Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1170 Accesses

Abstract

An estimated 16 million adults in the United States have coronary heart disease (CHD), which accounts for more deaths than any single cause or group of causes of death in the United States (1). Atherosclerosis is a complex, multifactorial disease. Over the course of the past five decades, numerous prospective observational cohort studies have established beyond any doubt that risk for atherosclerotic disease is driven by a number of risk factors, which include dyslipidemia, hypertension, insulin resistance and diabetes mellitus, obesity, cigarette smoking, and age (2–6). The greater the burden of risk factors, the higher the likelihood for developing such manifestations of atherosclerosis as coronary artery disease (CAD), carotid artery disease, and peripheral arterial disease. Atherosclerotic disease is unequivocally associated with increased risk for myocardial infarction, stroke, renal artery disease and renal insufficiency, claudication and lower extremity amputation, and death. Progressive accumulation of lipid in arterial walls is a cardinal structural manifestation of atherosclerotic disease. Arresting this process of lipid infiltration and retention is an important goal in modern cardiovascular medicine.

Key Points

• Dyslipidemia is a highly heterogeneous class of metabolic disorders. The etiologies of dyslipidemias depend upon specific metabolic backgrounds (e.g., insulin resistance, thyroid dysfunction) as well as abnormalities in the gastrointestinal absorption of cholesterol and lipids and mutations in cell surface receptors and enzymes in pathways regulating lipid metabolism.

• Dyslipidemia is a widely prevalent risk factor for CAD and all forms of atherosclerotic disease. It is associated with elevations in serum LDL-C, non-HDL-C, lipoprotein(a), and triglycerides, and low levels of HDL-C.

• When making the diagnosis of dyslipidemia, it is important to rule out and treat secondary causes of dyslipidemia, such as alcoholism, thyroid dysfunction, metabolic syndrome, diabetes mellitus, and nephrotic syndrome, among others.

• A complete 10–12-h fasting lipoprotein profile should be performed on patients undergoing screening for dyslipidemia.

• The diagnosis of dyslipidemia requires comprehensive, global cardiovascular risk evaluation with 10-year Framingham risk estimation. Target levels for LDL-C and non-HDL-C are risk stratified. An HDL-C <40 mg/dL is a categorical risk factor for CAD.

• Dyslipidemia is a modifiable risk factor.

• LDL-C reduction is the primary goal of lipid-modifying therapy.

• Lifestyle modification is the first-line therapy for all patients with dyslipidemia. However, based on specific individual circumstances, health care providers may deem it essential to initiate lifestyle modification simultaneous with pharmacologic intervention, as in patients with an acute coronary syndrome or patients with established coronary artery disease.

• In patients with low HDL-C, therapeutic interventions should be made to increase the level of this lipoprotein as much as possible.

• Dyslipidemia can be treated with statins, fibrates, niacin, thiazolidenediones, ezetimibe, bile acid-binding resins, omega-3 fish oils, and combinations thereof.

• The treatment of dyslipidemia in both the primary and secondary prevention settings should always be done in tandem with the aggressive identification and management of all risk factors patients present, including hypertension, diabetes mellitus, obesity, cigarette smoking, as well as nephropathy and chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119:480–486; Erratum appears in Circulation. 2009;119(3):e182.

    Article  PubMed  Google Scholar 

  2. Stamler J, Wentworth D, Neaton JD. Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA. 1986;256:2823–2828.

    Article  PubMed  CAS  Google Scholar 

  3. Castelli WP. Cholesterol and lipids in the risk of coronary artery disease—the Framingham Heart Study. Can J Cardiol. 1988;4(Suppl A):5A–10A.

    PubMed  Google Scholar 

  4. Assmann G, Cullen P, Schulte H. The Munster Heart Study (PROCAM). Results of follow-up at 8 years. Eur Heart J. 1998;19(Suppl A):A2–A11.

    PubMed  Google Scholar 

  5. Goldbourt U, Holtzman E, Neufeld HN. Total and high density lipoprotein cholesterol in the serum and risk of mortality: evidence of a threshold effect. Br Med J (Clin Res Ed). 1985;290:1239–1243.

    Article  CAS  Google Scholar 

  6. Verschuren WM, Jacobs DR, Bloemberg BP, et al. Serum total cholesterol and long-term coronary heart disease mortality in different cultures. Twenty-five-year follow-up of the seven countries study. JAMA. 1995;274:131–136.

    Article  PubMed  CAS  Google Scholar 

  7. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–874.

