Skip to main content

Cocoa and the Immune System and Proliferative Disorders

  • Chapter
  • First Online:
Dietary Components and Immune Function

Key Points

Cocoa is an important source of antioxidant flavonoids such as epicatechin, catechin, and procyanidins. Cocoa flavonoids affect innate and acquired immunity and proliferative disorders. In vitro experiments on innate immunity have focused on the secretion of inflammatory mediators, and the results are controversial. In vivo studies have demonstrated that cocoa flavonoid administration can ameliorate several models of inflammation. Intake of a cocoa diet by rats reduces the proportion of Th cells and increases that of B cells. These immunoregulatory actions may be beneficial in reducing certain states of autoimmunity and hypersensitivity. Many in vitro studies and some pre-clinical evidence have shown that cocoa flavonoids exert biological activities related to antitumoral effects. Although data suggest some negative associations between a flavonoid-rich diet and cancer, significant relationships are not always found. Further preclinical and clinical trials are needed to investigate the mechanisms involved in cocoa actions and to justify cocoa’s usage as a therapy for the prevention and treatment of immune-mediated diseases and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. Borchers AT, Keen CL, Hannum SM, Gershwin ME (2000) Cocoa and chocolate: composition, bioavailability and health implications. J Med Food 3:77–105

    Article  CAS  Google Scholar 

  2. Hurst WJ, Tarka SM Jr, Powis TG, Valdez F Jr, Hester TR (2002) Cacao usage by the earliest Maya civilization. Nature 418:289–290

    Article  PubMed  CAS  Google Scholar 

  3. Pucciarelli DL, Grivetti LE (2008) The medicinal use of chocolate in Early North America. Mol Nutr Food Res 52:1215–1227

    Article  PubMed  CAS  Google Scholar 

  4. Keen CL (2001) Chocolate: food as medicine/medicine as food. J Am Coll Nutr 20:436S–439S

    PubMed  CAS  Google Scholar 

  5. Tomas-Barberan FA, Cienfuegos-Jovellanos E, Marín A, Muguerza B, Gil-Izquierdo A, Cerda B, Zafrilla P, Morillas J, Mulero J, Ibarra A, Pasamar MA, Ramón D, Espín JC (2007) A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem 55:3926–3935

    Article  PubMed  CAS  Google Scholar 

  6. Vinson JA, Proch J, Bose P, Muchler S, Taffera P, Shuta D, Samman N, Agbor GA (2006) Chocolate is a powerful ex vivo and in vivo antioxidant, an antiatherosclerotic agent in an animal model, and a significant contributor to antioxidants in the European and American Diets. J Agric Food Chem 54:8071–8076

    Article  PubMed  CAS  Google Scholar 

  7. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    PubMed  CAS  Google Scholar 

  8. Natsume M, Osakabe N, Yamagishi M, Takizawa T, Nakamura T, Miyatake H, Hatano T, Yoshida T (2000) Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci Biotechnol Biochem 64:2581–2587

    Article  PubMed  CAS  Google Scholar 

  9. Gu L, House SE, Wu X, Ou B, Prior RL (2006) Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J Agric Food Chem 54:4057–4061

    Article  PubMed  CAS  Google Scholar 

  10. McShea A, Ramiro-Puig E, Munro SB, Casadesus G, Castell M, Smith MA (2008) Clinical benefit and preservation of flavonols in dark chocolate manufacturing. Nutr Rev 66:630–641

    Article  PubMed  Google Scholar 

  11. Baba S, Osakabe N, Natsume M, Muto Y, Takizawa T, Terao J (2001) In vivo comparison of the ­bioavailability of (+)-catechin, (−)-epicatechin and their mixture in orally administered rats. J Nutr 131:2885–2891

    PubMed  CAS  Google Scholar 

  12. Baba S, Osakabe N, Natsume M, Yasuda A, Takizawa T, Nakamura T, Terao J (2000) Cocoa powder enhances the level of antioxidative activity in rat plasma. Br J Nutr 84:673–680

    PubMed  CAS  Google Scholar 

  13. Deprez S, Brezillon C, Rabot S, Philippe C, Mila I, Lapierre C, Scalbert A (2000) Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J Nutr 130:2733–2738

    PubMed  CAS  Google Scholar 

  14. Holt RR, Lazarus SA, Sullards MC, Zhu QY, Schramm DD, Hammerstone JF, Fraga CG, Schmitz HH, Keen CL (2002) Procyanidin dimer B2 [epicatechin-(4beta-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am J Clin Nutr 76:798–804

    PubMed  CAS  Google Scholar 

  15. Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    PubMed  CAS  Google Scholar 

  16. Cooper KA, Donovan JL, Waterhouse AI, Williamson G (2008) Cocoa and health: a decade of research. Br J Nutr 99:1–11

    Article  PubMed  CAS  Google Scholar 

  17. Buijsse B, Feskens EJM, Kok FJ, Kromhout D (2006) Cocoa intake, blood pressure, and cardiovascular mortality: The Zutphen Elderly Study. Arch Int Med 166:411–417

    Google Scholar 

  18. Corti R, Flammaer AJ, Hollenberg NK, Lüscher TF (2009) Cocoa and cardiovascular health. Circulation 119:1433–1441

    Article  PubMed  Google Scholar 

  19. Lippi G, Franchini M, Montagnana M, Favaloro EJ, Guidi GC, Targher G (2009) Dark chocolate: consumption for pleasure or therapy? J Thromb Thrombolysis 28:482–488

    Article  PubMed  CAS  Google Scholar 

  20. Ramiro-Puig E, Castell M, McShea A, Perry G, Smith MA, Casadesús G (2009) Food antioxidants and Alzheimer’s disease. In: Packer L, Sies H, Eggersdorfer M, Cadenas E (eds) Micronutrients and brain health. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  21. Murphy KM, Travers P, Walport M (2007) Janeway’s immunobiology, vol 7. Garland Science, England

    Google Scholar 

  22. Meresse B, Cerf-Bensussan N (2009) Innate T cell responses in human gut. Sem Immunol 21:121–129

    Article  CAS  Google Scholar 

  23. Mao TK, van de Water J, Keen CL, Schmitz HH, Gershwin ME (2002) Modulation of TNF-alpha secretion in peripheral blood mononuclear cells by cocoa flavanols and procyanidins. Clin Dev Immunol 9:135–141

    CAS  Google Scholar 

  24. Kenny TP, Keen CL, Schmitz HH, Gershwin ME (2007) Immune effects of cocoa procyanidin oligomers on peripheral blood mononuclear cells. Exp Biol Med (Maywood) 232:293–300

    CAS  Google Scholar 

  25. Wisman KN, Perkins AA, Jeffers MD, Hagerman AE (2008) Accurate assessment of the bioactivities of redox-active polyphenolics in cell culture. J Agric Food Chem 56:7831–7837

    Article  PubMed  CAS  Google Scholar 

  26. Ramiro E, Franch A, Castellote C, Pérez-Cano F, Permanyer J, Izquierdo-Pulido M, Castell M (2005) Flavonoids from Theobroma cacao down-regulate inflammatory mediators. J Agric Food Chem 53:8506–8511

    Article  PubMed  CAS  Google Scholar 

  27. Ono K, Takahashi T, Kamei M, Mato T, Hashizume S, Kamiya S, Tsutsumi H (2003) Effects of an aqueous extract of cocoa on nitric oxide production of macrophages activated by lipopolysaccharide and interferon-gamma. Nutrition 19:681–685

    Article  PubMed  CAS  Google Scholar 

  28. Sanbongi C, Suzuki N, Sakane T (1997) Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro. Cell Immunol 177:129–136

    Article  PubMed  CAS  Google Scholar 

  29. Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 2007:45673–45683

    Article  PubMed  CAS  Google Scholar 

  30. Comalada M, Camuesco D, Sierra S, Ballester I, Xaus J, Gálvez J, Zarzuelo A (2005) In vivo quercitrin antiinflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-κB pathway. Eur J Immunol 35:584–592

    Article  PubMed  CAS  Google Scholar 

  31. Chen CY, Peng WH, Tsai KD, Hsu SL (2007) Luteolin suppresses inflammation-associated gene expression by blocking NF-κB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci 81:1602–1614

    Article  PubMed  CAS  Google Scholar 

  32. Ramiro-Puig E, Pérez-Cano FJ, Ramírez-Santana C, Castellote C, Izquierdo-Pulido M, Permanyer J, Franch A, Castell M (2007) Spleen lymphocyte function modulated by a cocoa-enriched diet. Clin Exp Immunol 149:535–542

    Article  PubMed  CAS  Google Scholar 

  33. Castell M, Franch A, Ramos-Romero S, Ramiro-Puig E, Pérez-Cano FJ, Castellote C (2009) Effect of a diet rich in cocoa flavonoids on experimental acute inflammation. In: Flavonoids: biosynthesis, biological effects and dietary sources, Nova Publishers, Huntington, NY, USA, pp. 213–229

    Google Scholar 

  34. Lee HC, Jenner AM, Low CS, Lee YK (2006) Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 157:876–884

    Article  PubMed  CAS  Google Scholar 

  35. Matsuoka Y, Hasegawa H, Okuda S, Muraki T, Uruno T, Kubota K (1995) Ameliorative effects of tea catechins on active oxygen-related nerve cell injuries. J Pharmacol Exp Ther 274:602–608

    PubMed  CAS  Google Scholar 

  36. Rotelli AE, Guardia T, Juárez AO, de la Rocha NE, Pelzer LE (2003) Comparative study of flavonoids in experimental models of inflammation. Pharmacol Res 48:601–606

    Article  PubMed  CAS  Google Scholar 

  37. Morikawa K, Nonaka M, Narahara M, Torii I, Kawaguchi K, Yoshikawa T, Kumazawa Y, Morikawa S (2003) Inhibitory effect of quercetin on carrageenan-induced inflammation in rats. Life Sci 74:709–721

    Article  PubMed  CAS  Google Scholar 

  38. Kim H, Kong H, Choi B, Yang Y, Kim Y, Lim MJ, Neckers L, Jung Y (2005) Metabolic and pharmacological properties of rutin, a dietary quercetin glycoside, for treatment of inflammatory bowel disease. Pharm Res 22:1499–1509

    Article  PubMed  CAS  Google Scholar 

  39. Lee KW, Kundu JK, Kim SO, Chun KS, Lee HJ, Surh YJ (2006) Cocoa polyphenols inhibit phorbol ester-induced superoxide anion formation in cultured HL-60 cells and expression of cyclooxygenase-2 and activation of NF-κB and MAPKs in mouse skin in vivo. J Nutr 136:1150–1155

    PubMed  CAS  Google Scholar 

  40. Ramos-Romero S, Ramiro-Puig E, Pérez-Cano FJ, Castellote C, Franch A, Castell M (2008) Anti-inflammatory effects of cocoa in rat carrageenin-induced paw oedema. Proc Nutr Soc 67:65

    Article  Google Scholar 

  41. Mazzon E, Muià C, Paola RD, Genovese T, Menegazzi M, De Sarro A, Suzuki H, Cuzzocrea S (2005) Green tea polyphenol extract attenuates colon injury induced by experimental colitis. Free Radic Res 39:1017–1025

    Article  PubMed  CAS  Google Scholar 

  42. Morinobu A, Biao W, Tanaka S, Horiuchi M, Jun L, Tsuji G, Sakai Y, Kurosaka M, Kumagai S (2008) (−)-Epigallocatechin-3-gallate suppresses osteoclast differentiation and ameliorates experimental arthritis in mice. Arthritis Rheum 58:2012–2018

    Article  PubMed  CAS  Google Scholar 

  43. Lin SK, Chang HH, Chen YJ, Wang CC, Galson DL, Hong CY, Kok SH (2008) Epigallocatechin-3-gallate diminishes CCL2 expression in human osteoblastic cells via up-regulation of phosphatidylinositol 3-kinase/Akt/Raf-1 interaction: a potential therapeutic benefit for arthritis. Arthritis Rheum 58:3145–3156

    Article  PubMed  CAS  Google Scholar 

  44. Miyake M, Ide K, Sasaki K, Matsukura Y, Shijima K, Fujiwara D (2008) Oral administration of highly oligomeric procyanidins of Jatoba reduces the severity of collagen-induced arthritis. Biosci Biotechnol Biochem 72:1781–1788

    Article  PubMed  CAS  Google Scholar 

  45. Wang TY, Li J, Ge JF, Li CY, Jin Y, Lü XW, Cheng WM, Tang JH (2008) Preliminary study of total flavonoids from Litsea coreana Levl., on experimental adjuvant-induced arthritis in rats. Am J Chin Med 36:899–912

    Article  PubMed  CAS  Google Scholar 

  46. Beaumont DM, Mark TM Jr, Hills R, Dixon P, Veit B, Garrett N (2008) The effects of chrysin, a Passiflora incarnata extract, on natural killer cell activity in male Sprague-Dawley rats undergoing abdominal surgery. AANA J 76:113–117

    PubMed  Google Scholar 

  47. Ramiro-Puig E, Pérez-Cano FJ, Ramos-Romero S, Pérez-Berezo T, Castellote C, Permanyer J, Franch A, Izquierdo-Pulido M, Castell M (2008) Intestinal immune system of young rats influenced by cocoa-enriched diet. J Nutr Biochem 19:555–565

    Article  PubMed  CAS  Google Scholar 

  48. Akiyama H, Sato Y, Watanabe T, Nagaoka MH, Yoshioka Y, Shoji T, Kanda T, Yamada K, Totsuka M, Teshima R, Sawada J, Goda Y, Maitani T (2005) Dietary unripe apple polyphenol inhibits the development of food allergies in murine models. FEBS Lett 579:4485–4491

    Article  PubMed  CAS  Google Scholar 

  49. Holderness J, Hedges JF, Daughenbaugh K, Kimmel E, Graff J, Freedman B, Jutila MA (2008) Response of γδ T cells to plant-derived tannins. Crit Rev Immunol 28:377–402

    Article  PubMed  CAS  Google Scholar 

  50. Boismenu R (2000) Function of intestinal γδ T cells. Immunol Res 21:123–127

    Article  PubMed  CAS  Google Scholar 

  51. Graff JC, Jutila MA (2007) Differential regulation of CD11b on γδ T cells and monocytes in response to unripe apple polyphenols. J Leukoc Biol 82:603–607

    Article  PubMed  CAS  Google Scholar 

  52. Mathur S, Devaraj S, Grundy SM, Jialal I (2002) Cocoa products decrease low density lipoprotein oxidative susceptibility but do not affect biomarkers of inflammation in humans. J Nutr 132:3663–3667

    PubMed  CAS  Google Scholar 

  53. di Giuseppe R, di Castelnuovo A, Centritto F, Zito F, de Curtis A, Costanzo S, Vohnout B, Sieri S, Krogh V, Donati MB, de Gaetano G, Iacoviello L (2008) Regular consumption of dark chocolate is associated with low serum concentrations of C-reactive protein in a healthy Italian population. J Nutr 138:1939–1945

    PubMed  Google Scholar 

  54. Stoeck M, Lees R, Szamel M, Pantaleo G, MacDonald HR (1989) Comparison of phorbol-12-myristate-13-acetate and dioctanoyl-sn-glycerol in the activation of EL4/6.1 thymoma cells. J Cell Physiol 138:541–547

    Article  PubMed  CAS  Google Scholar 

  55. Mao TK, Powell JJ, Van de Water J, Keen CL, Schmitz HH, Greshwin ME (1999) The influence of cocoa procyanidins on the transcrition of interleukin 2 in peripheral blood mononuclear cells. Int J Immunother 15:23–29

    CAS  Google Scholar 

  56. Ramiro E, Franch A, Castellote C, Andrés-Lacueva C, Izquierdo-Pulido M, Castell M (2005) Effect of Theobroma cacao flavonoids on immune activation of a lymphoid cell line. Br J Nutr 93:859–866

    Article  PubMed  CAS  Google Scholar 

  57. Mao T, Van de Water J, Keen CL, Schmitz HH, Gershwin ME (2000) Cocoa procyanidins and human cytokine transcription and secretion. J Nutr 130:2093S–2099S

    PubMed  CAS  Google Scholar 

  58. Yu ES, Min HJ, An SY, Won HY, Hong JH, Hwang ES (2008) Regulatory mechanisms of IL-2 and IFNγ suppression by quercetin in T helper cell. Biochem Pharmacol 76:70–78

    Article  PubMed  CAS  Google Scholar 

  59. Lugli E, Ferraresi R, Roat E, Troiano L, Pinti M, Nasi M, Nemes E, Berteoncelli L, Gibellini L, Salomoni P, Cooper EL, Cossarizza A (2009) Quercetin inhibits lymphocyte activation and proliferation without inducing apoptosis in peripheral mononuclear cells. Leuk Res 33:140–150

    Article  PubMed  CAS  Google Scholar 

  60. Constant SL, Bottomly K (1997) Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 15:297–322

    Article  PubMed  CAS  Google Scholar 

  61. Jenny M, Saner E, Klein A, Ledochowski M, Schennach H, Ueberall F, Fuchs D (2009) Cacao extracts suppress tryptophan degradation of mitogen-stimulated peripheral blood mononuclear cells.J Ethnopharmacol 122:261–267

    Article  PubMed  CAS  Google Scholar 

  62. Mao TK, Van de Water J, Keen CL, Schmitz HH, Gershwin ME (2002) Effect of cocoa flavanols and their related oligomers on the secretion of interleukin-5 in peripheral blood mononuclear cells. J Med Food 5:17–22

    Article  PubMed  CAS  Google Scholar 

  63. Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection.J Immunol 180:5771–5777

    PubMed  CAS  Google Scholar 

  64. Mao TK, Van de Water J, Keen CL, Schmitz HH, Gershwin ME (2003) Cocoa flavonols and procyanidins promote transforming growth factor-β1 homeostasis in peripheral blood mononuclear cells. Exp Biol Med 228:93–99

    CAS  Google Scholar 

  65. Ramiro-Puig E, Urpí-Sardà M, Pérez-Cano FJ, Franch A, Castellote C, Andrés-Lacueva C, Izquierdo-Pulido M, Castell M (2007) Cocoa-enriched diet enhances antioxidant enzyme activity and modulates lymphocyte composition in thymus from young rats. J Agric Food Chem 55:6431–6438

    Article  PubMed  CAS  Google Scholar 

  66. Bhandoola A, Sambandam A (2006) From stem cell to T cell: one route or many? Nat Rev Immunol 6:117–126

    Article  PubMed  CAS  Google Scholar 

  67. Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331–341

    Article  PubMed  CAS  Google Scholar 

  68. Park HJ, Lee CM, Jung ID, Lee JS, Jeong YI, Chang JH, Chun SH, Kim MJ, Choi IW, Ahn SC, Shin YK, Yeom SR, Park YM (2009) Quercetin regulates Th1/Th2 balance in a murine model of asthma. Int Immunopharmacol 9:261–267

    Article  PubMed  CAS  Google Scholar 

  69. Cruz EA, Da-Silva SAG, Muzitano MF, Silva PMR, Costa SS, Rossi-Bergmann B (2008) Immunomodulatory pretreatment with Kalanchoe pinnata extract and its quercitrin flavonoid ­effectively protects mice against fatal anaphylactic shock. Int Immunopharmacol 8:1616–1621

    Article  PubMed  CAS  Google Scholar 

  70. Pérez-Berezo T, Ramiro-Puig E, Pérez-Cano FJ, Castellote C, Permanyer J, Franch A, Castell M (2009) Influence of a cocoa-enriched diet on specific immune response in ovalbumin-sensitized rats. Mol Nutr Food Res 53:389–397

    Article  PubMed  CAS  Google Scholar 

  71. Graser BJ (1995) Downregulation of intragraft IFN-gamma expression correlates with increased IgG1 alloantibody response following intrathymic immunomodulation of sensitized rat recipients. Transplantation 60:1516–1524

    Article  PubMed  Google Scholar 

  72. Gracie JA, Bradley JA (1996) Interleukin-12 induces interferon-gamma dependent switching of IgG alloantibody subclass. Eur J Immunol 26:1217–1221

    Article  PubMed  CAS  Google Scholar 

  73. Saoudi A, Bernard I, Hoedemaekers A, Cautain B, Martínez K, Druet P, De Baets M, Guéry JC (1999) Experimental autoimmune myasthenia gravis may occur in the context of a polarized Th1- or Th2-type immune response in rats. J Immunol 162:7189–7197

    PubMed  CAS  Google Scholar 

  74. Bridle BW, Wilkie BN, Jevnikar AM, Mallard BA (2007) Deviation of xenogeneic immune response and bystander suppression in rats fed porcine blood mononuclear cells. Transpl Immunol 17:262–270

    Article  PubMed  CAS  Google Scholar 

  75. Kogiso M, Sakai T, Mitsuya K, Komatsu T, Yamamoto S (2006) Genistein suppresses antigen-specific immune responses through competition with 17beta-estradiol for estrogen receptors in ovalbumin-immunized BALB/c mice. Nutrition 22:802–809

    Article  PubMed  CAS  Google Scholar 

  76. Qin F, Sun HX (2008) Immunosuppressive activity of the ethanol extract of Sedum sarmentosum and its fractions on specific antibody and cellular responses to ovalbumin in mice. Chem Biodivers 5:2699–2709

    Article  PubMed  CAS  Google Scholar 

  77. Yano S, Umeda D, Yamashita T, Ninomiya Y, Sumida M, Fujimura Y, Yamada K, Tachibana H (2007) Dietary flavones suppresses IgE and Th2 cytokines in OVA-immunized BALB/c mice. Eur J Nutr 46:257–263

    Article  PubMed  CAS  Google Scholar 

  78. Chang SL, Chiang YM, Chang CLT, Yeh HH, Shyur LF, Kuo YH, Wu TK, Yang WC (2007) Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-γ expression. J Ethnopharmacol 112:232–236

    Article  PubMed  CAS  Google Scholar 

  79. Kang HK, Ecklund D, Liu M, Datta SK (2009) Apigenin, a non-mutagenic dietary flavonoid, suppresses lupus by inhibiting autoantigen presentation for expansion of autoreactive Th1 and Th17 cells. Arthritis Res Ther 11(2):R59. doi: 10.1186/ar2682

    Article  PubMed  CAS  Google Scholar 

  80. Lee JY, Lee JH, Park JH, Kim SY, Choi JY, Lee SH, Kim YS, Kang SS, Jang EC, Han Y (2009) Liquiritigenin, a licorice flavonoid, helps mice resist disseminated candidiasis due to Candida albicans by Th1 immune response, whereas liquiritin, its glycoside form, does not. Int Immunopharmacol 9:632–638

    Article  PubMed  CAS  Google Scholar 

  81. Faria A, Calhau C, de Freitas V, Mateus N (2006) Procyanidins as antioxidants and tumor cell growth modulators. J Agric Food Chem 54:2392–2397

    Article  PubMed  CAS  Google Scholar 

  82. Zhao J, Wang J, Chen Y, Agarwal R (1999) Anti-tumor-promoting activity of a polyphenolic fraction isolated from grape seeds in the mouse skin two-stage initiation-promotion protocol and identification of procyanidin B5-3′-gallate as the most effective antioxidant constituent. Carcinogenesis 20:1737–1745

    Article  PubMed  CAS  Google Scholar 

  83. Shoji T, Masumoto S, Moriichi N, Kobori M, Kanda T, Shinmoto H, Tsushida T (2005) Procyanidin trimers to pentamers fractionated from apple inhibit melanogenesis in B16 mouse melanoma cells.J Agric Food Chem 53:6105–6111

    Article  PubMed  CAS  Google Scholar 

  84. Eng ET, Ye J, Williams D, Phung S, Moore RE, Young MK, Gruntmanis U, Braunstein G, Chen S (2003) Suppression of estrogen biosynthesis by procyanidin dimers in red wine and grape seeds. Cancer Res 63:8516–8522

    PubMed  CAS  Google Scholar 

  85. Theodoratou E, Kyle J, Cetnarskyj R, Farrington SM, Tenesa A, Barnetson R, Porteous M, Dunlop M, Campbell H (2007) Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 16:684–693

    Article  PubMed  CAS  Google Scholar 

  86. Miller KB, Stuart DA, Smith NL, Lee CY, McHale NL, Flanagan JA, Ou B, Hurst WJ (2006) Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States. J Agric Food Chem 54:4062–4068

    Article  PubMed  CAS  Google Scholar 

  87. Jonfia-Essien WA, West G, Alderson PG, Tucker G (2008) Phenolic content and antioxidant capacity of hybrid variety cocoa beans. Food Chem 108:1155–1159

    Article  CAS  Google Scholar 

  88. Belščak A, Komes D, Horžić D, Ganić KK, Karlović D (2009) Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Res Int 42:707–716

    Article  CAS  Google Scholar 

  89. Kwon DY, Choi KH, Kim SJ, Choi DW, Kim YS, Kim YC (2009) Comparison of peroxyl radical scavenging capacity of commonly consumed beverages. Arch Pharm Res 32:283–287

    Article  CAS  Google Scholar 

  90. Lee KW, Kim YJ, Lee HJ, Lee CY (2003) Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem 51:7292–7295

    Article  PubMed  CAS  Google Scholar 

  91. Hatano T, Miyatake H, Natsume M, Osakabe N, Takizawa T, Ito H, Yoshida T (2002) Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects. Phytochemistry 59:749–758

    Article  PubMed  CAS  Google Scholar 

  92. Counet C, Collin S (2003) Effect of the number of flavanol units on the antioxidant activity of ­procyanidin fractions isolated from chocolate. J Agric Food Chem 51:6816–6822

    Article  PubMed  CAS  Google Scholar 

  93. Yilmaz Y, Toledo RT (2004) Major flavonoids in grape seeds and skins: antioxidant capacity of ­catechin, epicatechin, and gallic acid. J Agric Food Chem 52:255–260

    Article  PubMed  CAS  Google Scholar 

  94. Pollard SE, Kuhnle GG, Vauzour D, Vafeiadou K, Tzounis X, Whiteman M, Rice-Evans C, Spencer JP (2006) The reaction of flavonoid metabolites with peroxynitrite. Biochem Biophys Res Commun 350:960–968

    Article  PubMed  CAS  Google Scholar 

  95. Morel I, Lescoat G, Cogrel P, Sergent O, Pasdeloup N, Brissot P, Cillard P, Cillard J (1993) Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol 45:13–19

    Article  PubMed  CAS  Google Scholar 

  96. Pazos M, Andersen ML, Medina I, Skibsted LH (2007) Efficiency of natural phenolic compounds regenerating alpha-tocopherol from alpha-tocopheroxyl radical. J Agric Food Chem 55:3661–3666

    Article  PubMed  CAS  Google Scholar 

  97. Alía M, Mateos R, Ramos S, Lecumberri E, Bravo L, Goya L (2006) Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2). Eur J Nutr 45:19–28

    Article  PubMed  CAS  Google Scholar 

  98. Zhu QY, Holt RR, Lazarus SA, Orozco TJ, Keen CL (2002) Inhibitory effects of cocoa flavanols and procyanidin oligomers on free radical-induced erythrocyte hemolysis. Exp Biol Med 227:321–329

    CAS  Google Scholar 

  99. Zhu QY, Schramm DD, Gross HB, Holt RR, Kim SH, Yamaguchi T, Kwik-Uribe CL, Keen CL (2005) Influence of cocoa flavonols and procyanidins on free radical induced human erythrocyte hemolysis. Clin Dev Immunol 12:27–34

    Article  PubMed  CAS  Google Scholar 

  100. Verstraeten SV, Mackenzie GG, Oteiza PI, Fraga CG (2008) (−)-Epicatechin and related procyanidins modulate intracellular calcium and prevent oxidation in Jurkat T cells. Free Radic Res 42:864–872

    Article  PubMed  CAS  Google Scholar 

  101. Granado-Serrano AB, Martín M, Goya L, Bravo L, Ramos S (2009) Time-course regulation of ­survival pathways by epicatechin on HepG2 cells. J Nutr Biochem 20:115–124

    Article  PubMed  CAS  Google Scholar 

  102. Martín MA, Ramos S, Mateos R, Izquierdo-Pulido M, Bravo L, Goya L (2009) Protection of human HepG2 cells against an oxidative stress by the flavonoid epicatechin. Phytotherapy Res 24:503–509

    Google Scholar 

  103. Erlejman AG, Fraga CG, Oteiza PI (2006) Procyanidins protect Caco-2 cells from bile acid- and oxidant-induced damage. Free Radic Biol Med 41:1247–1256

    Article  PubMed  CAS  Google Scholar 

  104. Martín MA, Ramos S, Mateos R, Granado-Serrano AB, Izquierdo-Pulido M, Bravo L, Goya L (2008) Protection of human HepG2 cells against oxidative stress by cocoa phenolic extract. J Agric Food Chem 56:7765–7772

    Article  PubMed  CAS  Google Scholar 

  105. Cho ES, Jang YJ, Kang NJ, Hwang MK, Kim YT, Lee KW, Lee HJ (2009) Cocoa procyanidins attenuate 4-hydroxynonenal-induced apoptosis of PC12 cells by directly inhibiting mitogen-activated protein kinase kinase 4 activity. Free Radic Biol Med 46:1319–1327

    Article  PubMed  CAS  Google Scholar 

  106. Ramiro-Puig E, Casadesús G, Lee HG, Zhu X, McShea A, Perry G, Pérez-Cano FJ, Smith MA, Castell M (2009) Neuroprotective effect of cocoa flavonoids on in vitro oxidative stress. Eur J Nutr 48:54–61

    Article  PubMed  CAS  Google Scholar 

  107. Wang JF, Schramm DD, Holt RR, Ensunsa JL, Fraga CG, Schmitz HH, Keen CL (2000) A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. J Nutr 130:2115S–2119S

    PubMed  CAS  Google Scholar 

  108. Orozco TJ, Wang JF, Keen CL (2003) Chronic consumption of a flavanol- and procyanindin-rich diet is associated with reduced levels of 8-hydroxy-2′-deoxyguanosine in rat testes. J Nutr Biochem 14:104–110

    Article  PubMed  CAS  Google Scholar 

  109. Lecumberri E, Mateos R, Ramos S, Alía M, Rúperez P, Goya L, Izquierdo-Pulido M, Bravo L (2006) Characterization of cocoa fiber and its effect on the antioxidant capacity of serum in rats. Nutr Hosp 21:622–628

    PubMed  CAS  Google Scholar 

  110. Lecumberri E, Goya L, Mateos R, Alía M, Ramos S, Izquierdo-Pulido M, Bravo L (2007) A diet rich in dietary fiber from cocoa improves lipid profile and reduces malondialdehyde in hypercholesterolemic rats. Nutrition 23:332–341

    Article  PubMed  CAS  Google Scholar 

  111. Jalil AM, Ismail A, Pei CP, Hamid M, Kamaruddin SH (2008) Effect of cocoa extract on glucometabolism, oxidative stress, and antioxidant enzymes in obese-diabetic rats. J Agric Food Chem 56:7877–7884

    Article  PubMed  CAS  Google Scholar 

  112. Kurosawa T, Itoh F, Nozaki A, Nakano Y, Katsuda S, Osakabe N, Tsubone H, Kondo K, Itakura H (2005) Suppressive effects of cacao liquor polyphenols (CLP) on LDL oxidation and the development of atherosclerosis in Kurosawa and Kusanagi-hypercholesterolemic rabbits. Atherosclerosis 179:237–246

    Article  PubMed  CAS  Google Scholar 

  113. Kondo K, Hirano R, Matsumoto A, Igarashi O, Itakura H (1996) Inhibition of LDL oxidation by cocoa. Lancet 348:1514

    Article  PubMed  CAS  Google Scholar 

  114. Osakabe N, Baba S, Yasuda A, Iwamoto T, Kamiyama M, Takizawa T, Itakura H, Kondo K (2001) Daily cocoa intake reduces the susceptibility of low-density lipoprotein to oxidation as demonstrated in healthy human volunteers. Free Radic Res 34:93–99

    Article  PubMed  CAS  Google Scholar 

  115. Baba S, Osakabe N, Kato Y, Natsume M, Yasuda A, Kido T, Fukuda K, Muto Y, Kondo K (2007) Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans. Am J Clin Nutr 85:709–717

    PubMed  CAS  Google Scholar 

  116. Fraga CG, Actis-Goretta L, Ottaviani JI, Carrasquedo F, Lotito SB, Lazarus S, Schmitz HH, Keen CL (2005) Regular consumption of a flavanol-rich chocolate can improve oxidant stress in young soccer players. Clin Dev Immunol 12:11–17

    Article  PubMed  CAS  Google Scholar 

  117. McKim SE, Konno A, Gäbele E, Uesugi T, Froh M, Sies H, Thurman RG, Arteel GE (2002) Cocoa extract protects against early alcohol-induced liver injury in the rat. Arch Biochem Biophys 406:40–46

    Article  PubMed  CAS  Google Scholar 

  118. Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S (2009) A diet rich in cocoa attenuates N-nitrosodiethylamine-induced liver injury in rats. Food Chem Toxicol 47:2499–2506

    Article  PubMed  CAS  Google Scholar 

  119. Weyant MJ, Carothers AM, Dannenberg AJ, Bertagnolli MM (2001) (+)-Catechin inhibits intestinal tumor formation and suppresses focal adhesion kinase activation in the min/+ mouse. Cancer Res 61:118–125

    PubMed  CAS  Google Scholar 

  120. Gu Q, Hu C, Chen Q, Xia Y, Feng J, Yang H (2009) Development of a rat model by 3, 4-benzopyrene intra-pulmonary injection and evaluation of the effect of green tea drinking on p53 and bcl-2 expression in lung carcinoma. Cancer Detect Prev 32:444–451

    Article  PubMed  Google Scholar 

  121. Hoensch HP, Kirch W (2005) Potential role of flavonoids in the prevention of intestinal neoplasia: a review of their mode of action and their clinical perspectives. Int J Gastrointest Cancer 35:187–195

    Article  PubMed  CAS  Google Scholar 

  122. Luceri C, Caderni G, Sanna A, Dolara P (2002) Red wine and black tea polyphenols modulate the expression of cycloxygenase-2, inducible nitric oxide synthase and glutathione-related enzymes in azoxymethane-induced F344 rat colon tumors. J Nutr 132:1376–1379

    PubMed  CAS  Google Scholar 

  123. Yamagishi M, Natsume M, Nagaki A, Adachi T, Osakabe N, Takizawa T, Kumon H, Osawa T (2000) Antimutagenic activity of cacao: inhibitory effect of cacao liquor polyphenols on the mutagenic action of heterocyclic amines. J Agric Food Chem 48:5074–5078

    Article  PubMed  CAS  Google Scholar 

  124. Yamagishi M, Osakabe N, Natsume M, Adachi T, Takizawa T, Kumon H, Osawa T (2001) Anticlastogenic activity of cacao: inhibitory effect of cacao liquor polyphenols against mitomycin C-induced DNA damage. Food Chem Toxicol 39:1279–1283

    Article  PubMed  CAS  Google Scholar 

  125. Yamagishi M, Natsume M, Osakabe N, Nakamura H, Furukawa F, Imazawa T, Nishikawa A, Hirose M (2002) Effects of cacao liquor proanthocyanidins on PhIP-induced mutagenesis in vitro, and in vivo mammary and pancreatic tumorigenesis in female Sprague-Dawley rats. Cancer Lett 185:123–130

    Article  PubMed  CAS  Google Scholar 

  126. Yamagishi M, Natsume M, Osakabe N, Okazaki K, Furukawa F, Imazawa T, Nishikawa A, Hirose M (2003) Chemoprevention of lung carcinogenesis by cacao liquor proanthocyanidins in a male rat multi-organ carcinogenesis model. Cancer Lett 191:49–57

    Article  PubMed  CAS  Google Scholar 

  127. Teillet F, Boumendje A, Boutonnat J, Ronot X (2008) Flavonoids as RTK inhibitors and potential anticancer agents. Inc Med Res Rev 28:715–745

    Article  CAS  Google Scholar 

  128. Stevens MF, McCall CJ, Lelieveld P, Alexander P, Richter A, Davies DE (1994) Structural studies on bioactive compounds: synthesis of polyhydroxylated 2-phenylbenzothiazoles and a comparison of their cytotoxicities and pharmacological properties with genistein and quercetin. J Med Chem 37:1689–1695

    Article  PubMed  CAS  Google Scholar 

  129. Huang YT, Hwang JJ, Lee PP, Ke FC, Huang JH, Huang CJ, Kandaswami C, Middleton E, Lee MT (1999) Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol 128:999–1010

    Article  PubMed  CAS  Google Scholar 

  130. Lee LT, Huang YT, Hwang JJ, Lee AY, Ke FC, Huang CJ, Kandaswami C, Lee PP, Lee MT (2004) Transinactivation of the epidermal growth factor receptor tyrosine kinase and focal adhesion kinase phosphorylation by dietary flavonoids: effect on invasive potential of human carcinoma cells. Biochem Pharmacol 67:2103–2114

    Article  PubMed  CAS  Google Scholar 

  131. Lee LT, Huang YT, Hwang JJ, Lee PP, Ke FC, Nair MP, Kanadaswam C, Lee MT (2002) Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer Res 22:1615–1627

    PubMed  CAS  Google Scholar 

  132. Bigelow RL, Cardelli JA (2006) The green tea catechins, (−)-epigallocatechin-3-gallate (EGCG) and (−)-epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene 25:1922–1930

    Article  PubMed  CAS  Google Scholar 

  133. Kenny TP, Keen CL, Jones P, Kung H, Schmitz HH, Gershwin ME (2004) Pentameric procyanidins isolated from Theobroma cacao seeds selectively downregulate ErbB2 in human aortic endothelial cells. Exp Biol Med 229:255–263

    CAS  Google Scholar 

  134. Kamata H, Hirata H (1999) Redox regulation of cellular signalling. Cell Signal 11:1–14

    Article  PubMed  CAS  Google Scholar 

  135. Briviba K, Pan L, Rechkemmer G (2002) Red wine polyphenols inhibit the growth of colon carcinoma cells and modulate the activation pattern of mitogen-activated protein kinases. J Nutr 132:2814–2818

    PubMed  CAS  Google Scholar 

  136. Nam JK, Ki WL, Dong EL, Rogozin EA, Bode AM, Hyong JL, Dong Z (2008) Cocoa procyanidins suppress transformation by inhibiting mitogen-activated protein kinase kinase. J Biol Chem 283:20664–20673

    Article  PubMed  CAS  Google Scholar 

  137. Lee KW, Kang NJ, Oak MH, Hwang MK, Kim JH, Schini-Kerth VB, Lee HJ (2008) Cocoa procyanidins inhibit expression and activation of MMP-2 in vascular smooth muscle cells by direct inhibition of MEK and MT1-MMP activities. Cardiovasc Res 79:34–41

    Article  PubMed  CAS  Google Scholar 

  138. Zhang WY, Liu HQ, Xie KQ, Yin LL, Li Y, Kwik-Uribe CL, Zhu XZ (2006) Procyanidin dimer B2 [epicatechin-(4beta-8)-epicatechin] suppresses the expression of cyclooxygenase-2 in endotoxin-treated monocytic cells. Biochem Biophys Res Commun 345:508–515

    Article  PubMed  CAS  Google Scholar 

  139. Martín MA, Serrano AB, Ramos S, Izquierdo-Pulido M, Bravo L, Goya L (2010) Cocoa flavonoids up-regulate antioxidant enzyme activity via the ERK1/2 pathway to protect against oxidative stress-induced apoptosis in HepG2 cells. J Nutr Biochem 21:196–205

    Article  PubMed  CAS  Google Scholar 

  140. Ramos S, Moulay L, Granado-Serrano AB, Vilanova O, Muguerza B, Goya L, Bravo L (2008) Hypolipidemic effect in cholesterol-fed rats of a soluble fiber-rich product obtained from cocoa husks. J Agric Food Chem 56:6985–6993

    Article  PubMed  CAS  Google Scholar 

  141. Granado-Serrano AB, Martín MA, Izquierdo-Pulido M, Goya L, Bravo L, Ramos S (2007) Molecular mechanisms of (−)-epicatechin and chlorogenic acid on the regulation of the apoptotic and survival/proliferation pathways in a human hepatoma cell line. J Agric Food Chem 55:2020–2027

    Article  PubMed  CAS  Google Scholar 

  142. Noé V, Peñuelas S, Lamuela-Raventós RM, Permanyer J, Ciudad CJ, Izquierdo-Pulido M (2004) Epicatechin and a cocoa polyphenolic extract modulate gene expression in human Caco-2 cells. J Nutr 134:2509–2516

    PubMed  Google Scholar 

  143. Clarke RB (2003) p27KIP1 phosphorylation by PKB/Akt leads to poor breast cancer prognosis. Breast Cancer Res 5:162–163

    Article  PubMed  Google Scholar 

  144. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA, McCubrey JA (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17:590–603

    Article  PubMed  CAS  Google Scholar 

  145. Sun B, Karin M (2008) NF-kB signaling, liver disease and hepatoprotective agents. Oncogene 27:6228–6244

    Article  PubMed  CAS  Google Scholar 

  146. Jeong WS, Kim IW, Hu R, Kong AN (2004) Modulation of AP-1 by natural chemopreventive compounds in human colon HT-29 cancer cell line. Pharm Res 21:649–660

    Article  PubMed  CAS  Google Scholar 

  147. Mackenzie GG, Carrasquedo F, Delfino JM, Keen CL, Fraga CG, Oteiza PI (2004) Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-kappaB activation at multiple steps in Jurkat T cells. FASEB J 18:167–169

    PubMed  CAS  Google Scholar 

  148. Mackenzie GG, Adamo AM, Decker NP, Oteiza PI (2008) Dimeric procyanidin B2 inhibits constitutively active NF-kB in Hodgkin’s lymphoma cells independently of the presence of IkB mutations. Biochem Pharmacol 75:1461–1471

    Article  PubMed  CAS  Google Scholar 

  149. Paur I, Austenaa LM, Blomhoff R (2008) Extracts of dietary plants are efficient modulators of nuclear factor kappa B. Food Chem Toxicol 46:1288–1297

    Article  PubMed  CAS  Google Scholar 

  150. García-Mediavilla V, Crespo I, Collado PS, Esteller A, Sánchez-Campos S, Tuñón MJ, González-Gallego J (2007) The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur J Pharmacol 557:221–229

    Article  PubMed  CAS  Google Scholar 

  151. Sukhthankar M, Yamaguchi K, Lee SH, McEntee MF, Eling TE, Hara Y, Baek SJ (2008) A green tea component suppresses posttranslational expression of basic fibroblast growth factor in colorectal cancer. Gastroenterology 134:1972–1980

    Article  PubMed  Google Scholar 

  152. Tsuchiya H, Tanaka T, Nagayama M (2008) Antiproliferative effects associated with membrane lipid interactions with green tea catechins. J Health Sci 54:576–580

    Article  CAS  Google Scholar 

  153. Sánchez-del-Campo L, Tárraga A, Montenegro MF, Cabezas-Herrera J, Rodríguez-López JN (2009) Melanoma activation of 3-o-(3, 4, 5-trimethoxybenzoyl)-(−)-epicatechin to a potent irreversible inhibitor of dihydrofolate reductase. Mol Pharm 6:883–894

    Article  PubMed  CAS  Google Scholar 

  154. Actis-Goretta L, Romanczyk LJ, Rodriguez CA, Kwik-Uribe C, Keen CL (2008) Cytotoxic effects of digalloyl dimer procyanidins in human cancer cell lines. J Nutr Biochem 19:797–808

    Article  PubMed  CAS  Google Scholar 

  155. Carnesecchi S, Schneider Y, Lazarus SA, Coehlo D, Gossé F, Raul F (2002) Flavanols and procyanidins of cocoa and chocolate inhibit growth and polyamine biosynthesis of human colonic cancer cells. Cancer Lett 175:147–155

    Article  PubMed  CAS  Google Scholar 

  156. Ramljak D, Romanczyk LJ, Metheny-Barlow LJ, Thompson N, Knezevic V, Galperin M, Ramesh A, Dickson RB (2005) Pentameric procyanidin from Theobroma cacao selectively inhibits growth of human breast cancer cells. Mol Cancer Ther 4:537–546

    Article  PubMed  CAS  Google Scholar 

  157. Peng G, Dixon DA, Muga SJ, Smith TJ, Wargovich MJ (2006) Green tea polyphenol (−)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol Carcinog 45:309–319

    Article  PubMed  CAS  Google Scholar 

  158. Park JB (2007) Caffedymine from cocoa has COX inhibitory activity suppressing the expression of a platelet activation marker, P-selectin. J Agric Food Chem 55:2171–2175

    Article  PubMed  CAS  Google Scholar 

  159. Nandakumar V, Singh T, Katiyar SK (2008) Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett 269:378–387

    Article  PubMed  CAS  Google Scholar 

  160. Ganguly C, Saha P, Panda CK, Das S (2005) Inhibition of growth, induction of apoptosis and alteration of gene expression by tea polyphenols in the highly metastatic human lung cancer cell line NCI-H460. Asian Pac J Cancer Prev 6:326–331

    PubMed  Google Scholar 

  161. Pierini R, Kroon PA, Guyot S, Johnson IT, Belshaw NJ (2008) The procyanidin-mediated induction of apoptosis and cell-cycle arrest in esophageal adenocarcinoma cells is not dependent on p21Cip1/WAF1 R. Cancer Lett 270:234–241

    Article  PubMed  CAS  Google Scholar 

  162. Pierini R, Kroon PA, Guyot S, Ivory K, Johnson IT, Belshaw NJ (2008) Procyanidin effects on oesophageal adenocarcinoma cells strongly depend on flavan-3-ol degree of polymerization. Mol Nutr Food Res 52:1399–1407

    Article  PubMed  CAS  Google Scholar 

  163. Kozikowski AP, Tückmantel W, Böttcher G, Romanczyk LJ (2003) Studies in polyphenol chemistry and bioactivity. 4. Synthesis of trimeric, tetrameric, pentameric, and higher oligomeric epicatechin-derived procyanidins having all-4β, 8-interflavan connectivity and their inhibition of cancer cell growth through cell cycle arrest. J Org Chem 68:1641–1658

    Article  PubMed  CAS  Google Scholar 

  164. Shang XJ, Yao G, Ge JP, Sun Y, Teng WH, Huang YF (2009) Procyanidin induces apoptosis and necrosis of prostate cancer cell line PC-3 in a mitochondrion-dependent manner. J Androl 30:122–126

    Article  PubMed  CAS  Google Scholar 

  165. Mojzis J, Varinska L, Mojzisova G, Kostova I, Mirossay L (2008) Antiangiogenic effects of flavonoids and chalcones. Pharmacol Res 57:259–265

    Article  PubMed  CAS  Google Scholar 

  166. Guo Y, Wang S, Hoot DR, Clinton SK (2007) Suppression of VEGF-mediated autocrine and paracrine interactions between prostate cancer cells and vascular endothelial cells by soy isoflavones. J Nutr Biochem 18:408–417

    Article  PubMed  CAS  Google Scholar 

  167. Tan WF, Lin LP, Li MH, Zhang YX, Tong YG, Xiao D, Ding J (2003) Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. Eur J Pharmacol 459:255–262

    Article  PubMed  CAS  Google Scholar 

  168. Zhang FJ, Yang JY, Mou YH, Sun BS, Ping YF, Wang JM, Bian XW, Wu CF (2009) Inhibition of U-87 human glioblastoma cell proliferation and formyl peptide receptor function by oligomer procyanidins (F2) isolated from grape seeds. Chem Biol Interact 179:419–429

    Article  PubMed  CAS  Google Scholar 

  169. Arts IC, Hollman PC (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81:317S–325S

    PubMed  CAS  Google Scholar 

  170. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568

    PubMed  CAS  Google Scholar 

  171. Hirvonen T, Virtamo J, Korhonen P, Albanes D, Pietinen P (2001) Flavonol and flavone intake and the risk of cancer in male smokers (Finland). Cancer Causes Control 12:789–796

    Article  PubMed  CAS  Google Scholar 

  172. Arts IC, Jacobs DR, Gross M, Harnack LJ, Folsom AR (2002) Dietary catechins and cancer incidence among postmenopausal women: the Iowa Women’s Health Study (United States). Cancer Causes Control 13:373–382

    Article  PubMed  Google Scholar 

  173. Garcia-Closas R, Agudo A, Gonzalez CA, Riboli E (1998) Intake of specific carotenoids and flavonoids and the risk of lung cancer in women in Barcelona, Spain. Nutr Cancer 32:154–158

    Article  PubMed  CAS  Google Scholar 

  174. Stefani ED, Boffetta P, Deneo-Pellegrini H, Mendilaharsu M, Carzoglio JC, Ronco A, Olivera L (1999) Dietary antioxidants and lung cancer risk: a case control study in Uruguay. Nutr Cancer 34:100–110

    Article  PubMed  CAS  Google Scholar 

  175. Le ML, Murphy SP, Hankin JH, Wilkens LR, Kolonel LN (2000) Intake of flavonoids and lung cancer. J Natl Cancer Inst 92:154–160

    Article  Google Scholar 

  176. Rossi M, Negri E, Talamini R, Bosetti C, Parpinel M, Gnagnarella P, Franceschi S, Dal Maso L, Montella M, Giacosa A, La Vecchia C (2006) Flavonoids and colorectal cancer in Italy. Cancer Epidemiol Biomarkers Prev 15:1555–1558

    Article  PubMed  CAS  Google Scholar 

  177. Lin J, Zhang SM, Wu K, Willett WC, Fuchs CS, Giovannucci E (2006) Flavonoid intake and colorectal cancer risk in men and women. Am J Epidemiol 164:644–651

    Article  PubMed  Google Scholar 

  178. Peterson J, Lagiou P, Samoli E, Lagiou A, Katsouyanni K, La Vecchia C, Dwyer J, Trichopoulos D (2003) Flavonoid intake and breast cancer risk: a case-control study in Greece. Br J Cancer 89:1255–1259

    Article  PubMed  CAS  Google Scholar 

  179. Bobe G, Weinstein SJ, Albanes D, Hirvonen T, Ashby J, Taylor PR, Virtamo J, Stolzenberg-Solomon RZ (2008) Flavonoid intake and risk of pancreatic cancer in male smokers (Finland). Cancer Epidemiol Biomarkers Prev 17:553–562

    Article  PubMed  CAS  Google Scholar 

  180. Sasazuki S, Inoue M, Miura T, Iwasaki M, Tsugane S (2008) Plasma tea polyphenols and gastric cancer risk: a case-control study nested in a large population-based prospective study in Japan. Cancer Epidemiol Biomarkers Prev 17:343–351

    Article  PubMed  CAS  Google Scholar 

  181. Cui Y, Morgenstern H, Greenland S, Tashkin DP, Mao JT, Cai L, Cozen W, Mack TM, Lu QY, Zhang ZF (2008) Dietary flavonoid intake and lung cancer – a population-based case-control study. Cancer 112:2241–2248

    Article  PubMed  CAS  Google Scholar 

  182. Bayard V, Chamorro F, Motta J, Hollenberg NK (2007) Does flavanol intake influence mortality from nitric oxide-dependent processes? Ischemic heart disease, stroke, diabetes mellitus, and cancer in Panama. Int J Med Sci 4:53–58

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Ministerio de Ciencia y Tecnología (AGL2005-02823 and AGL2008-02790) and the Generalitat de Catalunya (SGR2009118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Pérez-Cano PHD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pérez-Cano, F.J., Franch, À., Castellote, C., Castell, M. (2010). Cocoa and the Immune System and Proliferative Disorders. In: Watson, R., Zibadi, S., Preedy, V. (eds) Dietary Components and Immune Function. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-061-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-061-8_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-060-1

  • Online ISBN: 978-1-60761-061-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics