Host Immune Resistance and Dietary Lipids

  • Manuel A. de Pablo Martínez
  • Maria A. Puertollano
  • Elena Puertollano
Chapter
Part of the Nutrition and Health book series (NH)

Key Points

Both n-3 polyunsaturated fatty acids and n-9 monounsaturated fatty acids contribute to the suppression of several immune system functions, exerting important anti-inflammatory properties. n-3 polyunsaturated acids are the most immunosuppressive fatty acids, and they have been applied in the resolution of diseases characterized by an overactivation of immune response. Different factors and mechanisms are involved in the execution of these properties. The administration of high amounts of n-3 polyunsaturated fatty acids reduces host defense to bacteria, viruses, parasites, or fungi. Inappropriate administration of n-3 polyunsaturated fatty acids in patients at risk of sepsis may cause adverse effects due to an increase in the susceptibility to infection.

Key Words

Olive oil immune system lymphocytes cytokines autoimmune diseases infection immune resistance 

References

  1. 1.
    Wolowczuk I, Verwaerde C, Viltart O, Delanoye A, Delacre M, Pot B, Grangette C (2008) Feeding our immune system: impact on metabolism. Clin Dev Immunol 2008:639803PubMedCrossRefGoogle Scholar
  2. 2.
    Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M Jr, Akira S, Yonehara S, Kato A, Fujita T (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858PubMedGoogle Scholar
  3. 3.
    Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376PubMedCrossRefGoogle Scholar
  4. 4.
    Weatherill AR, Lee JY, Zhao L, Lemay DG, Youn HS, Hwang DH (2005) Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4. J Immunol 174:5390–5397PubMedGoogle Scholar
  5. 5.
    de Pablo MA, Alvarez de Cienfuegos G (2000) Modulatory effects of dietary lipids on immune system functions. Immunol Cell Biol 78:31–39PubMedCrossRefGoogle Scholar
  6. 6.
    Fritsche K (2006) Fatty acids as modulators of the immune response. Annu Rev Nutr 26:45–73PubMedCrossRefGoogle Scholar
  7. 7.
    Mills SC, Windsor AC, Knight SC (2005) The potential interactions between polyunsaturated fatty acids and colonic inflammatory processes. Clin Exp Immunol 142:216–228PubMedCrossRefGoogle Scholar
  8. 8.
    Calder PC (2001) Polyunsaturated fatty acids, inflammation, and immunity. Lipids 36:1007–1024PubMedCrossRefGoogle Scholar
  9. 9.
    Fritsche K (2007) Important differences exist in the dose-response relationship between diet and immune cell fatty acids in humans and rodents. Lipids 42:961–979PubMedCrossRefGoogle Scholar
  10. 10.
    Kromann N, Green A (1980) Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950–74. Acta Med 208:401–406CrossRefGoogle Scholar
  11. 11.
    Stubbs CD, Smith AD (1984) The modification of mammalian polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 779:89–137PubMedCrossRefGoogle Scholar
  12. 12.
    Stillwell W, Wassall SR (2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 126:1–27PubMedCrossRefGoogle Scholar
  13. 13.
    Grimble RF, Tappia PS (1995) The modulatory influence of unsaturated fatty acid on the biology of tumor necrosis factor. Biochem Soc Trans 287:282–286Google Scholar
  14. 14.
    Hughes DA, Pinder AC, Piper Z, Johnson IT, Lund EK (1996) Fish oil supplementation inhibits the expression of major histocompatibility complex class II molecules and adhesion molecules on human monocytes. Am J Clin Nutr 63:267–272PubMedGoogle Scholar
  15. 15.
    Stulnig TM (2003) Immunomodulation by polyunsaturated fatty acids: mechanisms and effects. Int Arch Allergy Immunol 132:310–321PubMedCrossRefGoogle Scholar
  16. 16.
    Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A (1999) T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283:680–682PubMedCrossRefGoogle Scholar
  17. 17.
    Switzer KC, McMurray DN, Morris JS, Chapkin RS (2003) (n-3) polyunsaturated fatty acids promote activation-induced cell death in murine T lymphocytes. J Nutr 133:496–503PubMedGoogle Scholar
  18. 18.
    Shapiro AC, Wu D, Meydani SN (1993) Eicosanoids derived from arachidonic and eicosapentaenoic acids inhibit T cell proliferative response. Prostaglandins 45:229–240PubMedCrossRefGoogle Scholar
  19. 19.
    Marcinkiewicz J (1991) In vitro cytokine release by activated murine peritoneal macrophages: role of prostaglandins in the differential regulation of tumor necrosis factor alpha, interleukin 1, and interleukin-6. Cytokine 3:327–332PubMedCrossRefGoogle Scholar
  20. 20.
    Gruner S, Volk HD, Falck P, Baehr RV (1986) The influence of phagocytic stimuli on the expression of HLA-DR antigens: role of reactive oxygen intermediates. Eur J Immunol 16:212–215PubMedCrossRefGoogle Scholar
  21. 21.
    Visioli F, Bellomo G, Galli C (1998) Free radical-scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun 247:60–64PubMedCrossRefGoogle Scholar
  22. 22.
    Yaqoob P (2003) Fatty acids as gatekeepers of immune cell regulation. Trends Immunol 24:639–645PubMedCrossRefGoogle Scholar
  23. 23.
    Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13:816–825PubMedCrossRefGoogle Scholar
  24. 24.
    Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W (1996) The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 384:39–43PubMedCrossRefGoogle Scholar
  25. 25.
    Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA 94:4318–4323PubMedCrossRefGoogle Scholar
  26. 26.
    Chiu LC, Wan JM (1999) Induction of apoptosis in HL-60 cells by eicosapentaenoic acid (EPA) is associated with downregulation of bcl-2 expression. Cancer Lett 145:17–27PubMedCrossRefGoogle Scholar
  27. 27.
    de Pablo MA, Susin SA, Jacotot E, Larochette N, Costantini P, Ravagnan L, Zamzami N, Kroemer G (1999) Palmitate induces apoptosis via a direct effect on mitochondria. Apoptosis 4:81–87PubMedCrossRefGoogle Scholar
  28. 28.
    Reddy Avula CP, Zaman AK, Lawrence R, Fernandes G (1999) Induction of apoptotic mediators in Balb/c splenic lymphocytes by dietary n-3 and n-6 fatty acids. Lipids 34:921–927CrossRefGoogle Scholar
  29. 29.
    Arita K, Kobuchic H, Utsumia T, Takehara Y, Akiyama J, Horton AA, Utsumi K (2001) Mechanism of apoptosis in HL-60 cells induced by n-3 and n-6 polyunsaturated fatty acids. Biochem Pharmacol 62:821–828PubMedCrossRefGoogle Scholar
  30. 30.
    Cury-Boaventura MF, Gorjão R, de Lima TM, Newsholme P, Curi R (2006) Comparative toxicity of oleic and linoleic acid on human lymphocytes. Life Sci 78:1448–1456PubMedCrossRefGoogle Scholar
  31. 31.
    Sanderson P, MacPerson GG, Jenkins CH, Calder PC (1997) Dietary fish oil diminishes the antigen presentation activity of rat dendritic cells. J Leuk Biol 62:771–777Google Scholar
  32. 32.
    Shaikh SR, Edidin M (2006) Polyunsaturated fatty acids, membrane organization. T cells, and antigen presentation. Am J Clin Nutr 84:1277–1289PubMedGoogle Scholar
  33. 33.
    Shaikh SR, Edidin M (2007) Immunosuppressive effects of polyunsaturated fatty acids on antigen presentation by human leukocyte antigen class I molecules. J Lipid Res 48:127–138PubMedCrossRefGoogle Scholar
  34. 34.
    Kankaanpää PE, Salminen SJ, Isolauri E, Lee YK (2001) The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol Lett 194:149–153PubMedCrossRefGoogle Scholar
  35. 35.
    Kankaanpää PE, Yang B, Kallio HP, Isolauri E, Salminen SJ (2002) Influence of probiotic supplemented infant formula on composition of plasma lipids in atopic infants. J Nutr Biochem 13:364–369PubMedCrossRefGoogle Scholar
  36. 36.
    Hekmatdoost A, Feizabadi MM, Djazayery A, Mirshafiey A, Eshraghian MR, Yeganeh SM, Sedaghat R, Jacobson K (2008) The effect of dietary oils on cecal microflora in experimental colitis in mice. Indian J Gastroenterol 27:186–189PubMedGoogle Scholar
  37. 37.
    Das UN (2002) Essential fatty acids as possible enhancers of the beneficial actions of probiotics. Nutrition 18:786–789PubMedCrossRefGoogle Scholar
  38. 38.
    Field CJ, Johnson IR, Schley PD (2002) Nutrients and their role in host resistance to infection. J Leukoc Biol 71:16–32PubMedGoogle Scholar
  39. 39.
    Puertollano MA, Puertollano E, Alvarez de Cienfuegos G, de Pablo MA (2007) Significance of olive oil in the host immune resistance to infection. Brit J Nutr 98:S54–S58PubMedCrossRefGoogle Scholar
  40. 40.
    Kremer J, Lawrence DL, Jubiz W, DiGiacomo R, Rynes R, Bartholomew LE, Sherman M (1990) Dietary fish oil and olive oil supplementation in patients with rheumatoid arthritis: clinical and immunologic effects. Arthritis Rheum 33:810–820PubMedCrossRefGoogle Scholar
  41. 41.
    Kelley DS (2001) Modulation of human immune and inflammatory responses by dietary fatty acids. Nutrition 17:669–673PubMedCrossRefGoogle Scholar
  42. 42.
    Anderson M, Fritsche KL (2002) (n-3) Fatty acids and infectious disease resistance. J Nutr 132:3566–3576PubMedGoogle Scholar
  43. 43.
    de Pablo MA, Puertollano MA, Alvarez de Cienfuegos G (2002) Biological and clinical significance of lipids as modulators of immune system functions. Clin Diagn Lab Immunol 9:945–950PubMedGoogle Scholar
  44. 44.
    de Pablo MA, Puertollano MA, Alvarez de Cienfuegos G (2000) Immune cell functions, lipids and host natural resistance. FEMS Immunol Med Microbiol 29:323–328PubMedCrossRefGoogle Scholar
  45. 45.
    Kos WL, Loria RM, Snodgrass MJ, Cohen D, Thorpe TG, Kaplan AM (1979) Inhibition of host resistance by nutritional hypercholesteremia. Infect Immun 26:658–667PubMedGoogle Scholar
  46. 46.
    Kos WL, Kos KA, Kaplan AM (1984) Impaired function of immune reactivity to Listeria monocytogenes in diet-fed mice. Infect Immun 43:1094–1096PubMedGoogle Scholar
  47. 47.
    Rubin RH, Wilkinson RA, Xu L, Robinson DR (1989) Dietary marine lipid does not alter susceptibility of (NZBxNZW)F1 mice to pathogenic microorganisms. Prostaglandins 38:251–262PubMedCrossRefGoogle Scholar
  48. 48.
    Shinomiya N, Tsuru S, Fujisawa H, Taniguchi M, Zinnaka Y, Nomoto K (1988) Effect of a high-fat diet on resistance to Listeria monocytogenes. J Clin Lab Immunol 25:97–100PubMedGoogle Scholar
  49. 49.
    Puertollano MA, de Pablo MA, Alvarez de Cienfuegos G (2001) Immunomodulatory effects of dietary lipids alter host natural resistance of mice to Listeria monocytogenes infection. FEMS Immunol Med Microbiol 32:47–52PubMedCrossRefGoogle Scholar
  50. 50.
    Puertollano MA, de Pablo MA, Alvarez de Cienfuegos G (2002) Relevance of dietary lipids as modulators of immune functions in cells infected with Listeria monocytogenes. Clin Diagn Lab Immunol 9:352–357PubMedGoogle Scholar
  51. 51.
    de Pablo MA, Puertollano MA, Gálvez A, Ortega E, Gaforio JJ, Alvarez de Cienfuegos G (2000) Determination of natural resistance of mice fed dietary lipids to experimental infection induced by Listeria monocytogenes. FEMS Immunol Med Microbiol 27:127–133PubMedCrossRefGoogle Scholar
  52. 52.
    Fritsche KL, Shahbazian LM, Feng C, Berg JN (1997) Dietary fish oil reduces survival and impairs bacterial clearance in C3H/Hen mice challenged with Listeria monocytogenes. Clin Sci 92:95–101PubMedGoogle Scholar
  53. 53.
    Turnock L, Cook M, Steinberg H, Czuprynski C (2001) Dietary supplementation with conjugated linoleic acid does not alter the resistance of mice to Listeria monocytogenes infection. Lipids 36:135–138PubMedCrossRefGoogle Scholar
  54. 54.
    Fritsche KL, Anderson M, Feng C (2000) Consumption of eicosapentaenoic acid and docosahexaenoic acid impair murine interleukin-12 and interferon-gamma production in vivo. J Infect Dis 182:S54–S61PubMedCrossRefGoogle Scholar
  55. 55.
    Fritsche KL, Byrge M, Feng C (1999) Dietary omega-3 polyunsaturated fatty acids from fish oil reduce interleukin-12 and interferon-gamma production in mice. Immunol Lett 65:167–173PubMedCrossRefGoogle Scholar
  56. 56.
    Huang SC, Misfeldt ML, Fritsche KL (1992) Dietary fat influences Ia antigen expression and immune cell populations in the murine peritoneum and spleen. J Nutr 122:1219–1231PubMedGoogle Scholar
  57. 57.
    Puertollano MA, Puertollano E, Ruiz-Bravo A, Jimenez-Valera M, de Pablo MA, Alvarez de Cienfuegos G (2004) Changes in the immune functions and susceptibility to Listeria monocytogenes infection in mice fed dietary lipids. Immunol Cell Biol 82:370–376PubMedCrossRefGoogle Scholar
  58. 58.
    Puertollano MA, de Pablo MA, Álvarez de Cienfuegos G (2003) Antioxidant properties of N-acetyl-l-cysteine do not improve the immune resistance of mice fed dietary lipids to Listeria monocytogenes infection. Clin Nutr 22:313–319PubMedCrossRefGoogle Scholar
  59. 59.
    Fritsche K, Irons R, Pompos L, Janes J, Zheng Z, Brown C (2005) Omega-3 polyunsaturated fatty acid impairment of early host resistance against Listeria monocytogenes infection is independent of neutrophil infiltration and function. Cell Immunol 235:65–71PubMedCrossRefGoogle Scholar
  60. 60.
    Cruz-Chamorro L, Puertollano MA, Puertollano E, Álvarez de Cienfuegos G, de Pablo MA (2007) Examination of host immune resistance against Listeria monocytogenes infection in cyclophosphamide-treated mice after dietary lipid administration. Clin Nutr 26:631–639PubMedCrossRefGoogle Scholar
  61. 61.
    D’Ambola JB, Aeberhard EE, Trang N, Gaffar S, Barrett CT, Sherman MP (1991) Effect of dietary (n-3) and (n-6) fatty acids on in vivo pulmonary bacterial clearance by neonatal rabbits. J Nutr 121:1262–1269PubMedGoogle Scholar
  62. 62.
    Blok WL, Vogels MT, Curfs JH, Eling WM, Buurman WA, van der Meer JW (1992) Dietary fish-oil supplementation in experimental gram-negative infection and in cerebral malaria in mice. J Infect Dis 165:898–903PubMedCrossRefGoogle Scholar
  63. 63.
    Thors VS, Erlendsdóttir H, Olafsson O, Gunnarsson E, Haraldsson A (2004) The improved survival of experimental animals fed with fish oil is suppressed by a leukotriene inhibitor. Scand J Immunol 60:351–355PubMedCrossRefGoogle Scholar
  64. 64.
    Björnsson S, Hardardóttir I, Gunnarsson E, Haraldsson A (1997) Dietary fish oil supplementation increases survival in mice following Klebsiella pneumoniae infection. Scand J Infect Dis 29:491–493PubMedCrossRefGoogle Scholar
  65. 65.
    Thors VS, Thórisdóttir A, Erlendsdóttir H, Einarsson I, Gudmundsson S, Gunnarsson E, Haraldsson A (2004) The effect of dietary fish oil on survival after infection with Klebsiella pneumoniae or Streptococcus pneumoniae. Scand J Infect Dis 36:102–105PubMedCrossRefGoogle Scholar
  66. 66.
    Paul KP, Leichsenring M, Pfisterer M, Mayatepek E, Wagner D, Domann M, Sonntag HG, Bremer HJ (1997) Influence of n-6 and n-3 polyunsaturated fatty acids on the resistance to experimental tuberculosis. Metabolism 46:619–624PubMedCrossRefGoogle Scholar
  67. 67.
    Mayatepek E, Paul K, Leichsenring M, Pfisterer M, Wagner D, Domann M, Sonntag HG, Bremer HJ (1994) Influence of dietary (n-3)-polyunsaturated fatty acids on leukotriene B4 and prostaglandin E2 synthesis and course of experimental tuberculosis in guinea pigs. Infection 22:106–112PubMedCrossRefGoogle Scholar
  68. 68.
    McFarland CT, Fan YY, Chapkin RS, Weeks BR, McMurray DN (2008) Dietary polyunsaturated fatty acids modulate resistance to Mycobacterium tuberculosis in guinea pigs. J Nutr 138:2123–2128PubMedCrossRefGoogle Scholar
  69. 69.
    Jordao L, Lengeling A, Bordat Y, Boudou F, Gicquel B, Neyrolles O, Becker PD, Guzman CA, Griffiths G, Anes E (2008) Effects of omega-3 and -6 fatty acids on Mycobacterium tuberculosis in macrophages and in mice. Microbes Infect 10:1379–1386PubMedCrossRefGoogle Scholar
  70. 70.
    Pierre M, Husson MO, Le Berre R, Desseyn JL, Galabert C, Béghin L, Beermann C, Dagenais A, Berthiaume Y, Cardinaud B, Barbry P, Gottrand F, Guery BP (2007) Omega-3 polyunsaturated fatty acids improve host response in chronic Pseudomonas aeruginosa lung infection in mice. Am J Physiol Lung Cell Mol Physiol 292:1422–1431CrossRefGoogle Scholar
  71. 71.
    Clouva-Molyvdas P, Peck MD, Alexander JW (1992) Short-term dietary lipid manipulation does not affect survival in two models of murine sepsis. JPEN J Parenter Enteral Nutr 16:343–347PubMedCrossRefGoogle Scholar
  72. 72.
    Peck MD, Alexander JW, Ogle CK, Babcock GF (1990) The effect of dietary fatty acids on response to Pseudomonas infection in burned mice. J Trauma 30:445–452PubMedGoogle Scholar
  73. 73.
    Tiesset H, Pierre M, Desseyn JL, Guéry B, Beermann C, Galabert C, Gottrand F, Husson MO (2009) Dietary (n-3) polyunsaturated fatty acids affect the kinetics of pro- and antiinflammatory responses in mice with Pseudomonas aeruginosa lung infection. J Nutr 139:82–89PubMedGoogle Scholar
  74. 74.
    Chang HR, Dulloo AG, Vladoianu IR, Piguet PF, Arsenijevic D, Girardier L, Pechère JC (1992) Fish oil decreases natural resistance of mice to infection with Salmonella typhimurium. Metabolism 41:1–2PubMedCrossRefGoogle Scholar
  75. 75.
    Eicher SD, McVey DS (1995) Dietary modulation of Kupffer cell and splenocyte function during a Salmonella typhimurium challenge in mice. J Leukoc Biol 58:32–39PubMedGoogle Scholar
  76. 76.
    Byleveld PM, Pang GT, Clancy RL, Roberts DC (1999) Fish oil feeding delays influenza virus clearance and impairs production of interferon-gamma and virus-specific immunoglobulin A in the lungs of mice. J Nutr 129:328–335PubMedGoogle Scholar
  77. 77.
    Byleveld M, Pang GT, Clancy RL, Roberts DC (2000) Fish oil feeding enhances lymphocyte proliferation but impairs virus-specific T lymphocyte cytotoxicity in mice following challenge with influenza virus. Clin Exp Immunol 119:287–292PubMedCrossRefGoogle Scholar
  78. 78.
    Peterson KM, O’Shea M, Stam W, Mohede IC, Patrie JT, Hayden FG (2009) Effects of dietary supplementation with conjugated linoleic acid on experimental human rhinovirus infection and illness. Antivir Ther 14:33–43PubMedGoogle Scholar
  79. 79.
    Courreges C, Benencia F, Monserrat AJ (2001) Effect of dietary fish oil on mouse ocular herpes simplex type I infection. Nutr Res 21:229–241CrossRefGoogle Scholar
  80. 80.
    Beli E, Li M, Cuff C, Pestka JJ (2008) Docosahexaenoic acid enriched fish oil consumption modulates immunoglobulin responses to and clearance of enteric reovirus infection in mice. J Nutr 138:813–819PubMedGoogle Scholar
  81. 81.
    Xi S, Cohen D, Barvec S, Chen LH (2001) Fish oil suppressed cytokines and nuclear factor-kappaB induced by murine AIDS virus infection. Nutr Res 21:865–878CrossRefGoogle Scholar
  82. 82.
    Bell SJ, Chavali S, Bistrian BR, Connolly CA, Utsunomiya T, Forse RA (1996) Dietary fish oil and cytokine and eicosanoid production during human immunodeficiency virus infection. JPEN J Parenter Enteral Nutr 20:43–49PubMedCrossRefGoogle Scholar
  83. 83.
    Kawashima A, Tsukamoto I, Koyabu T, Murakami Y, Kawakami T, Kakibuchi N, Takaguchi K, Kita K, Okita M (2008) Eicosapentaenoic acid supplementation for chronic hepatitis C patients during combination therapy of pegylated interferon-2b and ribavirin. Lipids 43:325–333PubMedCrossRefGoogle Scholar
  84. 84.
    Allen PC, Danforth H, Levander OA (1997) Interaction of dietary flaxseed with coccidia infections in chickens. Poult Sci 76:822–827PubMedGoogle Scholar
  85. 85.
    Taylor DW, Levander OA, Krishna VR, Evans CB, Morris VC, Barta JR (1997) Vitamin E-deficient diets enriched with fish oil suppress lethal Plasmodium yoelii infections in athymic and scid/bg mice. Infect Immun 65:197–202PubMedGoogle Scholar
  86. 86.
    Gómez García V, Sanz Sampelayo MR, Fernández Navarro JR, Carmona López FD, Gil Extremera F, Rodríguez Osorio M (2003) Polyunsaturated fatty acids and parasitism: effect of a diet supplemented with fish oil on the course of rat trichinellosis. Vet Parasitol 117:85–97PubMedCrossRefGoogle Scholar
  87. 87.
    Oarada M, Tsuduki T, Suzuki T, Miyazawa T, Nikawa T, Hong-quan G, Kurita N (2003) Dietary supplementation with docosahexaenoic acid, but not with eicosapentaenoic acid, reduces host resistance to fungal infection in mice. Biochim Biophys Acta 1622:151–160PubMedCrossRefGoogle Scholar
  88. 88.
    Wanten GJ, Netea MG, Naber TH, Curfs JH, Jacobs LE, Verver-Jansen TJ, Kullberg BJ (2002) Parenteral administration of medium- but not long-chain lipid emulsions may increase the risk for infections by Candida albicans. Infect Immun 70:6471–6474PubMedCrossRefGoogle Scholar
  89. 89.
    Mascioli E, Leader L, Flores E, Trimbo S, Bistrian B, Blackburn G (1988) Enhanced survival to endotoxin in Guinea pigs fed IV fish oil emulsion. Lipids 23:623–625PubMedCrossRefGoogle Scholar
  90. 90.
    Hsu CS, Chiu WC, Yeh CL, Hou YC, Chou SY, Yeh SL (2006) Dietary fish oil enhances adhesion molecule and interleukin-6 expression in mice with polymicrobial sepsis. Brit J Nutr 96:854–860PubMedCrossRefGoogle Scholar
  91. 91.
    Bate C, Tayebi M, Diomede L, Salmona M, Williams A (2008) Docosahexaenoic and eicosapentaenoic acids increase prion formation in neuronal cells. BMC Biol 12:6–39Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Manuel A. de Pablo Martínez
    • 1
  • Maria A. Puertollano
    • 2
  • Elena Puertollano
    • 3
  1. 1.Facultad de Ciencias Experimentales, Dpto. de Ciencias de la Salud, Área de MicrobiologíaUniversidad de JaénJAENSpain
  2. 2.Faculty of Experimental Sciences Division of Microbiology, Department of Health SciencesUniversity of JaénJaénSpain
  3. 3.Faculty of Experimental Sciences, Unit of MicrobiologyUniversity of JaenJaenSpain

Personalised recommendations