Interaction Between Somatosensory and Auditory Systems

Keypoints

  1. 1.

    Studies in animals (guinea pigs) have shown ­projections from the dorsal column nuclei and the caudal trigeminal nucleus to cells in the cochlear nucleus (CN).

     
  2. 2.

    Recordings from single cells in the DCN and evoked potentials indicate that the pathways from the trigeminal nucleus are functional.

     
  3. 3.

    Electrical stimulation of the dorsal column and the cervical dorsal root ganglia elicits short and long latency inhibition separated by a transient excitatory peak in DCN single units.

     
  4. 4.

    Electrical stimulation of the trigeminal nucleus elicits excitation in some DCN units and inhibition in others.

     
  5. 5.

    Dorsal cochlear nucleus neurons show greater ­sensitivity to somatosensory stimulation, and the interaction between somatic stimulation and sound stimulation is greater after exposure to loud sounds that cause hearing loss and probably tinnitus. These findings may be explained by increased innervation of the cochlear nucleus by somatosensory fibers after noise exposure.

     

Keywords

Tinnitus Cross-modal interaction Cochlear nucleus Trigeminal system Dorsal column system 

Abbreviations

ANF

Auditory nerve fibers

CN

Cochlear nucleus

DCN

Dorsal cochlear nucleus

GCD

Granule cell domain

DRG

Dorsal root ganglion

PSTH

Post stimulus time histogram

Sp5

Spinal trigeminal nucleus

Sp5C

Caudal spinal trigeminal nucleus

TG

Trigeminal ganglion

TN

Trigeminal nucleus

VCN

Ventral cochlear nucleus

References

  1. 1.
    Zhan X, T Pongstaporn and DK Ryugo (2006) Projections of the second cervical dorsal root ganglion to the cochlear nucleus in rats. J Comp Neurol 496:335–48.PubMedCrossRefGoogle Scholar
  2. 2.
    Dehmel S, YL Cui and SE Shore (2008) Cross-modal interactions of auditory and somatic inputs in the brainstem and midbrain and their imbalance in tinnitus and deafness. Am J Audiol 17:S193–209.PubMedCrossRefGoogle Scholar
  3. 3.
    Pfaller K and J Arvidsson (1988) Central distribution of trigeminal and upper cervical primary afferents in the rat studied by anterograde transport of horseradish peroxidase conjugated to wheat germ agglutinin. J Comp Neurol 268:91–108.PubMedCrossRefGoogle Scholar
  4. 4.
    Shore SE, S Koehler, M Oldakowski et al (2008) Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss. Eur J Neurosci 27:155–68.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhou J and S Shore (2004) Projections from the trigeminal nuclear complex to the cochlear nuclei: a retrograde and anterograde tracing study in the guinea pig. J Neurosci Res 78:901–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Shore SE, H El Kashlan and J Lu (2003) Effects of trigeminal ganglion stimulation on unit activity of ventral cochlear nucleus neurons. Neuroscience 119:1085–101.PubMedCrossRefGoogle Scholar
  7. 7.
    Shore SE (2005) Multisensory integration in the dorsal cochlear nucleus: unit responses to acoustic and trigeminal ganglion stimulation. Eur J Neurosci 21:3334–48.PubMedCrossRefGoogle Scholar
  8. 8.
    Kanold PO and ED Young (2001) Proprioceptive information from the pinna provides somatosensory input to cat dorsal cochlear nucleus. J Neurosci 21:7848–58.PubMedGoogle Scholar
  9. 9.
    Haenggeli CA, T Pongstaporn, JR Doucet et al (2005) Projections from the spinal trigeminal nucleus to the cochlear nucleus in the rat. J Comp Neurol 484:191–205.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhou J and S Shore (2006) Convergence of spinal trigeminal and cochlear nucleus projections in the inferior colliculus of the guinea pig. J Comp Neurol 495:100–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Wolff A and H Kunzle (1997) Cortical and medullary somatosensory projections to the cochlear nuclear complex in the hedgehog tenrec. Neurosci Lett 221:125–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Wright DD and DK Ryugo (1996) Mossy fiber projections from the cuneate nucleus to the cochlear nucleus in the rat. J Comp Neurol 365:159–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Weinberg RJ and A Rustioni (1987) A cuneocochlear pathway in the rat. Neuroscience 20:209–19.PubMedCrossRefGoogle Scholar
  14. 14.
    Itoh K, H Kamiya, A Mitani et al (1987) Direct projections from dorsal column nuclei and the spinal trigeminal nuclei to the cochlear nuclei in the cat. Brain Res 400:145–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Brodal A (2004) The central nervous system. Third Edition. New York: Oxford University Press.Google Scholar
  16. 16.
    Møller AR (2006) Neural plasticity and disorders of the nervous system. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. 17.
    Jacquin MF, M Barcia and RW Rhoades (1989) Structure-function relationships in rat brainstem subnucleus interpolaris: IV. Projection neurons. J Comp Neurol 282:45–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Shore SE, Z Vass, NL Wys et al (2000) Trigeminal ganglion innervates the auditory brainstem. J Comp Neurol 419:271–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Jain R and S Shore (2006) External inferior colliculus integrates trigeminal and acoustic information: unit responses to trigeminal nucleus and acoustic stimulation in the guinea pig. Neurosci Lett 395:71–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Shore S, J Zhou and S Koehler, (2007) Neural mechanisms underlying somatic tinnitus, in Tinnitus: Pathophysiology and Treatment, Progress in Brain Research, B Langguth et al, Editors. Elsevier: Amsterdam. 107–23.CrossRefGoogle Scholar
  21. 21.
    McKitrick DJ and FR Calaresu (1993) Expression of Fos in rat central nervous system elicited by afferent stimulation of the femoral nerve. Brain Res 632:127–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Saadé NE, YR Bassim, SF Atweh et al (1989) Auditory influences via cochlear nucleus on cuneate neurons in decerebrate-decerebellate cats. Brain Res 486:403–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Saadé NE, AS Frangieh, SF Atweh et al (1989) Dorsal column input to cochlear neurons in decerebrate-decerebellate cats. Brain Res 486:399–402.PubMedCrossRefGoogle Scholar
  24. 24.
    Horng SH and M Sur (2006) Visual activity and cortical rewiring: activity-dependent plasticity of cortical networks, in Reprogramming the Brain, Progress in Brain Research, AR Møller, Editor. Elsevier: Amsterdam. 3–11.CrossRefGoogle Scholar
  25. 25.
    Zhou J, N Nannapaneni and S Shore (2007) Vessicular glutamate transporters 1 and 2 are differentially associated with auditory nerve and spinal trigeminal inputs to the cochlear nucleus. J Comp Neurol 500:777–87.PubMedCrossRefGoogle Scholar
  26. 26.
    Zeng C, N Nannapaneni, J Zhou et al (2009) Cochlear damage changes the distribution of vesicular glutamate transporters associated with auditory and nonauditory inputs to the cochlear nucleus. J Neurosci 29:4210–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Morest DK, MD Ard and D Yurgelun-Todd (1979) Degeneration in the central auditory pathways after acoustic deprivation or over-stimulation in the cat. Anat Rec 193:750.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonUSA

Personalised recommendations