Skip to main content

Imaging Effects of Hypertension on the Brain: A Focus on New Imaging Modalities and Options

  • Chapter
  • First Online:
Hypertension and Stroke

Part of the book series: Clinical Hypertension and Vascular Diseases ((CHVD))

  • 2288 Accesses

Abstract

Recent developments in neuroimaging have allowed better qualification and quantification of the effects of hypertension (HTN) on the brain in vivo. Although magnetic resonance imaging (MRI) is generally recognized to be the most sensitive imaging modality to the effects of HTN, computerized tomography (CT), positron emission tomography (PET), and single photon emission tomography (SPECT) still provide useful information in many circumstances. CT is the most prevalent imaging modality used throughout the world due to both its availability and relatively low cost. The recent introduction of multislice rapid CT scanners has increased its sensitivity to many of the effects of HTN on the brain, and it has reinvigorated interest in the use of CT not only for clinical assessment but also in basic and applied clinical research. Similarly, there has been an increase in the use of PET to characterize the metabolic effects of HTN with the relatively recent advances and use of 2-[18F] fluoro-2-deoxy-d-glucose (FDG) PET (FDG-PET). The purpose of the current chapter is to describe the advances in CT, MRI, and PET for characterizing these effects on the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beason-Held LL, Moghekar A, Zonderman AB, Kraut MA, Resnick SM. Longitudinal changes in cerebral blood flow in the older hypertensive brain. Stroke. 2007;38:1766–73.

    Article  Google Scholar 

  2. Dai W, et al. Abnormal regional cerebral blood flow in cognitively normal elderly subjects with hypertension. Stroke. 2008;39:349–54.

    Article  Google Scholar 

  3. Strassburger T, et al. Interactive effects of age and hypertension on volumes of brain structures. Stroke. 1997;28:1410–7.

    Google Scholar 

  4. Wiseman RM, et al. Hippocampal atrophy, whole brain volume, and white matter lesions in older hypertensive subjects. Neurology. 2004;63:1892–7.

    Google Scholar 

  5. Hatazawa J, Yamaguchi T, I to M, Yamaura H, Matsuzawa T. Association of hypertension with increased atrophy of brain matter in the elderly. J Am Geriatr Soc. 1984;32:370–4.

    Google Scholar 

  6. Huang L, Ling XY, Liu SR. Diffusion tensor imaging on white matter in normal adults and elderly patients with hypertension. Chin Med J. 2006;119:1304–7.

    Google Scholar 

  7. Owler BK, Higgins JN, Pena A, Carpenter TA, Pickard JD. Diffusion tensor imaging of benign intracranial hypertension: absence of cerebral oedema. Br J Neurosurg. 2006;20:79–81.

    Article  CAS  PubMed  Google Scholar 

  8. Swan G, et al. Association of midlife blood pressure to late-life cognitive decline and brain morphology. Neurology. 1998;51:986–93.

    Google Scholar 

  9. Sierra C, Coca A. White matter lesions and cognitive impairment as silent cerebral disease in hypertension. The Scientific World Journal. 2006;6:494–501.

    Article  PubMed  Google Scholar 

  10. Burns JM, et al. White matter lesions are prevalent but differentially related with cognition in aging and early Alzheimer disease. Arch Neurol. 2005;62:1870–6.

    Article  Google Scholar 

  11. Stenset V, et al. Associations between white matter lesions, cerebrovascular risk factors, and low CSF Abeta42. Neurology. 2006;67:830–3.

    Article  Google Scholar 

  12. O’Brien JT, et al. Cognitive associations of subcortical white matter lesions in older people. Ann N Y Acad Sci. 2002;977:436–44.

    Google Scholar 

  13. Launer L, Masaki K, Petrovitch H, Foley D, Havlik R. The association between midlife blood-pressure levels and late-life cognitive function – the Honolulu-Asia aging study. J Am Med Assoc. 1995;274:1846–51.

    Article  Google Scholar 

  14. Skoog I. The relationship between blood pressure and dementia: a review. Biomed Pharmacother. 1997;51:367–75.

    Article  Google Scholar 

  15. Skoog I. Hypertension and cognition. Intern Psychogeriatr. 2003;15(Suppl 1):139–46.

    Google Scholar 

  16. Skoog I, Gustafson D. Hypertension, hypertension-clustering factors and Alzheimer’s disease. Neurol Res. 2003;25:675–80.

    Article  Google Scholar 

  17. Skoog I, et al. 15-year longitudinal study of blood pressure and dementia [see comment]. Lancet. 1996;347:1141–5.

    Article  Google Scholar 

  18. Skoog I, et al. Effect of baseline cognitive function and antihypertensive treatment on cognitive and cardiovascular outcomes: study on cognition and prognosis in the elderly (SCOPE). Am J Hypertens. 2005;18:1052–9.

    Article  Google Scholar 

  19. Peters R, et al. Incident dementia and blood pressure lowering in the hypertension in the very elderly trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial [see comment]. Lancet Neurol. 2008;7:683–9.

    Article  Google Scholar 

  20. Hansson L, et al. Study on COgnition and Prognosis in the Elderly (SCOPE): baseline characteristics. Blood Press. 2000;9:146–51.

    Google Scholar 

  21. Cherubini A, et al. Hypertension and cognitive function in the elderly. Am J Ther. 2007;14:533–54.

    Article  Google Scholar 

  22. Tzourio C, et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med. 2003;163:1069–75.

    Google Scholar 

  23. Harrington F, Saxby BK, McKeith IG, Wesnes K, Ford GA. Cognitive performance in hypertensive and normotensive older subjects. Hypertension. 2000;36:1079–82.

    Google Scholar 

  24. Miles K, Griffiths M. Perfusion CTL a worthwhile enhancement? Br J Radiol. 2003;76:220–31.

    Article  Google Scholar 

  25. Jennings JR, et al. Reduced cerebral blood flow response and compensation among patients with untreated hypertension. Neurology. 2005;64:1358–65.

    Google Scholar 

  26. Walker L, et al. Computed tomography angiography for the evaluation of arotid atherosclerotic plaque. Stroke. 2002;33:977–81.

    Article  Google Scholar 

  27. Sabo L, et al. Carotid artery wall thickness and ischemic symptoms: evaluation using multi-detector-row CT angiography. Eur Neurol. 2008;18:1962–71.

    Google Scholar 

  28. Josephson S, et al. Evalutation of carotid stenosis using CT angiography in the initial evaluation for stroke and TIA. Neurology. 2004;63:457–60.

    Google Scholar 

  29. Rothwell P, Gibson R, Warlow C. Interrelation between plaque surface morphology and degreee of stenosis on carotid angiograms and the risk of ischaemic stroke in patients with symptomatic carotid stenosis. Stroke. 2000;31:615–52.

    Google Scholar 

  30. Nabavi DG, et al. Quantitative assessment of cerebral hemodynamics using CT: stability, accuracy, and precision studies in dogs. J Comput Assist Tomogr. 1999;23:506–15.

    Article  Google Scholar 

  31. Latchaw RE, et al. Guidelines and recommendations for perfusion imaging in cerebral ischemia: a scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on cardiovascular radiology of the American Heart Association. Stroke. 2003;34:1084–104.

    Article  Google Scholar 

  32. Breteler M, et al. Cognitive correlates of ventricular enlargement and cerebral white matter lesions on magnetic resonance imaging. The Rotterdam study. Stroke. 1994;25:1109–15.

    Google Scholar 

  33. Schmidt R, et al. The natural course of MRI white matter hyperintensities. J Neurol Sci. 2002;203–204:253–7.

    Google Scholar 

  34. Wen W, Sachdev PS, Chen X, Anstey K. Gray matter reduction is correlated with white matter hyperintensity volume: a voxel-based morphometric study in a large epidemiological sample. Neuroimage. 2006;29:1031–9.

    Article  Google Scholar 

  35. Gunning-Dixon FM, Raz N. The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology. 2000;14:224–32.

    Article  Google Scholar 

  36. Ott BR, et al. A SPECT imaging study of MRI white matter hyperintensity in patients with degenerative dementia. Dement Geriatr Cogn Disord. 1997;8:348–54.

    Article  Google Scholar 

  37. Constans JM, Meyerhoff DJ, Norman D, Fein G, Weiner MW. 1H and 31P magnetic resonance spectroscopic imaging of white matter signal hyperintensity areas in elderly subjects. Neuroradiology. 1995;37:615–23.

    Article  Google Scholar 

  38. Schmidt R, Schmidt H, Kapeller P, Lechner A, Fazekas F. Evolution of white matter lesions. Cerebrovasc Dis. 2002;13(Suppl 2):16–20.

    Article  CAS  PubMed  Google Scholar 

  39. Smith CD, Snowdon D, Markesbery WR. Periventricular white matter hyperintensities on MRI: correlation with neuropathologic findings. J Neuroimaging. 2000;10:13–16.

    CAS  PubMed  Google Scholar 

  40. Fazekas F, et al. The morphologic correlate of incidental punctate white matter hyperintensities on MR images. Am J Neuroradiol. 1991;12:915–21.

    Google Scholar 

  41. de Leeuw F, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study The Rotterdam scan study. J Neurol Neurosurg Psychiatry. 2001;70:9–14.

    Article  PubMed  Google Scholar 

  42. Artero S, et al. Neuroanatomical localization and clinical correlates of white matter lesions in the elderly. J Neurol Neurosurg Psych. 2004;75:1304–8.

    Google Scholar 

  43. Firbank MJ, et al. Brain atrophy and white matter hyperintensity change in older adults and relationship to blood pressure Brain atrophy, WMH change and blood pressure. J Neurol. 2007;254:713–21.

    Article  Google Scholar 

  44. den Heijer T, et al. Association between blood pressure, white matter lesions, and atrophy of the medial temporal lobe. Neurology. 2005;64:263–7.

    Google Scholar 

  45. Ge Y, et al. Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. Am J Neuroradiol. 2002;23:1327–33.

    Google Scholar 

  46. Tisserand D, et al. Regional frontal cortical volumes decrease differentially in aging: an MRI study to compare volumetric approaches and voxel-based morphometry. Neuroimage. 2002;17:657–9.

    Article  Google Scholar 

  47. Buijs P, et al. Effect of age on cerebral blood blow: measurement with ungated two-dimensional phase contrast MR Angiography in 250 adults. Radiology. 1998;209:667–74.

    Google Scholar 

  48. Amin-Hanjani S, et al. Use of quantitative magenetic resonance angiography to stratify stroke risk in symptomatic vertebrovasilar disease. Stroke. 2005;36:1140–5.

    Article  Google Scholar 

  49. Hillis A, et al. A pilot randomized trial of induced blood pressure elevation: effects on functional and focal perfusion in acute and subacute stroke. Cerebrovasc Dis. 2003;16:236–46.

    Article  Google Scholar 

  50. Dickerson BC. Advances in Functional Magnetic Resonance Imaging: technology and Clinical Applications. Neurotherapeutics. 2007;4:360–70.

    Article  Google Scholar 

  51. Purves, D et al. (eds.). Neuroscience. Sunderland, MA: Sinauer Associates;2008.

    Google Scholar 

  52. Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM. Altered Hemodynamic Response in Patients After Subcortical Stroke Measured by Functional MRI. Stroke. 2002;33:103–9.

    Article  Google Scholar 

  53. Wang R, et al. Transient blood pressure changes affect the functional magnetic resonance imaging detection of cerebral activation. NeuroImage. 2006;31:1–11.

    Article  PubMed  Google Scholar 

  54. Qiao M, et al. Blood-oxygen-level-dependent magnetic resonance signal and cerebral oxygenation response to brain activation are enhanced by concurrent transient hypertension in rats. J Cereb Blood Flow Metab. 2007;27:1280–9.

    Article  CAS  Google Scholar 

  55. Klob B, Whishaw IQ. Fundamentals of human neuropsychology (5th ed). New York, NY: Worth Publishers, 2003.

    Google Scholar 

  56. Basser P, Mattiello J, Lebihan D. MR diffusion tenser spectroscopy and imaging. Biophys J. 1994;66:259–67.

    Article  Google Scholar 

  57. Basser P, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44:625–32.

    Google Scholar 

  58. Basser P, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson. 1996;111:209–19.

    Google Scholar 

  59. Bihan D, Mangin J, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13:534–43.

    Google Scholar 

  60. Kraus M, et al. White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain. 2007;130:2508–19.

    Article  Google Scholar 

  61. Song S, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002;17:1429–36.

    Google Scholar 

  62. Song S, et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage. 2003;20:1714–22.

    Article  Google Scholar 

  63. Arfanakis K, et al. Diffusion tensor MR imaging in diffuse axonal injury. Am J Neuroradiol. 2002;23:794–802.

    PubMed  Google Scholar 

  64. Harsan L, et al. Brain dysmyelination and recovery assessment by noninvasive in vivo diffusion tensor magnetic resonance imaging. J Neurosci Res. 2006;83:392–402.

    Article  CAS  PubMed  Google Scholar 

  65. Song S-K, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage. 2002;17:1429–36.

    Google Scholar 

  66. Pierpaoli C, et al. Water diffusion changes in wallerian degeneration and their dependence on white matter architecture. NeuroImage. 2001;13:1174–85.

    Article  Google Scholar 

  67. Li H, Xue-ying L, Si-run L. Diffusion tensor imaging on white matter in normal adults and elderly patients wiht hypertension. Chin Med J. 2006;119:1304–7.

    Google Scholar 

  68. Nitkunan A, et al. Diffusion Tensor Imaging and MR Spectroscopy in Hypertension and presumed Cerebral Small Vessel Disease. Magn Reson Med. 2008;59:528–34.

    Article  Google Scholar 

  69. van Laar PJ, van der Graaf Y, Mali WPTM, van der Grond J, Hendrikse J. Effect of cerebrovascular risk factors on regional cerebral blood flow. Radiology. 2008;246:196–204.

    Google Scholar 

  70. University of Michigan Functional MRI Laboratory. Arterial Spin Labeling; 2007.

    Google Scholar 

  71. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. Cereb Blood Flow Metab. 1999;19:701–35.

    Google Scholar 

  72. Chalela JA, et al. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke. 2000;31:680–7.

    Google Scholar 

  73. Wang J, et al. Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med. 2003;49:796–802.

    Article  PubMed  Google Scholar 

  74. Derdeyn CP. Positron emission tomography imaging of cerebral ischemia. PET Clin. 2007;2:35–44.

    Article  Google Scholar 

  75. Miletich RS. Positron emission tomography for neurologists. Neurol Clin. 2008;27:61–88.

    Article  Google Scholar 

  76. Jennings JR, Muldoon MF, Price J, Christie IC, Meltzer CC. Cerebrovascular support for cognitive processing in hypertensive patients is altered by blood pressure treatment. Hypertension. 2008;52:65–71.

    Article  CAS  PubMed  Google Scholar 

  77. Fujishima M, Ibayashi S, Fujii K, Mori S. Cerebral blood, flow and brain function in hypertension. Hypertens Res. 1995;18:111–7.

    Article  Google Scholar 

  78. Efimova IY, Efimova NY, Triss SV, Lishmanov YB, Perfusion P. Cognitive function changes in hypertensive patients. Hypertens Res. 2008;31:673–8.

    Article  Google Scholar 

  79. Rudd JHF, et al. Imaging atherosclerotic plaque inflammation with [18f]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.

    Article  Google Scholar 

  80. Ficzere A, Csiba L. Comparison of different methods evaluating the functional and structural abnormalities in hypertension. Eur Neurol. 2002;48:71–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah M. Little PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Little, D.M., Schulze, E., Shah, N., McGowan, S. (2011). Imaging Effects of Hypertension on the Brain: A Focus on New Imaging Modalities and Options. In: Aiyagari, V., Gorelick, P. (eds) Hypertension and Stroke. Clinical Hypertension and Vascular Diseases. Humana Press. https://doi.org/10.1007/978-1-60761-010-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-010-6_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-009-0

  • Online ISBN: 978-1-60761-010-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics