Advertisement

The Pharmacologist

  • Ana Belén ElgoyhenEmail author
  • Carla Vanina Rothlin
Chapter
  • 4.1k Downloads

Keypoints

  1. 1.

    One in 10 adults has subjective tinnitus, and for 1 in 100 adults, tinnitus severely affects their quality of life.

     
  2. 2.

    Despite the significant unmet clinical need for a safe and effective drug targeting tinnitus relief, there is currently not a single FDA-approved drug on the market.

     
  3. 3.

    Since in some individuals, tinnitus causes irritability, agitation, stress, depression, insomnia, and interferes with normal life, even a drug that produces a small but significant effect would have a huge therapeutic impact.

     
  4. 4.

    A glimpse of hope is appearing in the near future, as some pharmaceutical industries now have compounds targeting tinnitus in their pipeline.

     
  5. 5.

    If these compounds finally reach the market, they will set a new era that will revolutionize the treatment of tinnitus.

     

Keywords

Tinnitus Phantom sound Animal models Lead compounds Drug discovery 

References

  1. 1.
    Eggermont JJ (2007) Pathophysiology of tinnitus. Prog Brain Res 166:19–35.PubMedCrossRefGoogle Scholar
  2. 2.
    Eggermont JJ (2008) Role of auditory cortex in noise- and drug-induced tinnitus. Am J Audiol 17:S162–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Kaltenbach JA and DA Godfrey (2008) Dorsal cochlear nucleus hyperactivity and tinnitus: are they related? Am J Audiol 17:S148–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Bauer CA, JG Turner, DM Caspary et al (2008) Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res 86:2564–78.PubMedCrossRefGoogle Scholar
  5. 5.
    Lanting CP, E De Kleine, H Bartels et al (2008) Functional imaging of unilateral tinnitus using fMRI. Acta Otolaryngol 128:415–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Reyes SA, RJ Salvi, RF Burkard et al (2002) Brain imaging of the effects of lidocaine on tinnitus. Hear Res 171:43–50.PubMedCrossRefGoogle Scholar
  7. 7.
    Melcher JR, IS Sigalovsky, JJ Guinan, Jr. et al (2000) Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J Neurophysiol 83:1058–72.PubMedGoogle Scholar
  8. 8.
    Schlee W, T Hartmann, B Langguth et al (2009) Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci 10:11.PubMedCrossRefGoogle Scholar
  9. 9.
    Smits M, S Kovacs, D de Ridder et al (2007) Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus. Neuroradiology 49:669–79.PubMedCrossRefGoogle Scholar
  10. 10.
    Lambert RC, T Bessaih and N Leresche (2006) Modulation of neuronal T-type calcium channels. CNS Neurol Disord Drug Targets 5:611–27.PubMedCrossRefGoogle Scholar
  11. 11.
    Surmeier DJ, J Ding, M Day et al (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–35.PubMedCrossRefGoogle Scholar
  12. 12.
    Wonnacott S, J Barik, J Dickinson et al (2006) Nicotinic receptors modulate transmitter cross talk in the CNS: nicotinic modulation of transmitters. J Mol Neurosci 30:137–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Slassi A, M Isaac, L Edwards et al (2005) Recent advances in non-competitive mGlu5 receptor antagonists and their potential therapeutic applications. Curr Top Med Chem 5:897–911.PubMedCrossRefGoogle Scholar
  14. 14.
    Blank T, I Nijholt, MJ Kye et al (2004) Small conductance Ca2 + -activated K + channels as targets of CNS drug development. Curr Drug Targets CNS Neurol Disord 3:161–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Muroi Y and B Chanda (2009) Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel. J Gen Physiol 133:1–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Duckert LG and TS Rees (1983) Treatment of tinnitus with intravenous lidocaine: a double-blind randomized trial. Otolaryngol Head Neck Surg 91:550–5.PubMedGoogle Scholar
  17. 17.
    Israel JM, JS Connelly, ST McTigue et al (1982) Lidocaine in the treatment of tinnitus aurium. A double-blind study. Arch Otolaryngol 108:471–3.PubMedCrossRefGoogle Scholar
  18. 18.
    Kalcioglu MT, T Bayindir, T Erdem et al (2005) Objective evaluation of the effects of intravenous lidocaine on tinnitus. Hear Res 199:81–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Lenarz T (1986) Treatment of tinnitus with lidocaine and tocainide. Scand Audiol Suppl 26:49–51.PubMedGoogle Scholar
  20. 20.
    Melding PS, RJ Goodey and PR Thorne (1978) The use of intravenous lignocaine in the diagnosis and treatment of tinnitus. J Laryngol Otol 92:115–21.PubMedCrossRefGoogle Scholar
  21. 21.
    Merchant SN and N Merchant (1985) Intravenous lignocaine in tinnitus. J Postgrad Med 31:80–2.PubMedGoogle Scholar
  22. 22.
    Trellakis S, J Lautermann and G Lehnerdt (2007) Lidocaine: neurobiological targets and effects on the auditory system. Prog Brain Res 166:303–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Darlington CL and PF Smith (2007) Drug treatments for tinnitus. Prog Brain Res 166:249–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Patterson MB and BJ Balough (2006) Review of pharmacological therapy for tinnitus. Int Tinnitus J 12:149–59.PubMedGoogle Scholar
  25. 25.
    Møller AR (2007) Tinnitus: presence and future. Prog Brain Res 166:3–16.PubMedCrossRefGoogle Scholar
  26. 26.
    Levine RA (2006) Typewriter tinnitus: a carbamazepine-responsive syndrome related to auditory nerve vascular compression. ORL J Otorhinolaryngol Relat Spec 68:43–6; discussion 6–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Mardini MK (1987) Ear-clicking “tinnitus” responding to carbamazepine. N Engl J Med 317:1542.PubMedGoogle Scholar
  28. 28.
    Tyler R, C Coelho, P Tao et al (2008) Identifying tinnitus subgroups with cluster analysis. Am J Audiol 17:S176–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Eggermont JJ (2005) Tinnitus: neurobiological substrates. Drug Discov Today 10:1283–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Enna SJ and M Williams (2009) Challenges in the search for drugs to treat central nervous system disorders. J Pharmacol Exp Ther. 329: 404–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Spedding M, T Jay, J Costa e Silva et al (2005) A pathophysiological paradigm for the therapy of psychiatric disease. Nat Rev Drug Discov 4:467–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Henry TR (2003) The history of valproate in clinical neuroscience. Psychopharmacol Bull 37 Suppl 2:5–16.PubMedGoogle Scholar
  33. 33.
    Carpenter WT and JI Koenig (2008) The evolution of drug development in schizophrenia: past issues and future opportunities. Neuropsychopharmacology 33:2061–79.PubMedCrossRefGoogle Scholar
  34. 34.
    Johannessen Landmark C (2008) Antiepileptic drugs in non-epilepsy disorders: relations between mechanisms of action and clinical efficacy. CNS Drugs 22:27–47.PubMedCrossRefGoogle Scholar
  35. 35.
    Bauer CA (2003) Animal models of tinnitus. Otolaryngol Clin North Am 36:267–85.PubMedCrossRefGoogle Scholar
  36. 36.
    Jastreboff PJ and JF Brennan (1994) Evaluating the loudness of phantom auditory perception (tinnitus) in rats. Audiology 33:202–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Turner JG (2007) Behavioral measures of tinnitus in laboratory animals. Prog Brain Res 166:147–56.PubMedCrossRefGoogle Scholar
  38. 38.
    De Ridder D, H Fransen, O Francois et al (2006) Amygdalohippocampal involvement in tinnitus and auditory memory. Acta Otolaryngol Suppl 556:50–3.PubMedCrossRefGoogle Scholar
  39. 39.
    Jastreboff PJ and MM Jastreboff (2006) Tinnitus retraining therapy: a different view on tinnitus. ORL J Otorhinolaryngol Relat Spec 68:23–9; discussion 9–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Bauer CA (2004) Mechanisms of tinnitus generation. Curr Opin Otolaryngol Head Neck Surg 12:413–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Hurko O and JL Ryan (2005) Translational research in central nervous system drug discovery. NeuroRx 2:671–82.PubMedCrossRefGoogle Scholar
  42. 42.
    Frankenburg FR and RJ Baldessarini (2008) Neurosyphilis, malaria, and the discovery of antipsychotic agents. Harv Rev Psychiatry 16:299–307.PubMedCrossRefGoogle Scholar
  43. 43.
    Langguth B, R Goodey, A Azevedo et al (2007) Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus Research Initiative meeting, Regensburg, July 2006. Prog Brain Res 166:525–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Vio MM and RH Holme (2005) Hearing loss and tinnitus: 250 million people and a US$10 billion potential market. Drug Discov Today 10:1263–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Plazas PV, J Savino, S Kracun et al (2007) Inhibition of the alpha9alpha10 nicotinic cholinergic receptor by neramexane, an open channel blocker of N-methyl-D-aspartate receptors. Eur J Pharmacol 566:11–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Brocco M, A Dekeyne, C Mannoury la Cour et al (2008) Cellular and behavioural profile of the novel, selective neurokinin1 receptor antagonist, vestipitant: a comparison to other agents. Eur Neuropsychopharmacol 18:729–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Eggermont JJ and H Komiya (2000) Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear Res 142:89-101.PubMedCrossRefGoogle Scholar
  48. 48.
    Norena AJ and JJ Eggermont (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 183:137–53.PubMedCrossRefGoogle Scholar
  49. 49.
    Norena AJ, M Tomita and JJ Eggermont (2003) Neural changes in cat auditory cortex after a transient pure-tone trauma. J Neurophysiol 90:2387–401.PubMedCrossRefGoogle Scholar
  50. 50.
    Muhlnickel W, T Elbert, E Taub et al (1998) Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA 95:10340–3.PubMedCrossRefGoogle Scholar
  51. 51.
    Norena AJ and JJ Eggermont (2005) Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. J Neurosci 25:699–705.PubMedCrossRefGoogle Scholar
  52. 52.
    Norena AJ and JJ Eggermont (2006) Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. Neuroreport 17:559–63.PubMedCrossRefGoogle Scholar
  53. 53.
    Stark H and H Scheich (1997) Dopaminergic and serotonergic neurotransmission systems are differentially involved in auditory cortex learning: a long-term microdialysis study of metabolites. J Neurochem 68:691–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Bao S, VT Chan and MM Merzenich (2001) Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412:79–83.PubMedCrossRefGoogle Scholar
  55. 55.
    Kilgard MP and MM Merzenich (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Gritti I, L Mainville and BE Jones (1993) Codistribution of GABA- with acetylcholine-synthesizing neurons in the basal forebrain of the rat. J Comp Neurol 329:438–57.PubMedCrossRefGoogle Scholar
  57. 57.
    Gritti I, L Mainville, M Mancia et al (1997) GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. J Comp Neurol 383:163–77.PubMedCrossRefGoogle Scholar
  58. 58.
    Seki S and JJ Eggermont (2003) Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res 180:28–38.PubMedCrossRefGoogle Scholar
  59. 59.
    Lobarinas E, W Dalby-Brown, D Stolzberg et al (2009) Effects of the BK Agonists BMS-204352 and the Enantiomeric Compound (“R-Enantiomer”) on Transient, Salicylate Induced Tinnitus in Rats. Association for Research in Otolarygol Baltimore, MD.Google Scholar
  60. 60.
    Nardi A and SP Olesen (2008) BK channel modulators: a comprehensive overview. Curr Med Chem 15:1126–46.PubMedCrossRefGoogle Scholar
  61. 61.
    Korsgaard MP, BP Hartz, WD Brown et al (2005) Anxiolytic effects of Maxipost (BMS-204352) and retigabine via activation of neuronal Kv7 channels. J Pharmacol Exp Ther 314:282–92.PubMedCrossRefGoogle Scholar
  62. 62.
    de Lafuente V and R Romo (2005) Neuronal correlates of subjective sensory experience. Nat Neurosci 8:1698–703.PubMedCrossRefGoogle Scholar
  63. 63.
    de Lafuente V and R Romo (2006) Neural correlate of subjective sensory experience gradually builds up across cortical areas. Proc Natl Acad Sci U S A 103:14266–71.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Ingeniería Genética y Biología MolecularConsejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  2. 2.Departamento de Farmacología, Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations