Skip to main content

Medical Management of Islet Cell Carcinoma

  • Chapter
  • First Online:
Neuroendocrine Tumors

Part of the book series: Current Clinical Oncology ((CCO))

  • 1228 Accesses

Abstract

Pancreatic endocrine tumors (PET), also often called islet cell tumors, are rare neoplasms thought to have an indolent natural course when compared to exocrine cancers of the pancreas. Their annual incidence is <1 per 100,000 person per year in the general population. Most tumors are sporadic but 15–30% can be part of multiple endocrine neoplasia type 1, von Hippel–Lindau’s disease, neurofibromatosis 1, or tuberous sclerosis (TSC1/2). Due the indolent nature and unspecific symptoms of the tumors, there is usually a delay in diagnosis, from 1 to 6 years, and, hence, they are metastastic and unresectable, when the diagnosis is finally made. The prognosis of patients with endocrine pancreatic tumors is difficult to predict because the criteria of malignancy have been ambiguous. Recently, two new classification systems have been developed. The WHO-classification divides PETs into three general categories: (1) well-differentiated endocrine tumors of benign behavior (confined to the pancreas, non-angioinvasive, no perineural invasion, <2 cm in diameter <2% Ki-67 positive cells) or uncertain behavior (confined to the pancreas and one or more of the following features: >2 cm in diameter, >2% Ki-67 positive cells, angioinvasion, perineural invasion), (2) well-differentiated endocrine carcinomas, low-grade malignant, with gross local invasion and/or metastases, and (3) poorly differentiated endocrine carcinomas, high-grade malignant. Recently, two tumor-node-metastasis (TNM) staging systems has been proposed, one by ENETS (Table 9.1), and another by the American Joint Committee on Cancer (AJCC) (Table 9.2), which will be used in the United States. Both the WHO and ENETS TNM-classifications are being adopted and validated by several groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buchanan KD, Johnston CF, O’Hare MM, et al. Neuroendocrine tumors. A European view. Am J Med. 1986;81:14–22.

    Article  PubMed  CAS  Google Scholar 

  2. Eriksson B, Öberg K. Neuroendocrine pancreatic tumors. Clinical findings in a prospective study of 84 patients. Acta Oncol. 1989;28:373–7.

    Article  PubMed  CAS  Google Scholar 

  3. Halfdanarson T, Rubin J, Farnell M, et al. Pancreatic endocrine neoplasms: epidemiology and prognosis of pancreatic endocrine tumors. Endocr-Relat Cancer. 2008;15:409–74.

    Article  PubMed  Google Scholar 

  4. Solcia E, Klppel G, Sorbin L. Histological typing of endocrine tumors. In: World Health Organization international histological classification of endocrine tumours. 2nd ed. New York: Springer; 2000. p. 56–8.

    Google Scholar 

  5. Rindi G, Klöppel G, Ahlman H, et al. TNM staging of foregut neuroendocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006;449:395–401.

    Article  PubMed  CAS  Google Scholar 

  6. Edge SE, Byrd DR, Carducci MA, Compton CA. eds AJCC Cancer Staging Manual. 7th ed. New Yourk, NY: Springer; 2010.

    Google Scholar 

  7. Ekeblad S, Skogseid B, Öberg K, et al. Pancreatic endocrine tumors: survival and prognostic factors. Clin Cancer Res. 2008;14:7798–803.

    Article  PubMed  CAS  Google Scholar 

  8. Pape V, Jann H, Müller-Nordhorn J. Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors. Cancer. 2008;113(2):256–65.

    Article  PubMed  Google Scholar 

  9. Lepage C, Boncier AM, Phelip JM, et al. Incidence and management of malignant digestive endocrine tumours in a well defined French population. Gut. 2004;53(4):549–53.

    Article  PubMed  CAS  Google Scholar 

  10. House MG, Cameron JL, Lillemoe KD, et al. Differences in survival for patients with resectable versus unresectable metastases from pancreatic islet cell cancer. J Gastrointest Surg. 2006;10:138–45.

    Article  PubMed  Google Scholar 

  11. Sarmiento JM, Farnell MB, Que FG, et al. Pancreatoduodenectomy for islet cell tumors of the head of the pancreas: long-term survival analysis. World J Surg. 2002;26:1267–71.

    Article  PubMed  Google Scholar 

  12. Musunuru S, Chen H, Rajpal S, et al. Metastatic neuroendocrine hepatic tumors; resection improves survival. Arch Surg. 2006;141:1000–5.

    Article  PubMed  Google Scholar 

  13. Eriksson B, Skogseid B, Lundqvist G, et al. Medical treatment and long-term survival in a prospective study of 84 patients with endocrine pancreatic tumors. Cancer. 1990;65:1883–90.

    Article  PubMed  CAS  Google Scholar 

  14. Miller AB, Hoogstraten B, Staquet M, et al. Reporting results of cancer treatment. J Natl Cancer Inst. 1981;47:207–14.

    CAS  Google Scholar 

  15. Therasse P, Arback SG, Esienhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors: European Organization for Research and Treatment of Cancer, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  PubMed  CAS  Google Scholar 

  16. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    Article  PubMed  CAS  Google Scholar 

  17. Davies AH, Larsson G, Arndill J, et al. Development of a disease specific Quality of Life questionnaire module for patients with gastrointestinal neuroendocrine tumours. Eur J Cancer. 2006;42:477–84.

    Article  PubMed  CAS  Google Scholar 

  18. Murray-Lyon IM, Eddleston AL, Williams R, et al. Treatment of multiple-hormone-producing malignant islet-cell tumor with streptozotocin. Lancet. 1968;2:895–8.

    Article  PubMed  CAS  Google Scholar 

  19. Moertel CG, Lavin PT, Hahn RG. Phase II trial of doxorubicin for advanced islet cell carcinoma. Cancer. 1982;61:1567–9.

    Google Scholar 

  20. Altimari A, Badrinath K, Reisel H, et al. DTIC therapy in patients with malignant intraabdominal neuroendocrine tumors. Surgery. 1987;102:1009–17.

    PubMed  CAS  Google Scholar 

  21. Stupp R, Mason W, van den Bent M, et al. Radiotherapy plus concombinant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  PubMed  CAS  Google Scholar 

  22. Ekeblad S, Sundin A, Janson ET, et al. Temozolomide as monotherapy is effective in advanced malignant neuroendocrine tumors. Clin Cancer Res. 2007;12:2986–91.

    Article  Google Scholar 

  23. Ansell SM, Pitot HC, Burch PA, et al. A phase II study of high-dose paclitaxel in patients with advanced neuroendocrine tumors. Cancer. 2001;91:1543–8.

    Article  PubMed  CAS  Google Scholar 

  24. Krzyzanowska MK, Tsao MS, Oza AM, et al. Capecitabine plus rofecoxib show no activity in patients with metastatic neuroendocrine tumors. Clin Oncol. 2006;18:88–9.

    Article  CAS  Google Scholar 

  25. Kulke MH, Kim H, Clark JW, et al. A phase II trial of gemcitabine for metastatic neuroendocrine tumors. Cancer. 2004;101:934–9.

    Article  PubMed  CAS  Google Scholar 

  26. Ansell SM, Mahoney MR, Green EM, et al. Topotecan in patients with advanced neuroendocrine tumours; a phase II study with significant hematologic toxicity. Am J Clin Oncol. 2004;27:232–5.

    Article  PubMed  CAS  Google Scholar 

  27. Moertel CG, Hanley JA, Johnson LA. Streptozotocin alone compared with streptozotocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N Engl J Med. 1980;303:1189–95.

    Article  PubMed  CAS  Google Scholar 

  28. Moertel CG, Lefkopoulo M, Lipiz S, et al. Streptozotocin-doxorubicin, streptozotocin-fluorouracil, or chlorozotocin in the treatment of advanced islet-cell carcinoma. N Engl J Med. 1992;326:519–23.

    Article  PubMed  CAS  Google Scholar 

  29. Cheng PN, Salty LB. Failure to confirm major objective antitumor activity for streptozotocin and doxorubicin in the treatment of patients with advanced islet-cell carcinoma. Cancer. 1999;86:944–8.

    Article  PubMed  CAS  Google Scholar 

  30. Kouvaraki MA, Ajani JA, Hoff P, et al. Fluorouracil, doxorubicin, and streptozotocin in the treatment of patients with locally advanced and metastatic pancreatic endocrine carcinomas. J Clin Oncol. 2004;22:4762–71.

    Article  PubMed  CAS  Google Scholar 

  31. McCollum AD, Kulke MH, Ryan DP, et al. Lack of efficacy of streptozotocin and doxorubicin in patients with advanced pancreatic endocrine tumors. J Clin Oncol. 2004;27:485–8.

    Article  CAS  Google Scholar 

  32. Eriksson B, Öberg K. An update of the medical treatment of malignant endocrine pancreatic tumors. Acta Oncol. 1993;32:203–8.

    Article  PubMed  CAS  Google Scholar 

  33. Bajetta E, Catena L, Procopiv G, et al. Are capecitabine and oxilaplatin (XELOX) suitable treatments for progressing low-grade and high-grade neuroendocrine tumors? Cancer Chemother Pharmacol. 2007;59:637–42.

    Article  PubMed  CAS  Google Scholar 

  34. Isacoff WH, Moss RA, Pecora AL, et al. Temozolomide/capecitabine therapy for metastatic neuroendocrine tumors of the pancreas. A retrospective review. J Clin Oncol (2006 ASCO Meeting Proceedings). 2006;24:abstract 14023.

    Google Scholar 

  35. Strosberg JR, Gardner N, Kvols L. First-line treatment of metastatic pancreatic endocrine carcinoma with capecitabine and temozolomide (abstract). J Clin Oncol. 2008;26:241.

    Google Scholar 

  36. Bajetta E, Rimassa L, Carnaghi C, et al. 5-fluorouracil, dacarbazine, epirubicin in the treatment of patients with neuroendocrine tumours. Cancer. 1998;83:372–8.

    Article  PubMed  CAS  Google Scholar 

  37. de Lima Lopes Jr G, Chiappori A, Simon G, et al. Phase I study of carboplatin in combination with gemcitabine and irinotecan in patients with solid tumors; preliminary evidence of activity in small cell and neuroendocrine carcinomas. Cancer. 2007;109:1413–9.

    Article  PubMed  Google Scholar 

  38. Ollivier S, Fonck M, Becouarn Y, et al. Dacarbazin, fluorouracil, and leucovorin in patients with advanced neuroendocrine tumors: a phase II trial. Am J Clin Oncol. 1998;21:237–40.

    Article  PubMed  CAS  Google Scholar 

  39. Moertel CG, Kvols LK, O’Connell MJ, et al. Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the anaplastic variants of these neoplasms. Cancer. 1991;68:227–32.

    Article  PubMed  CAS  Google Scholar 

  40. Fjällskog ML, Granberg DP, Welin SL, et al. Treatment with cisplatin and etoposide in patients with neuroendocrine tumours. Cancer. 2001;92:1101–7.

    Article  PubMed  Google Scholar 

  41. Öberg K, Kvols L, Caplin M, et al. Consensus report of the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann Oncol. 2004;15:966–73.

    Article  PubMed  Google Scholar 

  42. Yamada Y, Post SR, Wang K, et al. Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci. 1992;89:251–5.

    Article  PubMed  CAS  Google Scholar 

  43. Yamada Y, Reisine T, Law SF, et al. Somatostatin receptors, an expanding gene family: cloning and functional characterization of human SSTR2, a protein coupled to adenylyl cyclase. Mol Endocrinol. 1993;6:2136–42.

    Article  Google Scholar 

  44. Yamada Y, Kagimoto S, Kubota A, et al. Cloning, functional expression and pharmacological characterization of a fourth (SSTR4) and fifth (SSTR5) human somatostatin receptor subtype. Biochem Biophys Res Commun. 1993;195:844–52.

    Article  PubMed  CAS  Google Scholar 

  45. Lamberts SW, van der Lely AJ, de Herder VW, et al. Octreotide. N Engl J Med. 1996;334:226–54.

    Google Scholar 

  46. Chen C, Vincent JD, Clarke JP. Ion channels and the signal transduction pathways in the regulation of growth hormone secretion. Trends Endocrinol Metab. 1994;5:227–33.

    Article  PubMed  CAS  Google Scholar 

  47. Buscail L, Delesque N, Estève JP, et al. Stimulation of tyrosine phosphatase and inhibition of call proliferation by somatostatin analogues: mediation by human somatostatin receptor subtypes SSTR1 and SSTR2. PNAS. 1994;91:2315–9.

    Article  PubMed  CAS  Google Scholar 

  48. Susini C. Buscail; Rationale for the use of somatostatin analogs as antitumor agents. Ann Oncol. 2006;17:1733–42.

    Article  PubMed  CAS  Google Scholar 

  49. Sharma K, Patel YC, Srikant CB. Subtype selective induction of wild-type p53 and apoptosis, but not cell cycle arrest by human somatostatin receptor subtype 3. Mol Endocrinol. 1996;10:1688–96.

    Article  PubMed  CAS  Google Scholar 

  50. Teijeiro R, Rios R, Costoya JA, et al. Activation of human somatostatin receptor 2 promotes apoptosis through a mechanism that is independent from induction of p53. Cell Physiol Biochem. 2002;12:31–8.

    Article  PubMed  CAS  Google Scholar 

  51. Dasgupta P. Somatostatin analogues: multiple roles in cellular proliferation, neoplasia, and angiogenesis. Pharmacol Ther. 2004;102:61–85.

    Article  PubMed  CAS  Google Scholar 

  52. Reubi JC, Kvols LK, Waser B, et al. Detection of somatostatin receptors in surgical and percutaneous needle biopsy of carcinoids and islet cell carcinoma. Cancer Res. 1990;50:5969–77.

    PubMed  CAS  Google Scholar 

  53. Krenning EP, Kwekkeboom DJ, Bakker W, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [1231-Tyr3]-octreotide: the Rotterdam experience with more than 1,000 patients. Eur J Nucl Med. 1993;20:716–31.

    Article  PubMed  CAS  Google Scholar 

  54. Bruns C. lewis, Briner U, et al; SOM230: a novel somatostatin peptidomimetic with broad somatostatin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol. 2002;146:707–16.

    Article  PubMed  CAS  Google Scholar 

  55. Kvols LK, Moertel CG, O’Connell MJ, et al. Treatment of the malignant carcinoid syndrome. Evaluation of a long-acting somatostatin analogue. N Engl J Med. 1986;315:663–6.

    Article  PubMed  CAS  Google Scholar 

  56. Eriksson B, Öberg K. Summing up 15 years of somatostatin analog therapy in neuroendocrine tumors: future outlook. Ann Oncol. 1999;10:S31–8.

    Article  PubMed  Google Scholar 

  57. Rubin J, Ajani J, Schirmer W, et al. Octreotide acetate long-acting formulation versus open-label subcutaneous octreotide acetate in malignant carcinoid syndrome. J Clin Oncol. 1999;17:600–6.

    PubMed  CAS  Google Scholar 

  58. Arnold R, Trautmann ME, Ceutzfeldt W, et al. Somatostatin analogue octreotide and inhibition and inhibition of tumor growth in metastatic endocrine gastroenteropancreatic tumours. Gut. 1996;38:430–8.

    Article  PubMed  CAS  Google Scholar 

  59. Aparicio T, Ducreux M, Bandin E, et al. Antitumour activity of somatostatin analogues in progressive metastatic neuroendocrine. Eur J Cancer. 2001;37:1014–9.

    Article  PubMed  CAS  Google Scholar 

  60. Ducreux M, Ruszniewski P, Chayvialle JA, et al. The antitumoral effect of long-acting somatostatin analog lanreotide in neuroendocrine tumours. Ann J Gastroenterol. 2000;95:3276–81.

    Article  CAS  Google Scholar 

  61. Eriksson B, Renstrup J, Imam H, et al. High-dose treatment with lanreotide of patients with advanced neuroendocrine tumors: clinical and biological effects. Ann Oncol. 1997;8:1041–4.

    Article  PubMed  CAS  Google Scholar 

  62. Saltz L, Trochanowski B, Buckley M, et al. Octreotide as an antineoplastic agent in the treatment of functional and non-functional tumors. Cancer. 1993;72:244–8.

    Article  PubMed  CAS  Google Scholar 

  63. Panzuto F, Fonzo M, Iannicelli E, et al. Longterm clinical outcome of somatostatin analogues for treatment of progressive, metastatic well-differentiated enteropancreatic carcinoma. Ann Oncol. 2006;17:461–6.

    Article  PubMed  CAS  Google Scholar 

  64. Shojamanesh H, Gibril F, Adeline L, et al. Prospective study of the antitumor efficacy of long-term octreotide treatment in patients with progressive metastatic gastrinoma. Cancer. 2002;94:331–43.

    Article  PubMed  CAS  Google Scholar 

  65. Rinke A, Muller H, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide-LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group. J Clin Oncol. 2009;27:4656–63.

    Article  PubMed  CAS  Google Scholar 

  66. Öberg K, Funa K, Alm G. Effects of leukocyte interferon upon clinical symptoms and hormone levels in patients with midgut carcinoid tumors and the carcinoid syndromes. New Engl J Med. 1983;309:129–33.

    Article  PubMed  Google Scholar 

  67. Zhou Y, Wang S, Yue BG, et al. Effects of interferon alpha on the expression of p21cip1/waf1 and cell cycle distribution in carcinoid tumors. Cancer Invest. 2002;20:348–56.

    Article  PubMed  CAS  Google Scholar 

  68. Öberg K, Eriksson B, Janson ET. Interferons alone or in combination with chemotherapy or other biologicals in the treatment of neuroendocrine gut and pancreatic tumors. Digestion. 1994;55:64–9.

    Article  PubMed  Google Scholar 

  69. Andersson T, Wilander E, Eriksson B, et al. Effects of interferon on tumor tissue content in liver metastases of human carcinoid tumors. Cancer Res. 1990;50:3413–5.

    PubMed  CAS  Google Scholar 

  70. Oberg K. Neuroendocrine gastrointestinal tumors. Ann Oncol. 1996;7:453–63.

    PubMed  CAS  Google Scholar 

  71. Oberg K, Alm G, Lindstrom H, et al. Successful treatment of therapy-resistant pancreatic cholera with human leucocyte interferon. Lancet. 1985;1(8431):725–7.

    Article  PubMed  CAS  Google Scholar 

  72. Fjällskog ML, Sundin A, Westlin JE, et al. Treatment of malignant endocrine pancreatic tumors with a combination of α-interferon and somatostatin analogs. Med Oncol. 2002;19:35–42.

    Article  PubMed  Google Scholar 

  73. Chandry A, Funa K, Öberg K. Expression of growth factor peptides and their receptors in neuroendocrine tumors of the digestive system. Acta Oncol. 1993;32:107–14.

    Article  Google Scholar 

  74. Beauchamp RD, Coffey RJ, Lyons RM, et al. Human carcinoid production of paracrine growth factors that can stimulate fiberblast and endothelial cell growth. Cancer Res. 1991;51:5253–60.

    PubMed  CAS  Google Scholar 

  75. Terris B, Scoazec JY, Rubbia L, et al. Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology. 1998;78:233–9.

    Google Scholar 

  76. Nilsson O, Wängberg B, Theodorsson E, et al. Presence of IGF-1 in human midgut carcinoid tumors - an autocrine regulator of carcinoid tumor growth. Int J Cancer. 1992;51:195–203.

    Article  PubMed  CAS  Google Scholar 

  77. Krishnamurthy S, Dayal Y. Immunohistochemical expression of transforming growth factor alpha and epidermal growth factor receptor in gastrointestinal carcinoids. Am J Surg Pathol. 1997;21:327–33.

    Article  PubMed  CAS  Google Scholar 

  78. Christofori G, Naik P, Hanahan D. Vascular endothelial growth factor and its receptors, flt  +  1, flk-1, are expressed in normal pancreatic islets and throughout islet cell tumorgenesis. Mol Endocrinol. 1995;9:1760–70.

    Article  PubMed  CAS  Google Scholar 

  79. Couvelard A, O’Toole D, Turley H, et al. Microvascular density and hypoxia-inducible factor pathway in pancreatic endocrine tumours. Negative correlation of microvascular density and VEGF expression with tumour progression. Br J Cancer. 2005;92:94–101.

    Article  PubMed  CAS  Google Scholar 

  80. Yao JC, Phan PM, Hoss HX, et al. Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J Clin Oncol. 2008;26:1316–23.

    Article  PubMed  CAS  Google Scholar 

  81. Kulke MH, Earle CL, Bhargava P, et al. A phase II of temozolomide and bevacizumab in patients with advanced neuroendocrine tumors. Proc Am Soc Clin Oncol. 2006;24:4044.

    Google Scholar 

  82. Kunz PL, Kuo T, Kaiser HL, et al. A phase II study of capecitabine, oxilaplatin, and bevacizumab for metastatic or unresectable neuroendocrine tumors; preliminary results. Proc Am Soc Clin Oncol. 2008;26:15502.

    Google Scholar 

  83. Venook AP, Ko AH, Tempero MA, et al. Phase II trial of FOLFOX plus bevacizumab in advanced, progressive neuroendocrine tumors. Proc Am Soc Clin Oncol. 2008;26:15545.

    Google Scholar 

  84. Kulke MH, Lenz NJ, Meropol J, et al. Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol. 2008;26:3403–10.

    Article  PubMed  CAS  Google Scholar 

  85. Raymond E, Raoul JL, Niccoli P, et al. Phase III randomized, double-blind trial of sunitinib vs placebo in patients with progressive, well-differentiated malignant pancreatic islet cell tumours. World Congress on Gastrointestinal Cancer; 2009. p. 0013.

    Google Scholar 

  86. Niccioli P, Raoul JL, Young-Jue B, et al. Updated safety and efficiency results of this phase III trial sunitinib vs placebo for treatment of pancreatic neuroendocrine tumors (NET). Proc Am Soc Clin Oncol. 2010;28(15):400.

    Google Scholar 

  87. Hobday TJ, Rubin J, Holen K, et al. MCO44h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): a phase II consortium (P2C) study. Proc Am Soc Clin Oncol. 2007;25:4504.

    Google Scholar 

  88. Yao JC, Zhang JX, Rashid A, et al. Clinical and in vitro studies of imatinib in advanced carcinoid tumors. Clin Cancer Res. 2007;13:234–40.

    Article  PubMed  CAS  Google Scholar 

  89. Kindmark H, Janson ET, Gustafsson B, et al. Five patients with malignant endocrine tumors treated with imatinib mesylate (Gleevec). Acta Oncologica. 2010;49(1):100–1.

    Article  PubMed  Google Scholar 

  90. Kulke MH, Stuart K, Enzinger PC, et al. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J Clin Oncol. 2006;24:401–6.

    Article  PubMed  CAS  Google Scholar 

  91. Kulke MH, Bergsland DP, Ryan DP, et al. Phase II study of recombinant human endostatin in patients with advanced neuroendocrine tumors. J Clin Oncol. 2006;24:3555–61.

    Article  PubMed  CAS  Google Scholar 

  92. Guba M. v Breidenbuch P, Steinbaner M, et al; Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8:128–35.

    Article  PubMed  CAS  Google Scholar 

  93. Duran I, Kortmansky J, Singh D, et al. A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer. 2007;95:1148–54.

    Article  Google Scholar 

  94. Yao JC, Phan AT, Chang DZ, et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low-to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol. 2008;26:4311–8.

    Article  PubMed  Google Scholar 

  95. Yao JC, Lombard-Bohas C, Bandin E, et al. A phase II trial of daily oral RAD001 (everolimus) in patients with metastatic pancreatic neuroendocrine tumors (NET) after failure of cytotoxic chemotherapy. ASCO Gastrointestinal Cancer Symposium; 2009. p. 122.

    Google Scholar 

  96. Yao JC, Shah MH, Tetsuhide I, et al. Phase III randomized trial of everolimus (RAD 001) vs placebo in advanced pancreatic NET (RADIANT-3). Ann Oncol. 2010;21. doi:10.1093/annonc/mdq340.

  97. Edge SB, Byrd DR, Compton CC, editors. Exocrine and endocrine pancreas, Chap. 24. In: AJCC cancer staging manual. 7th ed. New York, NY: Springer; 2010. p. 241–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbro Eriksson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Eriksson, B. (2011). Medical Management of Islet Cell Carcinoma. In: Yao, J., Hoff, P., Hoff, A. (eds) Neuroendocrine Tumors. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-60327-997-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-997-0_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-996-3

  • Online ISBN: 978-1-60327-997-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics