Behavioral Animal Models of Tinnitus, Pharmacology, and Treatment

Keypoints

  1. 1.

    Tinnitus research on humans is difficult, primarily because the pathophysiology of tinnitus is still not well understood.

     
  2. 2.

    A number of animal models have been developed in order to study conditions that may lead to tinnitus and evaluate treatments for efficacy and safety before being used in human trials.

     
  3. 3.
    Current tinnitus animal models fall into five general subtypes:
    1. a.

      Lick suppression

       
    2. b.

      Operant conditioning

       
    3. c.

      False-positive models

       
    4. d.

      Avoidance conditioning

       
    5. e.

      Startle reflex models

       
     
  4. 4.
    Animal models have evaluated tinnitus induced primarily by:
    1. a.

      High doses of sodium salicylate

       
    2. b.

      High doses of quinine

       
    3. c.

      High-level noise exposure

       
     
  5. 5.
    A number of tinnitus treatments that target specific mechanisms have been proposed and tested in animal models. These include:
    1. a.

      Calcium channel antagonists

       
    2. b.

      GABA agonists

       
    3. c.

      NMDA antagonists

       
    4. d.

      Benzodiazepines

       
    5. e.

      Potassium channel modulators

       
    6. f.

      Transcranial magnetic stimulation

       
     
  6. 6.

    Tinnitus animal models provide important guidance in the development of new drug therapies.

     

Keywords

Animal models Drug therapy Startle reflex Tinnitus 

Abbreviations

BW

Bandwidth

GABA

γ-Aminobutyric acid

GPIAS

Gap prepulse inhibition of the acoustic startle

NBN

Narrow band noise

NBPIAS

Noise burst prepulse inhibition of the acoustic startle

NMDA

N-methyl-d-aspartic acid

rTMS

Repeated transcranial magnetic stimulation

SC

Scopolamine

SIPAC

Schedule induced polydipsia avoidance conditioning

SS

Sodium Salicylate

References

  1. 1.
    Jastreboff PJ, JF Brennan and CT Sasaki (1988) An animal model for tinnitus. Laryngoscope 98:280–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Jastreboff PJ (1994) Instrumentation and tinnitus: A neurophysiological approach. Hear Instrum 45:7–11.Google Scholar
  3. 3.
    Hazell J and JB Sheldrake. The Tinnitus and Hyperacusis Centre [website]. [cited 2006 15 April]; Available from: http://www.tinnitus.org.
  4. 4.
    Jastreboff PJ, JF Brennan and CT Sasaki (1991) Quinine-induced tinnitus in rats. Arch Otolaryngol Head Neck Surg 117:1162–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Londero A, JP Lefaucheur, D Malinvaud et al (2006) Magnetic stimulation of the auditory cortex for disabling tinnitus: Preliminary results. Presse Med 35:200–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Heffner HE and IA Harrington (2002) Tinnitus in hamsters following exposure to intense sound. Hear Res 170:83–95.PubMedCrossRefGoogle Scholar
  7. 7.
    Bauer CA, TJ Brozoski, R Rojas et al (1999) Behavioral model of chronic tinnitus in rats. Otolaryngol Head Neck Surg 121:457–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Guitton MJ, J Caston, J Ruel et al (2003) Salicylate induces tinnitus through activation of cochlear NMDA receptors. J Neurosci 23:3944–52.PubMedGoogle Scholar
  9. 9.
    Ruttiger L, J Ciuffani, HP Zenner et al (2003) A behavioral paradigm to judge acute sodium salicylate-induced sound experience in rats: A new approach for an animal model on tinnitus. Hear Res 180:39–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Turner JG, (2006) Gap detection as a high throughput, objective behavioral screen for tinnitus, in The future treatment of tinnitus: First Tinnitus Research Initiative meeting 27–29 July 2006. 2006: Regensburg, Salzstadel, Germany.Google Scholar
  11. 11.
    Bauer CA and TJ Brozoski (2001) Assessing tinnitus and prospective tinnitus therapeutics using a psychophysical animal model. J Assoc Res Otolaryngol 2:54–64.PubMedGoogle Scholar
  12. 12.
    Lobarinas E, W Sun, R Cushing et al (2004) A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP–AC). Hear Res 190:109–14.PubMedCrossRefGoogle Scholar
  13. 13.
    Phillips-Howard PA and D Wood (1996) The safety of antimalarial drugs in pregnancy. Drug Saf 14:131–45.PubMedCrossRefGoogle Scholar
  14. 14.
    Roche RJ, K Silamut, S Pukrittayakamee et al (1990) Quinine induces reversible high-tone hearing loss. Br J Clin Pharmacol 29:780–2.PubMedCrossRefGoogle Scholar
  15. 15.
    Smilkstein MJ, KW Kulig and BH Rumack (1987) Acute toxic blindness: Unrecognized quinine poisoning. Ann Emerg Med 16:98–101.PubMedCrossRefGoogle Scholar
  16. 16.
    Davies E, E Knox and I Donaldson (1994) The usefulness of nimodipine, an L-calcium channel antagonist, in the treatment of tinnitus. Br J Audiol 28:125–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Witsell DL, MT Hannley, S Stinnet et al (2007) Treatment of tinnitus with gabapentin: A pilot study. Otol Neurotol 28:11–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Bauer CA and TJ Brozoski (2006) Effect of gabapentin on the sensation and impact of tinnitus. Laryngoscope 116:675–81.PubMedCrossRefGoogle Scholar
  19. 19.
    Miller B, M Sarantis, SF Traynelis et al (1992) Potentiation of NMDA receptor currents by arachidonic acid. Nature 355:722–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Peng BG, S Chen and X Lin (2003) Aspirin selectively augmented N-methyl-d-aspartate types of glutamate responses in cultured spiral ganglion neurons of mice. Neurosci Lett 343:21–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Guitton MJ, R Pujol and JL Puel (2005) m-Chlorophenylpiperazine exacerbates perception of salicylate-induced tinnitus in rats. Eur J Neurosci 22:2675–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Brozoski TJ, TJ Spires and CA Bauer (2007) Vigabatrin, a GABA transaminase inhibitor, reversibly eliminates tinnitus in an animal model. J Assoc Res Otolaryngol 8:105–18.PubMedCrossRefGoogle Scholar
  23. 23.
    Szczepaniak WS and AR Møller (1995) Evidence of decreased GABAergic influence on temporal integration in the inferior colliculus following acute noise exposure: A study of evoked potentials in the rat. Neurosci Lett 196:77–80.PubMedCrossRefGoogle Scholar
  24. 24.
    Tartara A, R Manni, CA Galimberti et al (1992) Six-year follow-up study on the efficacy and safety of vigabatrin in patients with epilepsy. Acta Neurol Scand 86:247–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Oestreicher E, W Arnold, K Ehrenberger et al (1998) Memantine suppresses the glutamatergic neurotransmission of mammalian inner hair cells. ORL J Otorhinolaryngol Relat Spec 60:18–21.PubMedCrossRefGoogle Scholar
  26. 26.
    Wallhausser-Franke E, B Cuautle-Heck, G Wenz et al (2006) Scopolamine attenuates tinnitus-related plasticity in the auditory cortex. Neuroreport 17:1487–91.PubMedCrossRefGoogle Scholar
  27. 27.
    Lobarinas E, G Yang, W Sun et al (2006) Salicylate- and quinine-induced tinnitus and effects of memantine. Acta Otolaryngol Suppl 556:13–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang B, BS Rothberg and R Brenner (2009) Mechanism of increased BK channel activation from a channel mutation that causes epilepsy. J Gen Physiol 133:283–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee US and J Cui (2009) {beta} subunit-specific modulations of BK channel function by a mutation associated with epilepsy and dyskinesia. J Physiol 587:1481–98.PubMedCrossRefGoogle Scholar
  30. 30.
    Padberg F, P Zwanzger, ME Keck et al (2002) Repetitive transcranial magnetic stimulation (rTMS) in major depression: Relation between efficacy and stimulation intensity. Neuropsychopharmacology 27:638–45.PubMedCrossRefGoogle Scholar
  31. 31.
    George MS, EM Wassermann, WA Williams et al (1995) Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport 6:1853–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Langguth B, T Kleinjung, E Frank et al (2008) High-frequency priming stimulation does not enhance the effect of low-frequency rTMS in the treatment of tinnitus. Exp Brain Res 184:587–91.PubMedCrossRefGoogle Scholar
  33. 33.
    Londero A, B Langguth, D De Ridder et al (2006) Repetitive transcranial magnetic stimulation (rTMS): A new therapeutic approach in subjective tinnitus? Neurophysiol Clin 36:145–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Kleinjung T, P Eichhammer, B Langguth et al (2005) Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus. Otolaryngol Head Neck Surg 132:566–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Langguth B, P Eichhammer, M Zowe et al (2004) Low frequency repetitive transcranial magnetic stimulation (rTMS) for the treatment of chronic tinnitus – are there long-term effects? Psychiatr Prax 31 Suppl 1:S52–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Center for Hearing and DeafnessUniversity at BuffaloBuffaloUSA

Personalised recommendations