Skip to main content

Mechanisms of Blood–Retinal Barrier Breakdown in Diabetic Retinopathy

  • Chapter
  • First Online:
Visual Dysfunction in Diabetes

Part of the book series: Ophthalmology Research ((OPHRES))

Abstract

The consequences of the currently growing epidemic of type 2 diabetes would soon debilitate the public health (Epidemiol Rev 29:6–28, 2007), unless new ways are rapidly found for prevention or therapy of the various complications of the disease.

Vascular leakage is a prominent feature of diabetic retinopathy (DR), an ocular manifestation of diabetes. Vascular leakage is routinely quantified in patients as an important end point of ocular examinations and also studied at the bench in a variety of in vitro and in vivo assays. However, despite the pertinence of vascular leakage for both research and clinic, the cellular and molecular mechanisms underlying vascular leakage are not well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Y, Beydoun MA. The obesity epidemic in the United States—gender, age, socioeconomic, racial/ethnic, and geographic characteristics. Epidemiol Rev. 2007;29:6–28.

    PubMed  CAS  Google Scholar 

  2. Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967;34:207–17.

    PubMed  CAS  Google Scholar 

  3. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57:178–201.

    PubMed  CAS  Google Scholar 

  4. Marmor MF. Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol. 1999;97:239–49.

    PubMed  CAS  Google Scholar 

  5. Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature. 1987;325:253–7.

    PubMed  CAS  Google Scholar 

  6. Fukushi S, Merola LO, Kinoshita JH. Altering the course of cataracts in diabetic rats. Invest Ophthalmol Vis Sci. 1980;19:313–5.

    PubMed  CAS  Google Scholar 

  7. Schnedl WJ, Ferber S, Johnson JH, Newgard CB. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes. 1994;43:1326–33.

    PubMed  CAS  Google Scholar 

  8. Murata M, Takahashi A, Saito I, Kawanishi S. Site-specific DNA methylation and apoptosis: induction by diabetogenic streptozotocin. Biochem Pharmacol. 1999;57:881–7.

    PubMed  CAS  Google Scholar 

  9. Noda K, Melhorn MI, Zandi S, Frimmel S, Tayyari F, Hisatomi T, et al. An animal model of spontaneous metabolic syndrome: Nile grass rat. FASEB J. 2010;24(7):2443–53.

    PubMed  CAS  Google Scholar 

  10. Mooradian AD, Haas MJ, Chehade JM. Age-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1). Mech Ageing Dev. 2003;124:143–6.

    PubMed  CAS  Google Scholar 

  11. Hafezi-Moghadam A, Thomas KL, Wagner DD. ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage. Am J Physiol Cell Physiol. 2007;292:C1256–62.

    PubMed  CAS  Google Scholar 

  12. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992;258:468–71.

    PubMed  CAS  Google Scholar 

  13. Masliah E, Mallory M, Ge N, Alford M, Veinbergs I, Roses AD. Neurodegeneration in the central nervous system of apoE-deficient mice. Exp Neurol. 1995;136:107–22.

    PubMed  CAS  Google Scholar 

  14. Kakinuma Y, Hama H, Sugiyama F, Yagami K, Goto K, Murakami K, et al. Impaired blood-brain barrier function in angiotensinogen-deficient mice. Nat Med. 1998;4:1078–80.

    PubMed  CAS  Google Scholar 

  15. Yanai K, Saito T, Kakinuma Y, Kon Y, Hirota K, Taniguchi-Yanai K, et al. Renin-dependent cardiovascular functions and renin-independent blood-brain barrier functions revealed by renin-deficient mice. J Biol Chem. 2000;275:5–8.

    PubMed  CAS  Google Scholar 

  16. Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 2004;18:1450–2.

    PubMed  CAS  Google Scholar 

  17. Kurose I, Anderson DC, Miyasaka M, Tamatani T, Paulson JC, Todd RF, et al. Molecular determinants of reperfusion-induced leukocyte adhesion and vascular protein leakage. Circ Res. 1994;74:336–43.

    PubMed  CAS  Google Scholar 

  18. Del Maschio A, Zanetti A, Corada M, Rival Y, Ruco L, Lampugnani MG, et al. Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J Cell Biol. 1996;135:497–510.

    PubMed  Google Scholar 

  19. Bolton SJ, Anthony DC, Perry VH. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience. 1998;86:1245–57.

    PubMed  CAS  Google Scholar 

  20. Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell. 1991;67:1033–6.

    PubMed  CAS  Google Scholar 

  21. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301–14.

    PubMed  CAS  Google Scholar 

  22. Lowe JB. Selectin ligands, leukocyte trafficking, and fucosyltransferase genes. Kidney Int. 1997;51:1418–26.

    PubMed  CAS  Google Scholar 

  23. Miyamoto K, Khosrof S, Bursell SE, Moromizato Y, Aiello LP, Ogura Y, et al. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol. 2000;156:1733–9.

    PubMed  CAS  Google Scholar 

  24. Barouch FC, Miyamoto K, Allport JR, Fujita K, Bursell SE, Aiello LP, et al. Integrin-­mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest Ophthalmol Vis Sci. 2000;41:1153–8.

    PubMed  CAS  Google Scholar 

  25. Gautam N, Olofsson AM, Herwald H, Iversen LF, Lundgren-Akerlund E, Hedqvist P, et al. Heparin-binding protein (HBP/CAP37): a missing link in neutrophil-evoked alteration of vascular permeability. Nat Med. 2001;7:1123–7.

    PubMed  CAS  Google Scholar 

  26. Pereira HA, Shafer WM, Pohl J, Martin LE, Spitznagel JK. CAP37, a human neutrophil-derived chemotactic factor with monocyte specific activity. J Clin Invest. 1990;85:1468–76.

    PubMed  CAS  Google Scholar 

  27. Pereira HA. CAP37, a neutrophil-derived multifunctional inflammatory mediator. J Leukoc Biol. 1995;57:805–12.

    PubMed  CAS  Google Scholar 

  28. Soehnlein O, Xie X, Ulbrich H, Kenne E, Rotzius P, Flodgaard H, et al. Neutrophil-derived heparin-binding protein (HBP/CAP37) deposited on endothelium enhances monocyte arrest under flow conditions. J Immunol. 2005;174:6399–405.

    PubMed  CAS  Google Scholar 

  29. Petersen LC, Birktoft JJ, Flodgaard H. Binding of bovine pancreatic trypsin inhibitor to heparin binding protein/CAP37/azurocidin. Interaction between a Kunitz-type inhibitor and a proteolytically inactive serine proteinase homologue. Eur J Biochem. 1993;214:271–9.

    PubMed  CAS  Google Scholar 

  30. Peters DC, Noble S. Aprotinin: an update of its pharmacology and therapeutic use in open heart surgery and coronary artery bypass surgery. Drugs. 1999;57:233–60.

    PubMed  CAS  Google Scholar 

  31. Emanueli C, Salis MB, Van Linthout S, Meloni M, Desortes E, Silvestre JS, et al. Akt/protein kinase B and endothelial nitric oxide synthase mediate muscular neovascularization induced by tissue kallikrein gene transfer. Circulation. 2004;110:1638–44.

    PubMed  CAS  Google Scholar 

  32. Engles L. Review and application of serine protease inhibition in coronary artery bypass graft surgery. Am J Health Syst Pharm. 2005;62:S9–14.

    PubMed  CAS  Google Scholar 

  33. Guo XH, Zhao MH, Gao Y, Wang SF. Antineutrophil cytoplasmic antibody associated ­vasculitis induced by antithyroid agents. Zhonghua Yi Xue Za Zhi. 2003;83:932–5.

    PubMed  Google Scholar 

  34. Karkouti K, Beattie WS, Dattilo KM, McCluskey SA, Ghannam M, Hamdy A, et al. A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery. Transfusion. 2006;46:327–38.

    PubMed  CAS  Google Scholar 

  35. Mangano DT, Tudor IC, Dietzel C. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006;354:353–65.

    PubMed  CAS  Google Scholar 

  36. Noda K, Nakao S, Zandi S, Engelstadter V, Mashima Y, Hafezi-Moghadam A. Vascular adhesion protein-1 regulates leukocyte transmigration rate in the retina during diabetes. Exp Eye Res. 2009;89:774–81.

    PubMed  CAS  Google Scholar 

  37. Koskinen K, Vainio PJ, Smith DJ, Pihlavisto M, Yla-Herttuala S, Jalkanen S, et al. Granulocyte transmigration through the endothelium is regulated by the oxidase activity of vascular adhesion protein-1 (VAP-1). Blood. 2004;103:3388–95.

    PubMed  CAS  Google Scholar 

  38. Salmi M, Jalkanen S. A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans. Science. 1992;257:1407–9.

    PubMed  CAS  Google Scholar 

  39. Akin E, Aversa J, Steere AC. Expression of adhesion molecules in synovia of patients with treatment-resistant lyme arthritis. Infect Immun. 2001;69:1774–80.

    PubMed  CAS  Google Scholar 

  40. Jaakkola K, Jalkanen S, Kaunismaki K, Vanttinen E, Saukko P, Alanen K, et al. Vascular adhesion protein-1, intercellular adhesion molecule-1 and P-selectin mediate leukocyte binding to ischemic heart in humans. J Am Coll Cardiol. 2000;36:122–9.

    PubMed  CAS  Google Scholar 

  41. Salmi M, Kalimo K, Jalkanen S. Induction and function of vascular adhesion protein-1 at sites of inflammation. J Exp Med. 1993;178:2255–60.

    PubMed  CAS  Google Scholar 

  42. Singh B, Tschernig T, van Griensven M, Fieguth A, Pabst R. Expression of vascular adhesion protein-1 in normal and inflamed mice lungs and normal human lungs. Virchows Arch. 2003;442:491–5.

    PubMed  CAS  Google Scholar 

  43. O’Sullivan J, Unzeta M, Healy J, O’Sullivan MI, Davey G, Tipton KF. Semicarbazide-­sensitive amine oxidases: enzymes with quite a lot to do. Neurotoxicology. 2004;25:303–15.

    PubMed  Google Scholar 

  44. Smith DJ, Salmi M, Bono P, Hellman J, Leu T, Jalkanen S. Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule. J Exp Med. 1998;188:17–27.

    PubMed  CAS  Google Scholar 

  45. Yu PH, Wright S, Fan EH, Lun ZR, Gubisne-Harberle D. Physiological and pathological implications of semicarbazide-sensitive amine oxidase. Biochim Biophys Acta. 2003;1647:193–9.

    PubMed  CAS  Google Scholar 

  46. Noda K, Miyahara S, Nakazawa T, Almulki L, Nakao S, Hisatomi T, et al. Inhibition of vascular adhesion protein-1 suppresses endotoxin-induced uveitis. FASEB J. 2008;22:1094–103.

    PubMed  CAS  Google Scholar 

  47. Noda K, She H, Nakazawa T, Hisatomi T, Nakao S, Almulki L, et al. Vascular adhesion protein-1 blockade suppresses choroidal neovascularization. FASEB J. 2008;22:2928–35.

    PubMed  CAS  Google Scholar 

  48. Almulki L, Noda K, Nakao S, Hisatomi T, Thomas KL, Hafezi-Moghadam A. Localization of vascular adhesion protein-1 (VAP-1) in the human eye. Exp Eye Res. 2010;90:26–32.

    PubMed  CAS  Google Scholar 

  49. Miyahara S, Almulki L, Noda K, Nakazawa T, Hisatomi T, Nakao S, et al. In vivo imaging of endothelial injury in choriocapillaris during endotoxin-induced uveitis. FASEB J. 2008;22:1973–80.

    PubMed  CAS  Google Scholar 

  50. Sun D, Nakao S, Xie F, Zandi S, Schering A, Hafezi-Moghadam A. Superior sensitivity of novel molecular imaging probe: simultaneously targeting two types of endothelial injury markers. FASEB J. 2010;24(5):1532–40.

    PubMed  CAS  Google Scholar 

  51. Hafezi-Moghadam A, Thomas K, Prorock A, Huo Y, Ley K. L-selectin shedding regulates leukocyte recruitment. J Exp Med. 2001;193:863–72.

    PubMed  CAS  Google Scholar 

  52. Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J, D’Amato RJ. A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci. 1996;37:1625–32.

    PubMed  CAS  Google Scholar 

  53. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–5.

    PubMed  CAS  Google Scholar 

  54. Franke TF, Yang S-I, Chan TO, Datta K, Kazlauskas A, Morrison DK, et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell. 1995;81:727–36.

    PubMed  CAS  Google Scholar 

  55. Borg SA, Kerry KE, Royds JA, Battersby RD, Jones TH. Correlation of VEGF production with IL1 alpha and IL6 secretion by human pituitary adenoma cells. Eur J Endocrinol. 2005;152:293–300.

    PubMed  CAS  Google Scholar 

  56. Thurman JM, Renner B, Kunchithapautham K, Ferreira VP, Pangburn MK, Ablonczy Z, et al. Oxidative stress renders retinal pigment epithelial cells susceptible to complement-mediated injury. J Biol Chem. 2009;284:16939–47.

    PubMed  CAS  Google Scholar 

  57. Novak CM, Parfitt DB, Sisk CL, Smale L. Associations between behavior, hormones, and Fos responses to novelty differ in pre- and post-pubertal grass rats. Physiol Behav. 2007;90:125–32.

    PubMed  CAS  Google Scholar 

  58. Kvanta A. Expression and regulation of vascular endothelial growth factor in choroidal fibroblasts. Curr Eye Res. 1995;14:1015–20.

    PubMed  CAS  Google Scholar 

  59. Marneros AG, Fan J, Yokoyama Y, Gerber HP, Ferrara N, Crouch RK, et al. Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. Am J Pathol. 2005;167:1451–9.

    PubMed  CAS  Google Scholar 

  60. Thakker GD, Hajjar DP, Muller WA, Rosengart TK. The role of phosphatidylinositol 3-kinase in vascular endothelial growth factor signaling. J Biol Chem. 1999;274:10002–7.

    PubMed  CAS  Google Scholar 

  61. Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J, Landry J, et al. Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem. 2000;275:10661–72.

    PubMed  CAS  Google Scholar 

  62. Ilan N, Mahooti S, Madri JA. Distinct signal transduction pathways are utilized during the tube formation and survival phases of in vitro angiogenesis. J Cell Sci. 1998;111(Pt 24):3621–31.

    PubMed  CAS  Google Scholar 

  63. Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res. 2001;49:568–81.

    PubMed  CAS  Google Scholar 

  64. Ablonczy Z, Prakasam A, Fant J, Fauq A, Crosson C, Sambamurti K. Pigment epithelium-derived factor maintains retinal pigment epithelium function by inhibiting ­vascular endothelial growth factor-R2 signaling through gamma-secretase. J Biol Chem. 2009;284:30177–86.

    PubMed  CAS  Google Scholar 

  65. Ablonczy Z, Crosson CE. VEGF modulation of retinal pigment epithelium resistance. Exp Eye Res. 2007;85:762–71.

    PubMed  CAS  Google Scholar 

  66. Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21:154–65.

    PubMed  CAS  Google Scholar 

  67. Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res. 2006;312:549–60.

    PubMed  CAS  Google Scholar 

  68. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996;15:290–8.

    PubMed  CAS  Google Scholar 

  69. Achen MG, Jeltsch M, Kukk E, Makinen T, Vitali A, Wilks AF, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A. 1998;95:548–53.

    PubMed  CAS  Google Scholar 

  70. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995;146:1029–39.

    PubMed  CAS  Google Scholar 

  71. Nagy JA, Vasile E, Feng D, Sundberg C, Brown LF, Detmar MJ, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med. 2002;196:1497–506.

    PubMed  CAS  Google Scholar 

  72. Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29:789–91.

    PubMed  CAS  Google Scholar 

  73. Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K, Libermann T, et al. Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol. 2003;162:575–86.

    PubMed  CAS  Google Scholar 

  74. Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson-Welsh L, Cao Y, et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 1997;16:3898–911.

    PubMed  CAS  Google Scholar 

  75. Cao W, Henry MD, Borrow P, Yamada H, Elder JH, Ravkov EV, et al. Identification of a-dystroglycan as a receptor for lymphocytic choriomeningitis virus and lassa fever virus. Science. 1998;282:2079–81.

    PubMed  CAS  Google Scholar 

  76. Albuquerque RJ, Hayashi T, Cho WG, Kleinman ME, Dridi S, Takeda A, et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med. 2009;15:1023–30.

    PubMed  CAS  Google Scholar 

  77. Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med. 2001;194:797–808.

    PubMed  CAS  Google Scholar 

  78. Ishida S, Usui T, Yamashiro K, Kaji Y, Amano S, Ogura Y, et al. VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J Exp Med. 2003;198:483–9.

    PubMed  CAS  Google Scholar 

  79. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–60.

    PubMed  CAS  Google Scholar 

  80. Lu M, Perez VL, Ma N, Miyamoto K, Peng HB, Liao JK, et al. VEGF increases retinal vascular ICAM-1 expression in vivo. Invest Ophthalmol Vis Sci. 1999;40:1808–12.

    PubMed  CAS  Google Scholar 

  81. Qaum T, Xu Q, Joussen AM, Clemens MW, Qin W, Miyamoto K, et al. VEGF-initiated blood-retinal barrier breakdown in early diabetes. Invest Ophthalmol Vis Sci. 2001;42:2408–13.

    PubMed  CAS  Google Scholar 

  82. Miyamoto K, Khosrof S, Bursell SE, Rohan R, Murata T, Clermont AC, et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci U S A. 1999;96:10836–41.

    PubMed  CAS  Google Scholar 

  83. Ishida S, Usui T, Yamashiro K, Kaji Y, Ahmed E, Carrasquillo KG, et al. VEGF164 is proinflammatory in the diabetic retina. Invest Ophthalmol Vis Sci. 2003;44:2155–62.

    PubMed  Google Scholar 

  84. Ambati BK, Joussen AM, Ambati J, Moromizato Y, Guha C, Javaherian K, et al. Angiostatin inhibits and regresses corneal neovascularization. Arch Ophthalmol. 2002;120:1063–8.

    PubMed  CAS  Google Scholar 

  85. Lara-Castillo N, Zandi S, Nakao S, Ito Y, Noda K, She H, et al. Atrial natriuretic peptide reduces vascular leakage and choroidal neovascularization. Am J Pathol. 2009;175:2343–50.

    PubMed  CAS  Google Scholar 

  86. Ciulla TA, Rosenfeld PJ. Anti-vascular endothelial growth factor therapy for neovascular ocular diseases other than age-related macular degeneration. Curr Opin Ophthalmol. 2009;20:166–74.

    PubMed  Google Scholar 

  87. Adamis AP, Altaweel M, Bressler NM, Cunningham Jr ET, Davis MD, Goldbaum M, et al. Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology. 2006;113:23–8.

    PubMed  Google Scholar 

  88. Cunningham Jr ET, Adamis AP, Altaweel M, Aiello LP, Bressler NM, D’Amico DJ, et al. A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology. 2005;112:1747–57.

    PubMed  Google Scholar 

  89. Stahl A, Agostini H, Hansen LL, Feltgen N. Bevacizumab in retinal vein occlusion-results of a prospective case series. Graefes Arch Clin Exp Ophthalmol. 2007;245:1429–36.

    PubMed  CAS  Google Scholar 

  90. Nakazawa T, Takahashi H, Nishijima K, Shimura M, Fuse N, Tamai M, et al. Pitavastatin prevents NMDA-induced retinal ganglion cell death by suppressing leukocyte recruitment. J Neurochem. 2007;100:1018–31.

    PubMed  CAS  Google Scholar 

  91. Nozaki M, Sakurai E, Raisler BJ, Baffi JZ, Witta J, Ogura Y, et al. Loss of SPARC-mediated VEGFR-1 suppression after injury reveals a novel antiangiogenic activity of VEGF-A. J Clin Invest. 2006;116:422–9.

    PubMed  CAS  Google Scholar 

  92. Tombran-Tink J, Chader GG, Johnson LV. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp Eye Res. 1991;53:411–4.

    PubMed  CAS  Google Scholar 

  93. Tombran-Tink J. The neuroprotective and angiogenesis inhibitory serpin, PEDF: new insights into phylogeny, function, and signaling. Front Biosci. 2005;10:2131–49.

    PubMed  CAS  Google Scholar 

  94. Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin HM, Goeddel DV, et al. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature. 1989;338:78–83.

    PubMed  CAS  Google Scholar 

  95. Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV. Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature. 1989;341:68–72.

    PubMed  CAS  Google Scholar 

  96. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339:321–8.

    PubMed  CAS  Google Scholar 

  97. Rollin R, Mediero A, Roldan-Pallares M, Fernandez-Cruz A, Fernandez-Durango R. Natriuretic peptide system in the human retina. Mol Vis. 2004;10:15–22.

    PubMed  CAS  Google Scholar 

  98. Ablonczy Z, Liu Y, Crosson C. VEGF-induced barrier breakdown in fetal human RPE cells and ARPE-19 cells. Invest Ophthalmol Vis Sci. 2010, Submitted.

    Google Scholar 

  99. Derevjanik NL, Vinores SA, Xiao WH, Mori K, Turon T, Hudish T, et al. Quantitative assessment of the integrity of the blood-retinal barrier in mice. Invest Ophthalmol Vis Sci. 2002;43:2462–7.

    PubMed  Google Scholar 

  100. Skondra D, Noda K, Almulki L, Tayyari F, Frimmel S, Nakazawa T, et al. Characterization of azurocidin as a permeability factor in the retina: involvement in VEGF-induced and early diabetic blood-retinal barrier breakdown. Invest Ophthalmol Vis Sci. 2008;49:726–31.

    PubMed  Google Scholar 

  101. Proescholdt MA, Heiss JD, Walbridge S, Muhlhauser J, Capogrossi MC, Oldfield EH, et al. Vascular endothelial growth factor (VEGF) modulates vascular permeability and inflammation in rat brain. J Neuropathol Exp Neurol. 1999;58:613–27.

    PubMed  CAS  Google Scholar 

  102. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    PubMed  CAS  Google Scholar 

  103. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987;238:491–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Rebecca C. Garland and Alexander Schering helped with the preparation of the manuscript and figures, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hafezi-Moghadam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hafezi-Moghadam, A. (2012). Mechanisms of Blood–Retinal Barrier Breakdown in Diabetic Retinopathy. In: Tombran-Tink, J., Barnstable, C., Gardner, T. (eds) Visual Dysfunction in Diabetes. Ophthalmology Research. Springer, New York, NY. https://doi.org/10.1007/978-1-60761-150-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-150-9_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60761-149-3

  • Online ISBN: 978-1-60761-150-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics