U, O’Donnell A, Scurr M, et al. Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol. 2005;23:4152–61.

    Article  PubMed  CAS  Google Scholar 

  160. Gajewski TK, Johnson J, Linette G, et al. Phase II study of the farnesyltransferase inhibitor R115777 in advanced melanoma: CALGB 500104. J Clin Oncol. 2006;24:18S.

    Article  Google Scholar 

  161. Schwartz GK, Robertson S, Shen A, et al. A phase I study of XL281, a selective oral RAF kinase inhibitor, in patients (Pts) with advanced solid tumors [abstract 3513]. J Clin Oncol. 2009;27(Suppl):15.

    Google Scholar 

  162. Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo G. Borroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Murphy, M.J., Pincelli, C., Hoss, D.M., Borroni, R.G. (2011). Pharmacogenetics and Pharmacogenomics I: Linking Diagnostic Classification to Therapeutic Decisions. In: Murphy, M. (eds) Molecular Diagnostics in Dermatology and Dermatopathology. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-60761-171-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-171-4_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-170-7

  • Online ISBN: 978-1-60761-171-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics