Skip to main content

Diagnosis of Arrhythmias with Non-invasive Tools

  • Chapter
  • First Online:
Management of Cardiac Arrhythmias

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1711 Accesses

Abstract

Non-invasive tools play a crucial role in the diagnosis, evaluation, and management of virtually all patients suspected to have or who have had cardiac arrhythmias. These non-invasive tools can help determine the clinical significance and prognostic importance of the arrhythmia and can help assess risk of serious arrhythmic consequences including death. Based on a non-invasive assessment, the need for prophylactic and/or potentially interventional therapy can be better ascertained. We provide a comprehensive, yet, concise overview of non-invasive tools to address practical, important, and contemporaneous issues with a focus on patient management. We emphasize strategies to approach challenging clinical scenarios and address how monitoring adds value in specific clinical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holter NJ (1961) New method for heart studies. Science 134:1214–20

    Google Scholar 

  2. Crawford MH et al (1999) ACC/AHA guidelines for ambulatory electrocardiography. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee to revise the guidelines for ambulatory electrocardiography). Developed in collaboration with the North American Society for Pacing and Electrophysiology. J Am Coll Cardiol 34(3):912–948

    PubMed  CAS  Google Scholar 

  3. Lohman JE (1989) ACC/AHA task force report: guidelines for ambulatory electrocardiography. Circulation 80(4):1098–1100

    PubMed  CAS  Google Scholar 

  4. Zipes DP et al (2006) ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American college of cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (writing committee to develop guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death). J Am Coll Cardiol 48(5):e247–e346

    PubMed  Google Scholar 

  5. Kadish AH et al (2001) ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography: a report of the ACC/AHA/ACP-ASIM task force on clinical competence (ACC/AHA committee to develop a clinical competence statement on electrocardiography and ambulatory electrocardiography) endorsed by the International Society for Holter and Noninvasive Electrocardiology. Circulation 104(25):3169–3178

    PubMed  CAS  Google Scholar 

  6. Epstein AE et al (2008) ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: executive summary. Heart Rhythm 5(6):934–955

    PubMed  Google Scholar 

  7. Fuster V et al (2006) ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: full text: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (writing committee to revise the 2001 guidelines for the management of patients with atrial fibrillation) developed in collaboration with the European heart rhythm association and the heart rhythm society. Europace 8(9):651–745

    PubMed  Google Scholar 

  8. Blomstrom-Lundqvist C et al (2003) ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias – executive summary. a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (writing committee to develop guidelines for the management of patients with supraventricular arrhythmias) developed in collaboration with NASPE-Heart Rhythm Society. J Am Coll Cardiol 42(8):1493–1531

    PubMed  Google Scholar 

  9. Benjamin EJ et al (2009) Prevention of atrial fibrillation: report from a National Heart, Lung, and Blood Institute workshop. Circulation 119(4):606–618

    PubMed  Google Scholar 

  10. Vasamreddy CR et al (2006) Symptomatic and asymptomatic atrial fibrillation in patients undergoing radiofrequency catheter ablation. J Cardiovasc Electrophysiol 17(2):134–139

    PubMed  Google Scholar 

  11. Lickfett L et al (2008) Outcome of atrial fibrillation ablation: assessment of success. Minerva Cardioangiol 56(6):635–641

    PubMed  CAS  Google Scholar 

  12. Wiesel J, Wiesel DJ, Messineo FC (2007) Home monitoring with a modified automatic sphygmomanometer to detect recurrent atrial fibrillation. J Stroke Cerebrovasc Dis 16(1):8–13

    PubMed  Google Scholar 

  13. Elijovich L et al (2009) Intermittent atrial fibrillation may account for a large proportion of otherwise cryptogenic stroke: a study of 30-day cardiac event monitors. J Stroke Cerebrovasc Dis 18(3):185–189

    PubMed  Google Scholar 

  14. Buxton AE et al (2006) ACC/AHA/HRS 2006 key data elements and definitions for electrophysiological studies and procedures: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (ACC/AHA/HRS writing committee to develop data standards on electrophysiology). Circulation 114(23):2534–2570

    PubMed  Google Scholar 

  15. Rothman SA et al (2007) The diagnosis of cardiac arrhythmias: a prospective multi-center randomized study comparing mobile cardiac outpatient telemetry versus standard loop event monitoring. J Cardiovasc Electrophysiol 18(3):241–247

    PubMed  Google Scholar 

  16. Olson JA et al (2007) Utility of mobile cardiac outpatient telemetry for the diagnosis of palpitations, presyncope, syncope, and the assessment of therapy efficacy. J Cardiovasc Electrophysiol 18(5):473–477

    PubMed  Google Scholar 

  17. Laurent G et al (2009) Influence of ventriculoatrial timing on hemodynamics and symptoms during supraventricular tachycardia. J Cardiovasc Electrophysiol 20(2):176–181

    PubMed  Google Scholar 

  18. Gonzalez-Torrecilla E et al (2009) Combined evaluation of bedside clinical variables and the electrocardiogram for the differential diagnosis of paroxysmal atrioventricular reciprocating tachycardias in patients without pre-excitation. J Am Coll Cardiol 53(25):2353–2358

    PubMed  Google Scholar 

  19. Li Y et al (2006) The combined use of esophageal electrocardiogram and multiple right parasternal chest leads in the diagnosis of PSVT and determination of accessory pathways involved: a new simple noninvasive approach. Int J Cardiol 113(3):311–319

    PubMed  Google Scholar 

  20. Bagliani G et al (2003) Atrial activation analysis by surface P wave and multipolar esophageal recording after cardioversion of persistent atrial fibrillation. Pacing Clin Electrophysiol 26(5):1178–1188

    PubMed  Google Scholar 

  21. Liebman J et al (1991) Electrocardiographic body surface potential mapping in the Wolff-Parkinson-White syndrome. Noninvasive determination of the ventricular insertion sites of accessory atrioventricular connections. Circulation 83(3):886–901

    PubMed  CAS  Google Scholar 

  22. Julian DG (1987) The history of coronary care units. Br Heart J 57(6):497–502

    PubMed  CAS  Google Scholar 

  23. Funk M et al (1997) Effect of dedicated monitor watchers on patients’ outcomes. Am J Crit Care 6(4):318–323

    PubMed  CAS  Google Scholar 

  24. Drew BJ et al (2005) AHA scientific statement: practice standards for electrocardiographic monitoring in hospital settings: an American Heart Association Scientific Statement from the Councils on Cardiovascular Nursing, Clinical Cardiology, and Cardiovascular Disease in the Young: endorsed by the International Society of Computerized Electrocardiology and the American Association of Critical-Care Nurses. J Cardiovasc Nurs 20(2):76–106

    PubMed  Google Scholar 

  25. Drew BJ et al (1999) Accuracy of the EASI 12-lead electrocardiogram compared to the standard 12-lead electrocardiogram for diagnosing multiple cardiac abnormalities. J Electrocardiol 32(Suppl):38–47

    PubMed  Google Scholar 

  26. Dhillon SK et al (2009) Telemetry monitoring guidelines for efficient and safe delivery of cardiac rhythm monitoring to noncritical hospital inpatients. Crit Pathw Cardiol 8(3):125–126

    PubMed  Google Scholar 

  27. Brugada J, Brugada P, Brugada R (2000) Sudden death (VI). The Brugada syndrome and right myocardiopathies as a cause of sudden death. The differences and similarities. Rev Esp Cardiol 53(2):275–285

    PubMed  CAS  Google Scholar 

  28. Knight BP et al (1999) Clinical consequences of electrocardiographic artifact mimicking ventricular tachycardia. N Engl J Med 341(17):1270–1274

    PubMed  CAS  Google Scholar 

  29. Kumar SP, Yans J, Kwatra M (1979) Unusual artifacts in electrocardiographic monitoring. J Electrocardiol 12(3):295–298

    PubMed  CAS  Google Scholar 

  30. Chan PS et al (2009) Hospital variation in time to defibrillation after in-hospital cardiac arrest. Arch Intern Med 169(14):1265–1273

    PubMed  Google Scholar 

  31. Nanke T et al (2004) New olter monitoring analysis system: a calculation of the lead vectors. Circ J 68(8):751–756

    PubMed  Google Scholar 

  32. Seidl K et al (1999) Radiofrequency catheter ablation of frequent monomorphic ventricular ectopic activity. J Cardiovasc Electrophysiol 10(7):924–934

    PubMed  CAS  Google Scholar 

  33. Crawford MH et al (1999) ACC/AHA guidelines for ambulatory electrocardiography: executive summary and recommendations. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee to revise the guidelines for ambulatory electrocardiography). Circulation 100(8):886–893

    PubMed  CAS  Google Scholar 

  34. Hallstrom AP et al (1992) Prognostic significance of ventricular premature depolarizations measured 1 year after myocardial infarction in patients with early postinfarction asymptomatic ventricular arrhythmia. J Am Coll Cardiol 20(2):259–264

    PubMed  CAS  Google Scholar 

  35. Bigger JT Jr (1983) Definition of benign versus malignant ventricular arrhythmias: targets for treatment. Am J Cardiol 52(6):47C–54C

    PubMed  Google Scholar 

  36. Bigger JT Jr et al (1981) Prevalence, characteristics and significance of ventricular tachycardia (three or more complexes) detected with ambulatory electrocardiographic recording in the late hospital phase of acute myocardial infarction. Am J Cardiol 48(5):815–823

    PubMed  Google Scholar 

  37. Odemuyiwa O et al (1992) Influence of age on the relation between heart rate variability, left ventricular ejection fraction, frequency of ventricular extrasystoles, and sudden death after myocardial infarction. Br Heart J 67(5):387–391

    PubMed  CAS  Google Scholar 

  38. Lown B (1982) Management of patients at high risk of sudden death. Am Heart J 103(4 Pt 2):689–697

    PubMed  CAS  Google Scholar 

  39. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction (1989) The Cardiac Arrhythmia Suppression Trial (CAST) investigators. N Engl J Med 321(6):406–412

    Google Scholar 

  40. Waldo AL et al (1996) Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD investigators. Survival with oral d-sotalol. Lancet 348(9019):7–12

    PubMed  CAS  Google Scholar 

  41. International Mexiletine and Placebo Antiarrhythmic Coronary Trial: I. Report on arrhythmia and other findings (1984) Impact research group. J Am Coll Cardiol 4(6):1148–1163

    Google Scholar 

  42. Echt DS et al (1991) Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 324(12):781–788

    PubMed  CAS  Google Scholar 

  43. Koyama J et al (2002) Evaluation of heart-rate turbulence as a new prognostic marker in patients with chronic heart failure. Circ J 66(10):902–907

    PubMed  Google Scholar 

  44. Gibson TC, Heitzman MR (1984) Diagnostic efficacy of 24-hour electrocardiographic monitoring for syncope. Am J Cardiol 53(8):1013–1017

    PubMed  CAS  Google Scholar 

  45. Bass EB et al (1990) The duration of Holter monitoring in patients with syncope. Is 24 hours enough? Arch Intern Med 150(5):1073–1078

    CAS  Google Scholar 

  46. Lipski J et al (1976) Value of Holter monitoring in assessing cardiac arrhythmias in symptomatic patients. Am J Cardiol 37(1):102–107

    PubMed  CAS  Google Scholar 

  47. Ayabakan C et al (2000) Analysis of 2017 Holter records in pediatric patients. Turk J Pediatr 42(4):286–293

    PubMed  CAS  Google Scholar 

  48. Sivakumaran S et al (2003) A prospective randomized comparison of loop recorders versus Holter monitors in patients with syncope or presyncope. Am J Med 115(1):1–5

    PubMed  Google Scholar 

  49. Gatzoulis KA et al (2009) Correlation of noninvasive electrocardiography with invasive electrophysiology in syncope of unknown origin: implications from a large syncope database. Ann Noninvasive Electrocardiol 14(2):119–127

    PubMed  Google Scholar 

  50. Moya A et al (2009) Guidelines for the diagnosis and management of syncope (version 2009): the task force for the diagnosis and management of syncope of the European Society of cardiology (ESC). Eur Heart J 30(21):2631–2671

    Google Scholar 

  51. Gula LJ et al (2004) External loop recorders: determinants of diagnostic yield in patients with syncope. Am Heart J 147(4):644–648

    PubMed  Google Scholar 

  52. Schuchert A et al (2003) Diagnostic yield of external electrocardiographic loop recorders in patients with recurrent syncope and negative tilt table test. Pacing Clin Electrophysiol 26(9):1837–1840

    PubMed  Google Scholar 

  53. Kinlay S et al (1996) Cardiac event recorders yield more diagnoses and are more cost-effective than 48-hour Holter monitoring in patients with palpitations. A controlled clinical trial. Ann Intern Med 124(1 Pt 1):16–20

    PubMed  CAS  Google Scholar 

  54. Grupi CJ et al (1998) The contribution of event monitor recorder to the diagnosis of symptoms. Arq Bras Cardiol 70(5):309–314

    PubMed  CAS  Google Scholar 

  55. Linzer M et al (1990) Incremental diagnostic yield of loop electrocardiographic recorders in unexplained syncope. Am J Cardiol 66(2):214–219

    PubMed  CAS  Google Scholar 

  56. Joshi S et al (2009) Prevalence, predictors, and prognosis of atrial fibrillation early after pulmonary vein isolation: findings from 3 months of continuous automatic ECG loop recordings. J Cardiovasc Electrophysiol 20(10):1089–1094

    Google Scholar 

  57. Reiffel JA et al (2005) Comparison of autotriggered memory loop recorders versus standard loop recorders versus 24-hour Holter monitors for arrhythmia detection. Am J Cardiol 95(9):1055–1059

    PubMed  Google Scholar 

  58. Krahn AD et al (2004) The use of monitoring strategies in patients with unexplained syncope–role of the external and implantable loop recorder. Clin Auton Res 14(Suppl 1):55–61

    PubMed  Google Scholar 

  59. Mason PK et al (2003) Usefulness of implantable loop recorders in office-based practice for evaluation of syncope in patients with and without structural heart disease. Am J Cardiol 92(9):1127–1129

    PubMed  Google Scholar 

  60. Brignole M et al (2005) Proposed electrocardiographic classification of spontaneous syncope documented by an implantable loop recorder. Europace 7(1):14–18

    PubMed  Google Scholar 

  61. Entem FR et al (2009) Utility of implantable loop recorders for diagnosing unexplained syncope in clinical practice. Clin Cardiol 32(1):28–31

    PubMed  Google Scholar 

  62. Giada F et al (2007) Recurrent Unexplained Palpitations (RUP) study comparison of implantable loop recorder versus conventional diagnostic strategy. J Am Coll Cardiol 49(19):1951–1956

    PubMed  Google Scholar 

  63. Simantirakis EN et al (2004) Severe bradyarrhythmias in patients with sleep apnoea: the effect of continuous positive airway pressure treatment: a long-term evaluation using an insertable loop recorder. Eur Heart J 25(12):1070–1076

    PubMed  Google Scholar 

  64. Huikuri HV et al (2003) Cardiac Arrhythmias and Risk Stratification after MyocArdial infarction: results of the CARISMA pilot study. Pacing Clin Electrophysiol 26(1 Pt 2):416–419

    PubMed  Google Scholar 

  65. Kabra R et al (2009) The dual role of implantable loop recorder in patients with potentially arrhythmic symptoms: a retrospective single-center study. Pacing Clin Electrophysiol 32(7):908–912

    PubMed  Google Scholar 

  66. Nierop PR et al (2000) Heart rhythm during syncope and presyncope: results of implantable loop recorders. Pacing Clin Electrophysiol 23(10 Pt 1):1532–1538

    PubMed  CAS  Google Scholar 

  67. Rossano J et al (2003) Efficacy of implantable loop recorders in establishing symptom-rhythm correlation in young patients with syncope and palpitations. Pediatrics 112(3 Pt 1):e228–e233

    PubMed  Google Scholar 

  68. van Dam P et al (2009) Improving sensing and detection performance in subcutaneous monitors. J Electrocardiol 42(6):580–583

    Google Scholar 

  69. Brignole M (2009) Different electrocardiographic manifestations of the cardioinhibitory vasovagal reflex. Europace 11(2):144–146

    PubMed  Google Scholar 

  70. Brignole M (2007) International Study on Syncope of Uncertain aEtiology 3 (ISSUE 3): pacemaker therapy for patients with asystolic neurally-mediated syncope: rationale and study design. Europace 9(1):25–30

    PubMed  CAS  Google Scholar 

  71. Brignole M et al (2009) Indications for the use of diagnostic implantable and external ECG loop recorders. Europace 11(5):671–87

    Google Scholar 

  72. Chen J et al (2008) Design of the Pacemaker Remote Follow-up Evaluation and Review (PREFER) trial to assess the clinical value of the remote pacemaker interrogation in the management of pacemaker patients. Trials 9:18

    Google Scholar 

  73. Parsonnet V, Crawford CC, Bernstein AD (1984) The 1981 United States survey of cardiac pacing practices. J Am Coll Cardiol 3(5):1321–1332

    PubMed  CAS  Google Scholar 

  74. Joseph GK et al (2004) Remote interrogation and monitoring of implantable cardioverter defibrillators. J Interv Card Electrophysiol 11(2):161–166

    PubMed  Google Scholar 

  75. Gessman LJ et al (1995) Accuracy and clinical utility of transtelephonic pacemaker follow-up. Pacing Clin Electrophysiol 18(5 Pt 1):1032–1036

    PubMed  CAS  Google Scholar 

  76. Hayashi M et al (2009) Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation 119(18):2426–2434

    PubMed  CAS  Google Scholar 

  77. Tan JH, Scheinman MM (2008) Exercise-induced polymorphic ventricular tachycardia in adults without structural heart disease. Am J Cardiol 101(8):1142–1146

    PubMed  Google Scholar 

  78. Pappas LK et al (2006) Exercise-induced second-degree atrioventricular block. Int J Cardiol 111(3):461–463

    PubMed  Google Scholar 

  79. Beckerman J et al (2005) Exercise-induced ventricular arrhythmias and cardiovascular death. Ann Noninvasive Electrocardiol 10(1):47–52

    PubMed  Google Scholar 

  80. Morshedi-Meibodi A et al (2004) Clinical correlates and prognostic significance of exercise-induced ventricular premature beats in the community: the Framingham Heart Study. Circulation 109(20):2417–2422

    PubMed  Google Scholar 

  81. Bunch TJ et al (2004) The prognostic significance of exercise-induced atrial arrhythmias. J Am Coll Cardiol 43(7):1236–1240

    PubMed  Google Scholar 

  82. Partington S et al (2003) Prevalence and prognostic value of exercise-induced ventricular arrhythmias. Am Heart J 145(1):139–146

    PubMed  Google Scholar 

  83. Sharma AD et al (1987) Sensitivity and specificity of invasive and noninvasive testing for risk of sudden death in Wolff-Parkinson-White syndrome. J Am Coll Cardiol 10(2):373–381

    PubMed  CAS  Google Scholar 

  84. Gibbons RJ et al (1997) ACC/AHA guidelines for exercise testing: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee on exercise testing). Circulation 96(1):345–354

    PubMed  CAS  Google Scholar 

  85. Podrid PJ, Graboys TB (1984) Exercise stress testing in the management of cardiac rhythm disorders. Med Clin North Am 68(5):1139–1152

    PubMed  CAS  Google Scholar 

  86. Graboys TB et al (1982) Long-term survival of patients with malignant ventricular arrhythmia treated with antiarrhythmic drugs. Am J Cardiol 50(3):437–443

    PubMed  CAS  Google Scholar 

  87. Falk RH (1989) Flecainide-induced ventricular tachycardia and fibrillation in patients treated for atrial fibrillation. Ann Intern Med 111(2):107–111

    PubMed  CAS  Google Scholar 

  88. Bricker JT et al (1985) Exercise testing in children with Wolff-Parkinson-White syndrome. Am J Cardiol 55(8):1001–1004

    PubMed  CAS  Google Scholar 

  89. Farrell TG et al (1991) Risk stratification for arrhythmic events in postinfarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal-averaged electrocardiogram. J Am Coll Cardiol 18(3):687–697

    PubMed  CAS  Google Scholar 

  90. Stevenson WG, Ridker PM (1996) Should survivors of myocardial infarction with low ejection fraction be routinely referred to arrhythmia specialists? JAMA 276(6):481–485

    PubMed  CAS  Google Scholar 

  91. Gardner PI et al (1985) Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts. Circulation 72(3):596–611

    PubMed  CAS  Google Scholar 

  92. Richards DA et al (1984) Electrophysiologic substrate for ventricular tachycardia: correlation of properties in vivo and in vitro. Circulation 69(2):369–381

    PubMed  CAS  Google Scholar 

  93. Steinberg JS, Berbari EJ (1996) The signal-averaged electrocardiogram: update on clinical applications. J Cardiovasc Electrophysiol 7(10):972–988

    PubMed  CAS  Google Scholar 

  94. Korhonen P et al (2006) QRS duration in high-resolution methods and standard ECG in risk assessment after first and recurrent myocardial infarctions. Pacing Clin Electrophysiol 29(8):830–836

    PubMed  Google Scholar 

  95. Folino AF et al (2006) Long-term follow-up of the signal-averaged ECG in arrhythmogenic right ventricular cardiomyopathy: correlation with arrhythmic events and echocardiographic findings. Europace 8(6):423–429

    PubMed  Google Scholar 

  96. Bauce B et al (2010) Differences and similarities between arrhythmogenic right ventricular cardiomyopathy and athlete’s heart adaptions. Br J Sports Med 44(2):148–154

    Google Scholar 

  97. Denes P et al (1983) Quantitative analysis of the high-frequency components of the terminal portion of the body surface QRS in normal subjects and in patients with ventricular tachycardia. Circulation 67(5):1129–1138

    PubMed  CAS  Google Scholar 

  98. Simson MB (1981) Use of signals in the terminal QRS complex to identify patients with ventricular tachycardia after myocardial infarction. Circulation 64(2):235–242

    PubMed  CAS  Google Scholar 

  99. Breithardt G et al (1983) Prognostic significance of late ventricular potentials after acute myocardial infarction. Eur Heart J 4(7):487–495

    PubMed  CAS  Google Scholar 

  100. Goldberger JJ et al (1994) Assessment of effects of autonomic stimulation and blockade on the signal-averaged electrocardiogram. Circulation 89(4):1656–1664

    PubMed  CAS  Google Scholar 

  101. Gomes JA et al (2001) Prediction of long-term outcomes by signal-averaged electrocardiography in patients with unsustained ventricular tachycardia, coronary artery disease, and left ventricular dysfunction. Circulation 104(4):436–441

    PubMed  CAS  Google Scholar 

  102. Gottlieb S et al (1995) Improvement in the prognosis of patients with acute myocardial infarction in the 1990s compared with the prethrombolytic era: an analysis by age subgroups. Am J Geriatr Cardiol 4(6):17–31

    PubMed  Google Scholar 

  103. Pedretti R et al (1992) Influence of thrombolysis on signal-averaged electrocardiogram and late arrhythmic events after acute myocardial infarction. Am J Cardiol 69(9):866–872

    PubMed  CAS  Google Scholar 

  104. Denes P et al (1994) Prognostic significance of signal-averaged electrocardiogram after thrombolytic therapy and/or angioplasty during acute myocardial infarction (CAST substudy). Cardiac Arrhythmia Suppression Trial (CAST) SAECG substudy investigators. Am J Cardiol 74(3):216–220

    PubMed  CAS  Google Scholar 

  105. Steinberg JS et al (1994) Effects of thrombolytic therapy administered 6 to 24 hours after myocardial infarction on the signal-averaged ECG. Results of a multicenter randomized trial. LATE ancillary study investigators. Late Assessment of Thrombolytic Efficacy. Circulation 90(2):746–752

    PubMed  CAS  Google Scholar 

  106. Bauer A et al (2005) Reduced prognostic power of ventricular late potentials in post-infarction patients of the reperfusion era. Eur Heart J 26(8):755–761

    PubMed  Google Scholar 

  107. Hartikainen JE et al (1996) Distinction between arrhythmic and nonarrhythmic death after acute myocardial infarction based on heart rate variability, signal-averaged electrocardiogram, ventricular arrhythmias and left ventricular ejection fraction. J Am Coll Cardiol 28(2):296–304

    PubMed  CAS  Google Scholar 

  108. Kuchar DL, Rosenbaum DS (1989) Noninvasive recording of late potentials: current state of the art. Pacing Clin Electrophysiol 12(9):1538–1551

    PubMed  CAS  Google Scholar 

  109. Middlekauff HR et al (1990) Comparison of frequency of late potentials in idiopathic dilated cardiomyopathy and ischemic cardiomyopathy with advanced congestive heart failure and their usefulness in predicting sudden death. Am J Cardiol 66(15):1113–1117

    PubMed  CAS  Google Scholar 

  110. Poll DS et al (1985) Abnormal signal-averaged electrocardiograms in patients with nonischemic congestive cardiomyopathy: relationship to sustained ventricular tachyarrhythmias. Circulation 72(6):1308–1313

    PubMed  CAS  Google Scholar 

  111. Keeling PJ et al (1993) Usefulness of signal-averaged electrocardiogram in idiopathic dilated cardiomyopathy for identifying patients with ventricular arrhythmias. Am J Cardiol 72(1):78–84

    PubMed  CAS  Google Scholar 

  112. Mancini DM, Wong KL, Simson MB (1993) Prognostic value of an abnormal signal-averaged electrocardiogram in patients with nonischemic congestive cardiomyopathy. Circulation 87(4):1083–1092

    PubMed  CAS  Google Scholar 

  113. Fauchier L et al (2000) Long-term prognostic value of time domain analysis of signal-averaged electrocardiography in idiopathic dilated cardiomyopathy. Am J Cardiol 85(5):618–623

    PubMed  CAS  Google Scholar 

  114. Silverman ME et al (1995) Prognostic value of the signal-averaged electrocardiogram and a prolonged QRS in ischemic and nonischemic cardiomyopathy. Am J Cardiol 75(7):460–464

    PubMed  CAS  Google Scholar 

  115. Turrini P et al (1999) Late potentials and ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol 83(8):1214–1219

    PubMed  CAS  Google Scholar 

  116. Blomstrom-Lundqvist C et al (1988) Quantitative analysis of the signal-averaged QRS in patients with arrhythmogenic right ventricular dysplasia. Eur Heart J 9(3):301–312

    PubMed  CAS  Google Scholar 

  117. Epstein AE et al (2008) ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol 51(21):e1–e62

    PubMed  Google Scholar 

  118. Haghjoo M, Arya A, Sadr-Ameli MA (2006) Microvolt T-wave alternans: a review of techniques, interpretation, utility, clinical studies, and future perspectives. Int J Cardiol 109(3):293–306

    PubMed  Google Scholar 

  119. Narayan SM (2008) T-wave alternans testing for ventricular arrhythmias. Prog Cardiovasc Dis 51(2):118–127

    PubMed  Google Scholar 

  120. Adam DR et al (1984) Fluctuations in T-wave morphology and susceptibility to ventricular fibrillation. J Electrocardiol 17(3):209–218

    PubMed  CAS  Google Scholar 

  121. Selvaraj RJ et al (2007) Endocardial and epicardial repolarization alternans in human cardiomyopathy: evidence for spatiotemporal heterogeneity and correlation with body surface T-wave alternans. J Am Coll Cardiol 49(3):338–346

    PubMed  Google Scholar 

  122. Narayan SM (2007) T-wave alternans and human ventricular arrhythmias: what is the link? J Am Coll Cardiol 49(3):347–349

    PubMed  Google Scholar 

  123. Chinushi M et al (1998) Electrophysiological basis of arrhythmogenicity of QT/T alternans in the long-QT syndrome: tridimensional analysis of the kinetics of cardiac repolarization. Circ Res 83(6):614–628

    PubMed  CAS  Google Scholar 

  124. Koller ML et al (2005) Altered dynamics of action potential restitution and alternans in humans with structural heart disease. Circulation 112(11):1542–1548

    PubMed  Google Scholar 

  125. Bloomfield DM, Hohnloser SH, Cohen RJ (2002) Interpretation and classification of microvolt T wave alternans tests. J Cardiovasc Electrophysiol 13(5):502–512

    PubMed  Google Scholar 

  126. Smith JM et al (1988) Electrical alternans and cardiac electrical instability. Circulation 77(1):110–121

    PubMed  CAS  Google Scholar 

  127. Richter S, Duray G, Hohnloser SH (2005) How to analyze T-wave alternans. Heart Rhythm 2(11):1268–1271

    PubMed  Google Scholar 

  128. Bloomfield DM et al (2006) Microvolt T-wave alternans and the risk of death or sustained ventricular arrhythmias in patients with left ventricular dysfunction. J Am Coll Cardiol 47(2):456–463

    PubMed  Google Scholar 

  129. Chow T et al (2006) Prognostic utility of microvolt T-wave alternans in risk stratification of patients with ischemic cardiomyopathy. J Am Coll Cardiol 47(9):1820–1827

    PubMed  Google Scholar 

  130. Chow T et al (2007) Microvolt T-wave alternans identifies patients with ischemic cardiomyopathy who benefit from implantable cardioverter-defibrillator therapy. J Am Coll Cardiol 49(1):50–58

    PubMed  Google Scholar 

  131. Costantini O et al (2009) The ABCD (Alternans Before Cardioverter Defibrillator) trial: strategies using T-wave alternans to improve efficiency of sudden cardiac death prevention. J Am Coll Cardiol 53(6):471–479

    PubMed  Google Scholar 

  132. Gold MR et al (2000) A comparison of T-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. J Am Coll Cardiol 36(7):2247–2253

    PubMed  CAS  Google Scholar 

  133. Rashba EJ et al (2004) Enhanced detection of arrhythmia vulnerability using T wave alternans, left ventricular ejection fraction, and programmed ventricular stimulation: a prospective study in subjects with chronic ischemic heart disease. J Cardiovasc Electrophysiol 15(2):170–176

    PubMed  Google Scholar 

  134. Shalaby AA et al (2007) Microvolt T-wave alternans during atrial and ventricular pacing. Pacing Clin Electrophysiol 30(Suppl 1):S178–S182

    PubMed  Google Scholar 

  135. Chow T et al (2008) Does microvolt T-wave alternans testing predict ventricular tachyarrhythmias in patients with ischemic cardiomyopathy and prophylactic defibrillators? The MASTER (Microvolt T wave alternans testing for risk stratification of post-myocardial infarction patients) trial. J Am Coll Cardiol 52(20):1607–1615

    PubMed  Google Scholar 

  136. Salerno-Uriarte JA et al (2007) Prognostic value of T-wave alternans in patients with heart failure due to nonischemic cardiomyopathy: results of the ALPHA study. J Am Coll Cardiol 50(19):1896–1904

    PubMed  Google Scholar 

  137. Gold MR et al (2008) Role of microvolt T-wave alternans in assessment of arrhythmia vulnerability among patients with heart failure and systolic dysfunction: primary results from the T-wave alternans Sudden Cardiac Death in Heart Failure Trial substudy. Circulation 118(20):2022–2028

    PubMed  Google Scholar 

  138. Grimm W et al (2003) Noninvasive arrhythmia risk stratification in idiopathic dilated cardiomyopathy: results of the Marburg cardiomyopathy study. Circulation 108(23):2883–2891

    PubMed  Google Scholar 

  139. Stein PK et al (1994) Heart rate variability: a measure of cardiac autonomic tone. Am Heart J 127(5):1376–1381

    PubMed  CAS  Google Scholar 

  140. Heart rate variability (1996) Standards of measurement, physiological interpretation, and clinical use. Task force of the European society of cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 17(3):354–381

    Google Scholar 

  141. Odemuyiwa O et al (1991) Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction. Am J Cardiol 68(5):434–439

    PubMed  CAS  Google Scholar 

  142. Ortak J et al (2005) Changes in heart rate, heart rate variability, and heart rate turbulence during evolving reperfused myocardial infarction. Pacing Clin Electrophysiol 28(Suppl 1):S227–S232

    PubMed  Google Scholar 

  143. Chiou CW, Zipes DP (1998) Selective vagal denervation of the atria eliminates heart rate variability and baroreflex sensitivity while preserving ventricular innervation. Circulation 98(4):360–368

    PubMed  CAS  Google Scholar 

  144. La Rovere MT, Pinna GD, Raczak G (2008) Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol 13(2):191–207

    PubMed  Google Scholar 

  145. Adamson PB, Vanoli E (2001) Early autonomic and repolarization abnormalities contribute to lethal arrhythmias in chronic ischemic heart failure: characteristics of a novel heart failure model in dogs with postmyocardial infarction left ventricular dysfunction. J Am Coll Cardiol 37(6):1741–1748

    PubMed  CAS  Google Scholar 

  146. Schwartz PJ, La Rovere MT, Vanoli E (1992) Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation 85(1 Suppl):I77–I91

    PubMed  CAS  Google Scholar 

  147. Stein PK, Deedwania P (2009) Usefulness of abnormal heart rate turbulence to predict cardiovascular mortality in high-risk patients with acute myocardial infarction and left ventricular dysfunction (from the EPHESUS study). Am J Cardiol 103(11):1495–1499

    PubMed  Google Scholar 

  148. Exner DV et al (2007) Noninvasive risk assessment early after a myocardial infarctions, the REFINE study. J Am Coll Cardiol 50(24):2275–2284

    PubMed  Google Scholar 

  149. Moore RK et al (2006) Heart rate turbulence and death due to cardiac decompensation in patients with chronic heart failure. Eur J Heart Fail 8(6):585–590

    PubMed  Google Scholar 

  150. Balcioglu S et al (2007) Heart rate variability and heart rate turbulence in patients with type 2 diabetes mellitus with versus without cardiac autonomic neuropathy. Am J Cardiol 100(5):890–893

    PubMed  Google Scholar 

  151. Yang A et al (2005) Influence of obstructive sleep apnea on heart rate turbulence. Basic Res Cardiol 100(5):439–445

    PubMed  CAS  Google Scholar 

  152. Winfree AT (1983) Sudden cardia death: a problem in topology. Sci Am 248(5):144–149, 152–157, 160–161

    PubMed  CAS  Google Scholar 

  153. Baumert M et al (2004) Forecasting of life threatening arrhythmias using the compression entropy of heart rate. Methods Inf Med 43(2):202–206

    PubMed  CAS  Google Scholar 

  154. Baumert M et al (2002) Heart rate and blood pressure interaction in normotensive and chronic hypertensive pregnancy. Biomed Tech (Berl) 47(Suppl 1 Pt 2):554–556

    Google Scholar 

  155. Recommended guidelines for in-hospital cardiac monitoring of adults for detection of arrhythmia (1991) Emergency Cardiac Care Committee members. J Am Coll Cardiol 18(6):1431–143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sullivan, R.M., Li, W.W., Kendig, A.C., Olshansky, B. (2011). Diagnosis of Arrhythmias with Non-invasive Tools. In: Yan, GX., Kowey, P. (eds) Management of Cardiac Arrhythmias. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-161-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-161-5_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-160-8

  • Online ISBN: 978-1-60761-161-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics