A Global Brain Model of Tinnitus

  • Winfried Schlee
  • Isabel Lorenz
  • Thomas Hartmann
  • Nadia Müller
  • Hannah Schulz
  • Nathan Weisz

Keypoints

  1. 1.

    Subjective tinnitus is characterized by the perception of a phantom sound in the absence of any physical source.

     
  2. 2.

    While transient tinnitus usually lasts only a couple of seconds to a few hours, chronic tinnitus is an ongoing conscious perception of sound for more than 6 months with low incidence of spontaneous remissions.

     
  3. 3.

    Empirical studies in animals and humans often show enhancement of cortical excitability in the auditory areas associated with the tinnitus.

     
  4. 4.

    Theoretical and experimental studies suggest an additional involvement of extra-auditory cortical regions, especially the frontal cortex, the parietal cortex, and the cingulum.

     
  5. 5.

    Using magnetoencephalograpic recordings, we found that these areas are functionally connected with each other and form a global fronto–parietal–cingulate network.

     
  6. 6.

    The top–down influence of this global network on auditory areas is associated with the distress that is perceived by many individuals with tinnitus.

     
  7. 7.

    We suggest that both entities – the enhanced excitability of the central auditory system and the integration with a global cortical network – are important to generate and maintain a conscious percept of tinnitus.

     
  8. 8.

    This chapter will concentrate on how a conscious perception of tinnitus is formed and maintained throughout a lifetime.

     

Keywords

Chronic tinnitus Conscious perception Global network Cortical connectivity Top–down Long-range connectivity 

Abbreviations

ACC

Anterior cingulate cortex

AM

Amplitude modulation

dB

Decibel

DPFC

Dorsolateral prefrontal cortex

EEG

Electroencephalography

ERS

Event-related synchronization

Hz

Hertz

MEG

Magnetoencephalography

OF

Orbitofrontal cortex

PCC

Posterior cingulate cortex

PDC

Partial directed coherence

PET

Positron emission tomography

rCBF

Regional cerebral blood flow

SLIM

Synchronization by loss of inhibition model

SPL

Sound pressure level

SSR

Steady state response

References

  1. 1.
    Heller, AJ, Classification and epidemiology of tinnitus Otolaryngol Clin North Am, 2003 36:239–248PubMedCrossRefGoogle Scholar
  2. 2.
    Dobie, RA, Depression and tinnitus Otolaryngol Clin North Am, 2003 36:383–388PubMedCrossRefGoogle Scholar
  3. 3.
    Dehaene, S, Changeux, J-P, Neural Mechanisms for access to consciousness, in The Cognitive Neurosciences III, Gazzaniga, M, Editor 2004Google Scholar
  4. 4.
    Dehaene, S, Changeux, J-P, Naccache, L, Sackur, J, Sergent, C, Conscious, preconscious, and subliminal processing: a testable taxonomy Trends Cogn Sci, 2006 10:204–211PubMedCrossRefGoogle Scholar
  5. 5.
    Gaillard, R, Dehaene, S, Adam, C, Clemenceau, S, Hasboun, D, Baulac, M, Cohen, L, Naccache, L, Converging intracranial markers of conscious access PLoS Biol, 2009 7:e61PubMedCrossRefGoogle Scholar
  6. 6.
    Melloni, L, Molina, C, Pena, M, Torres, D, Singer, W, Rodriguez, E, Synchronization of neural activity across cortical areas correlates with conscious perception J Neurosci, 2007 27:2858-2865PubMedCrossRefGoogle Scholar
  7. 7.
    Dandy, WE, The surgical treatment of intracranial aneurysms of the internal carotid artery Ann Surg, 1941 114:336–340PubMedCrossRefGoogle Scholar
  8. 8.
    Silverstein, H, Transmeatal labyrinthectomy with and without cochleovestibular neurectomy Laryngoscope, 1976 86:1777–1791PubMedGoogle Scholar
  9. 9.
    Eggermont, JJ, Roberts, LE, The neuroscience of tinnitus Trends Neurosci, 2004 27:676–682PubMedCrossRefGoogle Scholar
  10. 10.
    Kaltenbach, JA, The dorsal cochlear nucleus as a participant in the auditory, attentional and emotional components of ­tinnitus Hear Res, 2006 216–217:224–234PubMedCrossRefGoogle Scholar
  11. 11.
    Mirz, F, Pedersen, B, Ishizu, K, Johannsen, P, Ovesen, T, Stodkilde-Jorgensen, H, Gjedde, A, Positron emission tomography of cortical centers of tinnitus Hear Res, 1999 134:133–144PubMedCrossRefGoogle Scholar
  12. 12.
    Andersson, G, Juris, L, Classon, E, Fredrikson, M, Furmark, T, Consequences of suppressing thoughts about tinnitus and the effects of cognitive distraction on brain activity in tinnitus patients Audiol Neurootol, 2006 11:301–309PubMedCrossRefGoogle Scholar
  13. 13.
    Weisz, N, Moratti, S, Meinzer, M, Dohrmann, K, Elbert, T, Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography PLoS Med, 2005 2:e153PubMedCrossRefGoogle Scholar
  14. 14.
    Müller, S, Analyse des neuromagnetischen Spektrums bei Tinnitus Department of Psychology, 2007 Diploma ThesisGoogle Scholar
  15. 15.
    Weisz, N, Dohrmann, K, Elbert, T, The relevance of ­spontaneous activity for the coding of the tinnitus sensation Prog Brain Res, 2007 166:61–70PubMedCrossRefGoogle Scholar
  16. 16.
    Klimesch, W, Sauseng, P, Hanslmayr, S, EEG alpha oscillations: the inhibition-timing hypothesis Brain Res Brain Res Rev, 2007 53:63–88CrossRefGoogle Scholar
  17. 17.
    Romei, V, Rihs, T, Brodbeck, V, Thut, G, Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability Neuroreport, 2008 19:203–208PubMedCrossRefGoogle Scholar
  18. 18.
    Sauseng, P, Klimesch, W, Stadler, W, Schabus, M, Doppelmayr, M, Hanslmayr, S, Gruber, WR, Birbaumer, N, A shift of visual spatial attention is selectively associated with human EEG alpha activity Eur J Neurosci, 2005 22:2917–2926PubMedCrossRefGoogle Scholar
  19. 19.
    Muhlau, M, Rauschecker, JP, Oestreicher, E, Gaser, C, Rottinger, M, Wohlschlager, AM, Simon, F, Etgen, T, Conrad, B, Sander, D, Structural brain changes in tinnitus Cereb Cortex, 2006 16:1283–1288PubMedCrossRefGoogle Scholar
  20. 20.
    Jastreboff, PJ, Phantom auditory perception (tinnitus): mechanisms of generation and perception Neuroscience Res, 1990 8:221–254PubMedCrossRefGoogle Scholar
  21. 21.
    Beard, AW, Results of leucotomy operations for tinnitus J Psychosom Res, 1965 9:29–32PubMedCrossRefGoogle Scholar
  22. 22.
    Schlee, W, Dohrmann, K, Hartmann, T, Lorenz, I, Müller, N, Elbert, T, Weisz, N, Assessment and modification of the ­tinnitus-related cortical network Semin Hear, 2008 29:270–287CrossRefGoogle Scholar
  23. 23.
    Schlee, W, Hartmann, T, Langguth, B, Weisz, N, Abnormal resting-state cortical coupling in chronic tinnitus BMC Neurosci, 2009 10:11PubMedCrossRefGoogle Scholar
  24. 24.
    Super, H, Spekreijse, H, Lamme, VA, Two distinct modes of sensory processing observed in monkey primary visual cortex (V1) Nat Neurosci, 2001 4:304–310PubMedCrossRefGoogle Scholar
  25. 25.
    Tononi, G, Koch, C, The neural correlates of consciousness: an update Ann N Y Acad Sci, 2008 1124:239–261PubMedCrossRefGoogle Scholar
  26. 26.
    Schlee, W, Müller, N, Hartmann, T, Lorenz, I, Weisz, N, Mapping Cortical Hubs in Tinnitus BMC Biology, 2009 7:80Google Scholar
  27. 27.
    Gray, CM, Konig, P, Engel, AK, Singer, W, Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties Nature, 1989 338:334–337PubMedCrossRefGoogle Scholar
  28. 28.
    Miltner, WH, Braun, C, Arnold, M, Witte, H, Taub, E, Coherence of gamma-band EEG activity as a basis for associative learning Nature, 1999 397:434-436PubMedCrossRefGoogle Scholar
  29. 29.
    Hummel, F, Gerloff, C, Larger interregional synchrony is associated with greater behavioral success in a complex sensory integration task in humans Cereb Cortex, 2005 15:670-678PubMedCrossRefGoogle Scholar
  30. 30.
    Supp, GG, Schlogl, A, Trujillo-Barreto, N, Muller, MM, Gruber, T, Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain’s source space PLoS ONE, 2007 2:e684PubMedCrossRefGoogle Scholar
  31. 31.
    Uhlhaas, PJ, Singer, W, Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology Neuron, 2006 52:155–168PubMedCrossRefGoogle Scholar
  32. 32.
    Stam, CJ, Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett, 2004 355:25–28PubMedCrossRefGoogle Scholar
  33. 33.
    Just, MA, Cherkassky, VL, Keller, TA, Kana, RK, Minshew, NJ, Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry Cereb Cortex, 2007 17:951–961PubMedCrossRefGoogle Scholar
  34. 34.
    Just, MA, Cherkassky, VL, Keller, TA, Minshew, NJ, Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity Brain, 2004 127:1811–1821PubMedCrossRefGoogle Scholar
  35. 35.
    Le Van Quyen, M, Navarro, V, Martinerie, J, Baulac, M, Varela, FJ, Toward a neurodynamical understanding of ictogenesis Epilepsia, 2003 44 Suppl 12:30–43CrossRefGoogle Scholar
  36. 36.
    Silberstein, P, Pogosyan, A, Kuhn, AA, Hotton, G, Tisch, S, Kupsch, A, Dowsey-Limousin, P, Hariz, MI, Brown, P, Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy Brain, 2005 128:1277–1291Google Scholar
  37. 37.
    Kahlbrock, N, Weisz, N, Transient reduction of tinnitus intensity is marked by concomitant reductions of delta band power BMC Biol, 2008 6:4PubMedCrossRefGoogle Scholar
  38. 38.
    Lorenz, I, Muller, N, Schlee, W, Hartmann, T, Weisz, N, Loss of alpha power is related to increased gamma synchronization-A marker of reduced inhibition in tinnitus? Neurosci Lett, 2009 453:225–228PubMedCrossRefGoogle Scholar
  39. 39.
    De Ridder, D, De Mulder, G, Walsh, V, Muggleton, N, Sunaert, S, Møller, A, Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus. Case report J Neurosurg, 2004 100:560–564PubMedCrossRefGoogle Scholar
  40. 40.
    De Ridder, D, Verstraeten, E, Van der Kelen, K, De Mulder, G, Sunaert, S, Verlooy, J, Van de Heyning, P, Møller, A, Transcranial magnetic stimulation for tinnitus: influence of tinnitus duration on stimulation parameter choice and maximal tinnitus suppression Otol Neurotol, 2005 26:616–619PubMedCrossRefGoogle Scholar
  41. 41.
    Khedr, EM, Rothwell, JC, Ahmed, MA, El-Atar, A, Effect of daily repetitive transcranial magnetic stimulation for treatment of tinnitus: comparison of different stimulus frequencies J Neurol Neurosurg Psychiatry, 2008 79:212–215PubMedCrossRefGoogle Scholar
  42. 42.
    Kleinjung, T, Steffens, T, Sand, P, Murthum, T, Which tinnitus patients benefit from transcranial magnetic stimulation? Otolaryngol Head Neck Surg, 2007 137:589–595PubMedCrossRefGoogle Scholar
  43. 43.
    Plewnia, C, Reimold, M, Najib, A, Reischl, G, Plontke, SK, Gerloff, C, Moderate therapeutic efficacy of positron ­emission tomography-navigated repetitive transcranial magnetic stimulation for chronic tinnitus: a randomised, controlled pilot study J Neurol Neurosurg Psychiatry, 2007 78:152–156PubMedCrossRefGoogle Scholar
  44. 43.
    Kaldo, V, Levin, S, Widarsson, J, Buhrman, M, Larsen, HC, Andersson, G, Internet versus group cognitive-behavioral treatment of distress associated with tinnitus: a randomized controlled trial Behav Ther, 2008 39:348–359PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Winfried Schlee
    • 1
  • Isabel Lorenz
  • Thomas Hartmann
  • Nadia Müller
  • Hannah Schulz
  • Nathan Weisz
  1. 1.Department of PsychologyUniversity of KonstanzKonstanzGermany

Personalised recommendations