    Article  PubMed  CAS  Google Scholar 

  8. Toth PP. When high is low: raising low levels of high-density lipoprotein cholesterol. Curr Cardiol Rep. 2008;10:488–496.

    Article  PubMed  Google Scholar 

  9. Toth PP, Gotto AM. High-density lipoprotein cholesterol. In: Gotto AM, Toth PP, eds. Comprehensive Management of High Risk Cardiovascular Patients. New York, NY: Informa Healthcare; 2006:295–339.

    Chapter  Google Scholar 

  10. Armani A, Toth PP. SPARCL: the glimmer of statins for stroke risk reduction. Curr Atheroscler Rep. 2007;9:347–351.

    Article  PubMed  CAS  Google Scholar 

  11. Fielding CJ, Fielding PE. Molecular physiology of reverse cholesterol transport. J Lipid Res. 1995;36:211–228.

    PubMed  CAS  Google Scholar 

  12. Navab M, Anantharamaiah GM, Reddy ST, et al. Oral D-4F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation. 2004;109:3215–3220.

    Article  PubMed  CAS  Google Scholar 

  13. Cuchel M, Rader DJ. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation. 2006;113:2548–2555.

    Article  PubMed  Google Scholar 

  14. Heinecke JW. The HDL proteome: a marker—and perhaps mediator—of coronary artery disease. J Lipid Res. 2009;50(Suppl):S167–S171.

    Article  PubMed  CAS  Google Scholar 

  15. Vaisar T, Pennathur S, Green PS, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest. 2007;117:746–756.

    Article  PubMed  CAS  Google Scholar 

  16. Castelli WP. Cholesterol and lipids in the risk of coronary artery disease—the Framingham Heart Study. Can J Cardiol. 1988;4:5A–10A.

    PubMed  Google Scholar 

  17. Castelli WP, Doyle JT, Gordon T, et al. HDL cholesterol and other lipids in coronary heart disease. The cooperative lipoprotein phenotyping study. Circulation. 1977;55:767–772.

    Article  PubMed  CAS  Google Scholar 

  18. Gordon DJ, Probstfield JL, Garrison RJ, et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989;79:8–15.

    Article  PubMed  CAS  Google Scholar 

  19. Sacco RL, Benson RT, Kargman DE, et al. High-density lipoprotein cholesterol and ischemic stroke in the elderly: the Northern Manhattan Stroke Study. JAMA. 2001;285:2729–2735.

    Article  PubMed  CAS  Google Scholar 

  20. Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation. 2007;115:450–458.

    Article  PubMed  CAS  Google Scholar 

  21. Toth PP, Dayspring TD, Pokrywka GS. Drug therapy for hypertriglyceridemia: fibrates and omega-3 fatty acids. Curr Atheroscler Rep. 2009;11:71–79.

    Article  PubMed  CAS  Google Scholar 

  22. Miller M, Cannon CP, Murphy SA, Qin J, Ray KK, Braunwald E. Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol. 2008;51:724–730.

    Article  PubMed  CAS  Google Scholar 

  23. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110:227–239. [erratum appears in Circulation. 2004 Aug 10;110(6):763]

    Article  PubMed  Google Scholar 

  24. Expert Panel on Detection EaToHBCiA. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–2497.

    Article  Google Scholar 

  25. Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Hypertension. 2003;42:1050–1065.

    Article  PubMed  CAS  Google Scholar 

  26. Toth PP. Intensive LDL-C lowering: which patients benefit? Fam Pract Recertification. 2007;29(8):24–37.

    Google Scholar 

  27. Brischetto CS, Connor WE, Connor SL, Matarazzo JD. Plasma lipid and lipoprotein profiles of cigarette smokers from randomly selected families: enhancement of hyperlipidemia and depression of high-density lipoprotein. Am J Cardiol. 1983;52(7):675–680.

    PubMed  Google Scholar 

  28. Ford ES. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the US [see comment]. Diabetes Care. 2005;28:2745–2749.

    Article  PubMed  Google Scholar 

  29. Chapman MJ, Assmann G, Fruchart JC, Shepherd J, Sirtori C. Raising high-density lipoprotein cholesterol with reduction of cardiovascular risk: the role of nicotinic acid—a position paper developed by the European Consensus Panel on HDL-C. Curr Med Res Opin. 2004;20:1253–1268.

    Article  PubMed  CAS  Google Scholar 

  30. Sacks FM. The role of high-density lipoprotein (HDL) cholesterol in the prevention and treatment of coronary heart disease: expert group recommendations. Am J Cardiol. 2002;90:139–143.

    Article  PubMed  CAS  Google Scholar 

  31. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA. 1998;279:1615–1622.

    Article  PubMed  CAS  Google Scholar 

  32. Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation. 1998;97:1440–1445.

    Google Scholar 

  33. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344:1383–1389.

    Google Scholar 

  34. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N Engl J Med. 1998;339:1349–1357.

    Google Scholar 

  35. Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361:1149–1158.

    Article  PubMed  CAS  Google Scholar 

  36. Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364:685–696.

    Article  PubMed  CAS  Google Scholar 

  37. Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–2207.

    Article  PubMed  CAS  Google Scholar 

  38. McKenney JM, Davidson MH, Jacobson TA, Guyton JR. National Lipid Association Statin Safety Assessment Task F. Final conclusions and recommendations of the National Lipid Association Statin Safety Assessment Task Force. Am J Cardiol. 2006;97:17.

    Google Scholar 

  39. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360:1623–1630.

    Article  PubMed  CAS  Google Scholar 

  40. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–1504.

    Article  PubMed  CAS  Google Scholar 

  41. Cannon CP. The IDEAL cholesterol: lower is better. JAMA. 2005;294:2492–2494.

    Article  PubMed  CAS  Google Scholar 

  42. Toth PP. Low-density lipoprotein reduction in high-risk patients: how low do you go? Curr Atheroscler Rep. 2004;6:348–352.

    Article  PubMed  Google Scholar 

  43. Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295:1556–1565.

    Article  PubMed  CAS  Google Scholar 

  44. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291:1071–1080.

    Article  PubMed  CAS  Google Scholar 

  45. Cannon CP, Steinberg BA, Murphy SA, Mega JL, Braunwald E. Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy. J Am College Cardiol. 2006;48:438–445.

    Article  CAS  Google Scholar 

  46. LaRosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352:1425–1435.

    Article  PubMed  CAS  Google Scholar 

  47. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–1278.

    Article  PubMed  CAS  Google Scholar 

  48. Kearney PM, Blackwell L, Collins R, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371:117–125.

    Article  PubMed  CAS  Google Scholar 

  49. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110:227–239.

    Article  PubMed  Google Scholar 

  50. Toth PP, Harper CR, Jacobson TA. Clinical characterization and molecular mechanisms of statin myopathy. Expert Rev Cardiovasc Ther. 2008;6:955–969.

    Article  PubMed  CAS  Google Scholar 

  51. Toth PPCC. Implications of recent statin trials for primary care practice. J Clin Lipidol. 2007;1:182–190.

    Article  PubMed  Google Scholar 

  52. Toth PP, Davidson MH. High-dose statin therapy: benefits and safety in aggressive lipid lowering. J Fam Prac. 2008;57:S29–S36.

    Google Scholar 

  53. Jackevicius CA, Mamdani M, Tu JV. Adherence with statin therapy in elderly patients with and without acute coronary syndromes. JAMA. 2002;288:462–467.

    Article  PubMed  Google Scholar 

  54. Fruchart JC. Peroxisome proliferator-activated receptor-alpha activation and high-density lipoprotein metabolism. Am J Cardiol. 2001;88:24 N–29 N.

    Article  Google Scholar 

  55. Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005;45:89–118.

    Article  PubMed  CAS  Google Scholar 

  56. Jones P, Beyond LDL-C. Importance of triglycerides and non-HDL as an independent cardiovascular disease risk factor. J Am Acad Phys Assist. 2008;11:S7–S19.

    Google Scholar 

  57. Toth PP. Why do patients at highest CV risk receive the least treatment? The danger of doing too little. Res Staff Phys. 2007;53:s1–s7.

    Google Scholar 

  58. Alsheikh-Ali AA, Maddukuri PV, Han H, Karas RH. Effect of the magnitude of lipid lowering on risk of elevated liver enzymes, rhabdomyolysis, and cancer: insights from large randomized statin trials. [see comment]. J Am Coll Cardiol. 2007;50:409–418.

    Article  PubMed  CAS  Google Scholar 

  59. Jacobson TA. The safety of aggressive statin therapy: how much can low-density lipoprotein cholesterol be lowered? Mayo Clin Proc. 2006;81:1225–1231.

    Article  PubMed  CAS  Google Scholar 

  60. Jacobson T. Statin safety: lessons from new drug applications for marketed statins. Am J Cardiol. 2006;97(Suppl):44C–51C.

    Article  PubMed  CAS  Google Scholar 

  61. Pasternak RC, Smith SC Jr., Bairey-Merz CN, et al. ACC/AHA/NHLBI clinical advisory on the use and safety of statins.[see comment]. Stroke. 2002;33:2337–2341.

    Article  PubMed  Google Scholar 

  62. McKenney JM, Davidson MH, Jacobson TA, Guyton JR, National Lipid Association Statin Safety Assessment Task Force. Final conclusions and recommendations of the National Lipid Association Statin Safety Assessment Task Force. Am J Cardiol. 2006;97:89C–94C.

    Article  PubMed  CAS  Google Scholar 

  63. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Summary for patients in Curr Cardiol Rep. 2002;4(6):486–487; PMID: 123791690. Lancet. 2002;360:7–22.

    Article  Google Scholar 

  64. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–1504; Erratum appears in N Engl J Med. 2006 Feb;354(7):778.

    Article  PubMed  CAS  Google Scholar 

  65. de Lemos JA, Blazing MA, Wiviott SD, et al. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA. 2004;292:1307–1316.

    Article  PubMed  Google Scholar 

  66. Nissen SE. High-dose statins in acute coronary syndromes: not just lipid levels. JAMA. 2004;292:1365–1367.

    Article  PubMed  CAS  Google Scholar 

  67. Puri P, Sanyal AJ. Why do lipid-lowering agents affect serum transaminase levels, are these drugs toxic to the liver, and can they precipitate liver failure? In: Toth PP, Sica DA, eds. Clinical Challenges in Lipid Disorders. Oxford: Atlas Publishing; 2008:189–201.

    Google Scholar 

  68. Sniderman AD. Is there value in liver function test and creatine phosphokinase monitoring with statin use? Am J Cardiol. 2004;94:30F–34F.

    Article  PubMed  CAS  Google Scholar 

  69. Altmann SW, Davis HR Jr, Zhu LJ, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303:1201–1204.

    Article  PubMed  CAS  Google Scholar 

  70. Bruckert E, Giral P, Tellier P. Perspectives in cholesterol-lowering therapy: the role of ezetimibe, a new selective inhibitor of intestinal cholesterol absorption. Circulation. 2003;107:3124–3128.

    Article  PubMed  Google Scholar 

  71. Kastelein JJ, Akdim F, Stroes ES, et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N Engl J Med. 2008;358:1431–1443; Erratum appears in N Engl J Med. 2008;358(18):1977.

    Article  PubMed  CAS  Google Scholar 

  72. Davidson MH, McGarry T, Bettis R, et al. Ezetimibe coadministered with simvastatin in patients with primary hypercholesterolemia. J Am Coll Cardiol. 2002;40:2125–2134.

    Article  PubMed  CAS  Google Scholar 

  73. Jackevicius CA, Tu JV, Ross JS, Ko DT, Krumholz HM. Use of ezetimibe in the United States and Canada. N Engl J Med. 2008;358:1819–1828.

    Article  PubMed  CAS  Google Scholar 

  74. Ballantyne CM, Abate N, Yuan Z, King TR, Palmisano J. Dose-comparison study of the combination of ezetimibe and simvastatin (Vytorin) versus atorvastatin in patients with hypercholesterolemia: the Vytorin Versus Atorvastatin (VYVA) study. Am Heart J. 2005;149:464–473.

    Article  PubMed  CAS  Google Scholar 

  75. Cannon CP, Giugliano RP, Blazing MA, et al. Rationale and design of IMPROVE-IT (IMProved Reduction of Outcomes: Vytorin Efficacy International Trial): comparison of ezetimbe/simvastatin versus simvastatin monotherapy on cardiovascular outcomes in patients with acute coronary syndromes. Am Heart J. 2008;156:826–832.

    Article  PubMed  CAS  Google Scholar 

  76. The lipid research clinics coronary primary prevention trial results. I. Reduction in incidence of coronary heart disease. JAMA. 1984;251:351–364.

    Article  Google Scholar 

  77. Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med. 1990;323:1289–1298.

    Article  PubMed  CAS  Google Scholar 

  78. Davidson MH, Toth P, Weiss S, et al. Low-dose combination therapy with colesevelam hydrochloride and lovastatin effectively decreases low-density lipoprotein cholesterol in patients with primary hypercholesterolemia. Clin Cardiol. 2001;24:467–474.

    Article  PubMed  CAS  Google Scholar 

  79. Knapp HH, Schrott H, Ma P, et al. Efficacy and safety of combination simvastatin and colesevelam in patients with primary hypercholesterolemia. Am J Med. 2001;110:352–360.

    Article  PubMed  CAS  Google Scholar 

  80. Hunninghake D, Insull W Jr, Toth P, Davidson D, Donovan JM, Burke SK. Coadministration of colesevelam hydrochloride with atorvastatin lowers LDL cholesterol additively. Atherosclerosis. 2001;158:407–416.

    Article  PubMed  CAS  Google Scholar 

  81. Zieve FJ, Kalin MF, Schwartz SL, Jones MR, Bailey WL. Results of the glucose-lowering effect of WelChol study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Thera. 2007;29:74–83.

    Article  CAS  Google Scholar 

  82. Goldberg RB, Fonseca VA, Truitt KE, Jones MR. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Int Med. 2008;168:1531–1540.

    Article  CAS  Google Scholar 

  83. Fonseca VA, Rosenstock J, Wang AC, Truitt KE, Jones MR. Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care. 2008;31:1479–1484.

    Article  PubMed  CAS  Google Scholar 

  84. Bays HE, Cohen DE. Rationale and design of a prospective clinical trial program to evaluate the glucose-lowering effects of colesevelam HCl in patients with type 2 diabetes mellitus. Curr Med Res Opin. 2007;23:1673–1684.

    Article  PubMed  CAS  Google Scholar 

  85. Stayrook KR, Bramlett KS, Savkur RS, et al. Regulation of carbohydrate metabolism by the farnesoid X receptor.[see comment]. Endocrinology. 2005;146:984–991.

    Article  PubMed  CAS  Google Scholar 

  86. Musha H, Hayashi A, Kida K, et al. Gender difference in the level of high-density lipoprotein cholesterol in elderly Japanese patients with coronary artery disease. Intern Med. 2006;45:241–245.

    Article  PubMed  Google Scholar 

  87. Bays H, Jones PH. Colesevelam hydrochloride: reducing atherosclerotic coronary heart disease risk factors. Vasc Heal Risk Manag. 2007;3:733–742.

    CAS  Google Scholar 

  88. Manninen V, Elo MO, Frick MH, et al. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA. 1988;260:641–651.

    Article  PubMed  CAS  Google Scholar 

  89. Robins SJ, Collins D, Wittes JT, et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA. 2001;285:1585–1591.

    Article  PubMed  CAS  Google Scholar 

  90. Rubins HB, Robins SJ, Collins D, et al. Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs high-density lipoprotein intervention trial (VA-HIT). Arch Intern Med. 2002;162:2597–2604.

    Article  PubMed  CAS  Google Scholar 

  91. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation. 2000;102:21–27.

    Google Scholar 

  92. Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–1861.

    Article  PubMed  CAS  Google Scholar 

  93. Ericsson CG, Hamsten A, Nilsson J, Grip L, Svane B, de Faire U. Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet. 1996;347:849–853.

    Article  PubMed  CAS  Google Scholar 

  94. Frick MH, Syvanne M, Nieminen MS, et al. Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol. Lopid coronary angiography trial (LOCAT) Study Group. Circulation. 1997;96:2137–2143.

    Article  PubMed  CAS  Google Scholar 

  95. Karpe F, Taskinen MR, Nieminen MS, et al. Remnant-like lipoprotein particle cholesterol concentration and progression of coronary and vein-graft atherosclerosis in response to gemfibrozil treatment. Atherosclerosis. 2001;157:181–187.

    Article  PubMed  CAS  Google Scholar 

  96. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes atherosclerosis intervention study, a randomised study. Lancet. 2001;357:905–910.

    Google Scholar 

  97. Prueksaritanont T, Zhao JJ, Ma B, et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Exp Ther. 2002;301:1042–1051.

    Article  PubMed  CAS  Google Scholar 

  98. Prueksaritanont T, Subramanian R, Fang X, et al. Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab Dispos. 2002;30:505–512.

    Article  PubMed  CAS  Google Scholar 

  99. Canner PL, Berge KG, Wenger NK, et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Col Cardiol. 1986;8:1245–1255.

    Article  CAS  Google Scholar 

  100. Lamon-Fava S, Diffenderfer MR, Barrett PH, et al. Extended-release niacin alters the metabolism of plasma apolipoprotein (Apo) A-I and ApoB-containing lipoproteins. cthe combination for the prevention of coronary disease. N Engl J Med. 2001;345:1583–1592.

    Article  Google Scholar 

  101. Brown BG, Zhao XQ, Chait A, et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med. 2001;345(22):1583–1592.

    Google Scholar 

  102. Taylor AJ, Sullenberger LE, Lee HJ, Lee JK, Grace KA. Arterial biology for the investigation of the treatment effects of reducing cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation. 2004;110:3512–3517.

    Article  PubMed  CAS  Google Scholar 

  103. Taylor AJ, Lee HJ, Sullenberger LE. The effect of 24 months of combination statin and extended-release niacin on carotid intima-media thickness: ARBITER 3. Curr Med Res Opin. 2006;22:2243–2250.

    Article  PubMed  CAS  Google Scholar 

  104. Mosca L, Appel LJ, Benjamin EJ, et al. Evidence-based guidelines for cardiovascular disease prevention in women. American Heart Association scientific statement. Arterioscler Thromb Vasc Biol. 2004;24:e29–e50.

    Article  PubMed  CAS  Google Scholar 

  105. Guyton JR, Bays HE. Safety considerations with niacin therapy. Am J Cardiol. 2007;99:22C–31C.

    Article  PubMed  CAS  Google Scholar 

  106. Birjmohun RS, Kastelein JJ, Poldermans D, Stroes ES, Hostalek U, Assmann G. Safety and tolerability of prolonged-release nicotinic acid in statin-treated patients. Curr Med Res Opin. 2007;23:1707–1713.

    Article  PubMed  CAS  Google Scholar 

  107. Cefali EA, Simmons PD, Stanek EJ, Shamp TR. Improved control of niacin-induced flushing using an optimized once-daily, extended-release niacin formulation. Int J Clin Pharmacol Ther. 2006;44:633–640.

    PubMed  CAS  Google Scholar 

  108. Cefali EA, Simmons PD, Stanek EJ, McGovern ME, Kissling CJ. Aspirin reduces cutaneous flushing after administration of an optimized extended-release niacin formulation. Int J Clin Pharmacol Ther. 2007;45:78–88.

    PubMed  CAS  Google Scholar 

  109. Rubenfire M, Impact of Medical Subspecialty on Patient Compliance to Treatment Study Group. Safety and compliance with once-daily niacin extended-release/lovastatin as initial therapy in the Impact of Medical Subspecialty on Patient Compliance to Treatment (IMPACT) study. Am J Cardiol. 2004;94:306–311.

    Article  PubMed  CAS  Google Scholar 

  110. Oberwittler H, Baccara-Dinet M. Clinical evidence for use of acetyl salicylic acid in control of flushing related to nicotinic acid treatment. Int J Clin Prac. 2006;60:707–715.

    Article  CAS  Google Scholar 

  111. Toth PP. Novel therapies for increasing serum levels of HDL. Endocrinol Metab Clin North Am. 2009;38:151–170.

    Article  PubMed  CAS  Google Scholar 

  112. Toth PP. High-density lipoprotein and cardiovascular risk. Circulation. 2004;109:1809–1812.

    Article  PubMed  Google Scholar 

  113. Goldberg RB, Kendall DM, Deeg MA, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2005;28:1547–1554.

    Article  PubMed  CAS  Google Scholar 

  114. Harper CR, Jacobson TA. Usefulness of omega-3 fatty acids and the prevention of coronary heart disease. Am J Cardiol. 2005;96:1521–1529.

    Article  PubMed  CAS  Google Scholar 

  115. Kris-Etherton PM, Harris WS, Appel LJ. American Heart Association. Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106:2747–2757; Erratum appears in Circulation. 2003;107(3):512.

    Article  PubMed  Google Scholar 

  116. Lee JH, O‘Keefe JH, Lavie CJ, Marchioli R, Harris WS. Omega-3 fatty acids for cardioprotection. Mayo Clin Proc. 2008;83:324–332; Erratum appears in Mayo Clin Proc. 2008;83(6):730.

    Article  PubMed  CAS  Google Scholar 

  117. Marchioli R, Barzi F, Bomba E, et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenzione. Circulation. 2002;105:1897–1903.

    Article  PubMed  CAS  Google Scholar 

  118. Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–1098; Erratum appears in Lancet. 2007;370(9583):220.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Toth, P.P. (2011). Management of Dyslipidemia. In: Toth, P., Cannon, C. (eds) Comprehensive Cardiovascular Medicine in the Primary Care Setting. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-963-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-963-5_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-962-8

  • Online ISBN: 978-1-60327-963-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics