Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1119 Accesses

Abstract

Computed tomography (CT) is one of the greatest innovations of the twentieth century, and it has revolutionized clinical practice. Sir Godfrey Hounsfield, an English engineer working for EMI, and Allan Cormack of Tufts University, Massachusetts, a South African-born physicist, developed the concept and the first computed axial tomographic (CAT) scanner in 1972. For the first time, a large volume of data could be collected in an orthogonal plane by using a thin X-ray beam to rotate around a region of interest. The earliest scanners took hours to acquire data and several days to reconstruct the final image for analysis. Subsequent advances such as “slip-ring” technology removed the need for a rigid mechanical linkage between the power cables and the X-ray tube. This enabled the X-ray tube to rotate indefinitely and resulted in spiral CT. CT imaging has become a cornerstone of clinical practice, and it is thought that over 62 million CT scans are performed each year in the USA

Key Points

• Multislice CT, with its high spatial and temporal resolution, has the unique capability to non-invasively visualize coronary artery plaque and stenosis.

• Cardiac CT uses ECG triggering and is a robust, fast (10 s), and relatively simple imaging test.

• Adequate patient selection and preparation are key for diagnostic image quality.

• Radiation exposure (7–20 mSv) and iodinated contrast administration (60–100 mL) are the risks associated with cardiac CT; the newest CT scanners allow a low radiation dose protocol (<5 mSv).

• Adequate use of post-processing and knowledge about artifacts are essential to achieve high diagnostic accuracy and to avoid unnecessary subsequent tests.

• The strength of cardiac CT is the exclusion of significant CAD in patients with an intermediate likelihood of CAD.

• Cardiac CT is limited in patients with known CAD.

• Cardiac CT may improve the management of patients with acute chest pain.

• Plaque assessment will potentially provide useful information for risk stratification and preventive therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–2284.

    Article  PubMed  CAS  Google Scholar 

  2. Achenbach S, Giesler T, Ropers D, et al. Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation. 2001;103:2535–2538.

    Article  PubMed  CAS  Google Scholar 

  3. Flohr TG, McCollough CH, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16:256–268.

    Article  PubMed  Google Scholar 

  4. Herzog C, Arning-Erb M, Zangos S, et al. Multi-detector row ct coronary angiography: influence of reconstruction technique and heart rate on image quality. Radiology. 2006;238:75–86.

    Article  PubMed  Google Scholar 

  5. Hoffmann MHK, Shi H, Manzke R, et al. Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology. 2005;234:86–97.

    Article  PubMed  Google Scholar 

  6. Seifarth H, Wienbeck S, Pusken M, et al. Optimal systolic and diastolic reconstruction windows for coronary ct angiography using dual-source CT. Am J Roentgenol. 2007;189:1317–1323.

    Article  Google Scholar 

  7. Budoff MJ, Achenbach S, Blumenthal RS, et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation. 2006;114:1761–1791.

    Article  PubMed  Google Scholar 

  8. Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA. 2007;298:317–323.

    Article  PubMed  CAS  Google Scholar 

  9. Brasselet C, Blanpain T, Tassan-Mangina S, et al. Comparison of operator radiation exposure with optimized radiation protection devices during coronary angiograms and ad hoc percutaneous coronary interventions by radial and femoral routes. Eur Heart J. 2008;29:63–70.

    Article  PubMed  Google Scholar 

  10. Einstein AJ. Radiation risk from coronary artery disease imaging: how do different diagnostic tests compare? Heart. 2008;94:1519–1521.

    Article  PubMed  Google Scholar 

  11. Pflederer T, Rudofsky L, Ropers D, et al. Image quality in a low radiation exposure protocol for retrospectively ECG-gated coronary CT angiography. Am J Roentgenol. 2009;192:1045–1050.

    Article  Google Scholar 

  12. Husmann L, Valenta I, Gaemperli O, et al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J. 2008;29:191–197.

    Article  PubMed  Google Scholar 

  13. Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301:500–507.

    Article  PubMed  CAS  Google Scholar 

  14. Angelini P, Velasco JA, Flamm S. Coronary anomalies: incidence, pathophysiology, and clinical relevance. Circulation. 2002;105:2449–2454.

    Article  PubMed  Google Scholar 

  15. Basso C, Maron BJ, Corrado D, Thiene G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol. 2000;35:1493–1501.

    Article  PubMed  CAS  Google Scholar 

  16. Cheitlin MD, De Castro CM, McAllister HA. Sudden death as a complication of anomalous left coronary origin from the anterior sinus of valsalva: a not-so-minor congenital anomaly. Circulation. 1974;50:780–787.

    Article  PubMed  CAS  Google Scholar 

  17. Liberthson RR. Sudden death from cardiac causes in children and young adults. N Engl J Med. 1996;334:1039–1044.

    Article  PubMed  CAS  Google Scholar 

  18. Maron BJ, Shirani J, Poliac LC, Mathenge R, Roberts WC, Mueller FO. Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA. 1996;276:199–204.

    Article  PubMed  CAS  Google Scholar 

  19. Taylor A, Rogan K, Virmani R. Sudden cardiac death associated with isolated congenital coronary artery anomalies. J Am Coll Cardiol. 1992;20:640–647.

    Article  PubMed  CAS  Google Scholar 

  20. Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007;115:1296–1305.

    PubMed  Google Scholar 

  21. Hamon M, Morello R, Riddell JW, Hamon M. Coronary arteries: diagnostic performance of 16- versus 64-section spiral CT compared with invasive coronary angiography meta-analysis. Radiology. 2007;245:720–731.

    Article  PubMed  Google Scholar 

  22. Cury RC, Ferencik M, Achenbach S, et al. Accuracy of 16-slice multi-detector CT to quantify the degree of coronary artery stenosis: assessment of cross-sectional and longitudinal vessel reconstructions. Eur J Radiol. 2006;57:345–350.

    Article  PubMed  Google Scholar 

  23. Ricardo CC, Eugene VP, Maros F, et al. Comparison of the degree of coronary stenoses by multidetector computed tomography versus by quantitative coronary angiography. Am J Cardiol. 2005;96:784–787.

    Article  Google Scholar 

  24. Dodd JD, Rieber J, Pomerantsev E, et al. Quantification of nonculprit coronary lesions: comparison of cardiac 64-MDCT and Invasive coronary angiography. Am J Roentgenol. 2008;191:432–438.

    Article  Google Scholar 

  25. Iskander S, Iskandrian AE. Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol. 1998;32:57–62.

    Article  PubMed  CAS  Google Scholar 

  26. Sato A, Hiroe M, Tamura M, et al. Quantitative measures of coronary stenosis severity by 64-slice CT angiography and relation to physiologic significance of perfusion in nonobese patients: comparison with stress myocardial perfusion imaging. J Nucl Med. 2008;49:564–572.

    Article  PubMed  Google Scholar 

  27. Meijboom WB, Van Mieghem CAG, van Pelt N, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol. 2008;52:636–643.

    Article  PubMed  Google Scholar 

  28. Malagutti P, Nieman K, Meijboom WB, et al. Use of 64-slice CT in symptomatic patients after coronary bypass surgery: evaluation of grafts and coronary arteries. Eur Heart J. 2007;28:1879–1885.

    Article  PubMed  Google Scholar 

  29. Martuscelli E, Romagnoli A, D’Eliseo A, et al. Evaluation of venous and arterial conduit patency by 16-slice spiral computed tomography. Circulation. 2004;110:3234–3238.

    Article  PubMed  CAS  Google Scholar 

  30. Meyer TS, Martinoff S, Hadamitzky M, et al. Improved noninvasive assessment of coronary artery bypass grafts with 64-slice computed tomographic angiography in an unselected patient population. J Am Coll Cardiol. 2007;49: 946–950.

    Article  PubMed  Google Scholar 

  31. Nieman K, Pattynama PMT, Rensing BJ, van Geuns R-JM, de Feyter PJ. Evaluation of patients after coronary artery bypass surgery: CT angiographic assessment of grafts and coronary arteries. Radiology. 2003;229:749–756.

    Article  PubMed  Google Scholar 

  32. Pache G, Saueressig U, Frydrychowicz A, et al. Initial experience with 64-slice cardiac CT: non-invasive visualization of coronary artery bypass grafts. Eur Heart J. 2006;27:976–980.

    Article  PubMed  Google Scholar 

  33. Ropers D, Pohle F-K, Kuettner A, et al. Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation. 2006;114: 2334–2341.

    Article  PubMed  Google Scholar 

  34. Schlosser T, Konorza T, Hunold P, Kuhl H, Schmermund A, Barkhausen Jo. Noninvasive visualization of coronary artery bypass grafts using 16-detector row computed tomography. J Am Coll Cardiol. 2004;44:1224–1229.

    Article  PubMed  Google Scholar 

  35. Hamon M, Lepage O, Malagutti P, et al. Diagnostic performance of 16- and 64-section spiral CT for coronary artery bypass graft assessment: meta-analysis. Radiology. 2008;247:679–686.

    Article  PubMed  Google Scholar 

  36. Hoffmann U, Pena AJ, Moselewski F, et al. MDCT in early triage of patients with acute chest pain. Am J Roentgenol. 2006;187:1240–1247.

    Article  Google Scholar 

  37. Hoffmann U, Nagurney JT, Moselewski F, et al. Coronary multidetector computed tomography in the assessment of patients with acute chest pain. Circulation. 2006;114:2251–2260.

    Article  PubMed  Google Scholar 

  38. Rubinshtein R, Halon DA, Gaspar T, et al. Impact of 64-slice cardiac computed tomographic angiography on clinical decision-making in emergency department patients with chest pain of possible myocardial ischemic origin. Am J Cardiol. 2007;100:1522–1526.

    Article  PubMed  Google Scholar 

  39. Rubinshtein R, Halon DA, Gaspar T, et al. Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation. 2007;115:1762–1768.

    Article  PubMed  Google Scholar 

  40. Goldstein JA, Gallagher MJ, O’Neill WW, Ross MA, O’Neil BJ, Raff GL. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol. 2007;49:863–871.

    Article  PubMed  Google Scholar 

  41. White CS, Kuo D, Kelemen M, et al. Chest pain evaluation in the emergency department: can MDCT provide a comprehensive evaluation? Am J Roentgenol. 2005;185:533–540.

    Google Scholar 

  42. Jongbloed MRM, Dirksen MS, Bax JJ, et al. Atrial Fibrillation: multi-detector row CT of pulmonary vein anatomy prior to radiofrequency catheter ablation—initial experience. Radiology. 2005;234:702–709.

    Article  PubMed  Google Scholar 

  43. Paul C, Aine Marie K, Benoit D, et al. Normative analysis of pulmonary vein drainage patterns on multidetector CT with measurements of pulmonary vein ostial diameter and distance to first bifurcation. Acad Radiol. 2007;14:178–188.

    Article  Google Scholar 

  44. Gilard M, Cornily J-C, Pennec P-Y, et al. Accuracy of multislice computed tomography in the preoperative assessment of coronary disease in patients with aortic valve stenosis. J Am Coll Cardiol. 2006;47:2020–2024.

    Article  PubMed  Google Scholar 

  45. Feuchtner GM, Dichtl W, Friedrich GJ, et al. Multislice computed tomography for detection of patients with aortic valve stenosis and quantification of severity. J Am Coll Cardiol. 2006;47:1410–1417.

    Article  PubMed  Google Scholar 

  46. LaBounty TM, Sundaram B, Agarwal P, Armstrong WA, Kazerooni EA, Yamada E. Aortic valve area on 64-MDCT correlates with transesophageal echocardiography in aortic stenosis. Am J Roentgenol. 2008;191:1652–1658.

    Article  Google Scholar 

  47. Mahnken AH, Koos R, Katoh M, et al. Sixteen-slice spiral CT versus MR imaging for the assessment of left ventricular function in acute myocardial infarction. Eur Radiol. 2005;15:714–720.

    Article  PubMed  Google Scholar 

  48. Henneman M, Bax J, Schuijf J, et al. Global and regional left ventricular function: a comparison between gated SPECT, 2D echocardiography and multi-slice computed tomography. Eur J Nuc Med Mol Imag. 2006;33:1452–1460.

    Article  Google Scholar 

  49. Baks T, Cademartiri F, Moelker AD, et al. Multislice computed tomography and magnetic resonance imaging for the assessment of reperfused acute myocardial infarction. J Am Coll Cardiol. 2006;48:144–152.

    Article  PubMed  Google Scholar 

  50. George RT, Silva C, Cordeiro MAS, et al. Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol. 2006;48:153–160.

    Article  PubMed  Google Scholar 

  51. Gerber BL, Belge B, Legros GJ, et al. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast–enhanced magnetic resonance. Circulation. 2006;113:823–833.

    Article  PubMed  Google Scholar 

  52. Habis M, Capderou A, Ghostine S, et al. Acute myocardial infarction early viability assessment by 64-slice computed tomography immediately after coronary angiography: comparison with low-dose dobutamine echocardiography. J Am Coll Cardiol. 2007;49:1178–1185.

    Article  PubMed  Google Scholar 

  53. Hoffmann U, Millea R, Enzweiler C, et al. Acute myocardial infarction: contrast-enhanced multi-detector row CT in a porcine model. Radiology. 2004;231:697–701.

    Article  PubMed  Google Scholar 

  54. Mahnken AH, Koos R, Katoh M, et al. Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol. 2005;45: 2042–2047.

    Article  PubMed  Google Scholar 

  55. Nieman K, Shapiro MD, Ferencik M, et al. Reperfused myocardial infarction: contrast-enhanced 64-section CT in comparison to MR imaging. Radiology. 2008;247:49–56.

    Article  PubMed  Google Scholar 

  56. Cury RC, Nieman K, Shapiro MD, et al. Comprehensive assessment of myocardial perfusion defects, regional wall motion, and left ventricular function by using 64-section multidetector CT. Radiology. 2008;248:466–475.

    Article  PubMed  Google Scholar 

  57. Chang H-J, George RT, Schuleri KH, et al. Prospective electrocardiogram-gated delayed enhanced multidetector computed tomography accurately quantifies infarct size and reduces radiation exposure. J Am Coll Cardiol Img. 2009;2: 412–420.

    Google Scholar 

  58. Leber AW, Becker A, Knez A, et al. Accuracy of 64-Slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol. 2006;47: 672–677.

    Article  PubMed  Google Scholar 

  59. Leber AW, Knez A, Becker A, et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol. 2004;43:1241–1247.

    Article  PubMed  Google Scholar 

  60. Achenbach S, Moselewski F, Ropers D, et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation. 2004;109:14–17.

    Article  PubMed  Google Scholar 

  61. Becker CR, Knez A, Ohnesorge B, Schoepf UJ, Reiser MF. Imaging of noncalcified coronary plaques using helical CT with retrospective ECG gating. Am J Roentgenol. 2000;175:423–424.

    CAS  Google Scholar 

  62. Schroeder S, Kopp AF, Baumbach A, et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol. 2001;37:1430–1435.

    Article  PubMed  CAS  Google Scholar 

  63. Karsten P, Stephan A, Briain M, et al. Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis. 2007;190:174–180.

    Article  Google Scholar 

  64. Cademartiri F, La Grutta L, Palumbo A, et al. Coronary plaque imaging with multislice computed tomography: technique and clinical applications. Eur Radiol Suppl. 2006;16:M44–M53.

    Article  Google Scholar 

  65. Moselewski F, Ropers D, Pohle K, et al. Comparison of measurement of cross-sectional coronary atherosclerotic plaque and vessel areas by 16-slice multidetector computed tomography versus intravascular ultrasound. Am J Cardiol. 2004;94:1294–1297.

    Article  PubMed  Google Scholar 

  66. Hoffmann U, Moselewski F, Nieman K, et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol. 2006;47:1655–1662.

    Article  PubMed  Google Scholar 

  67. Achenbach S, Ropers D, Hoffmann U, et al. Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol. 2004;43:842–847.

    Article  PubMed  Google Scholar 

  68. Brodoefel H, Burgstahler C, Sabir A, et al. Coronary plaque quantification by voxel analysis: dual-source MDCT angiography versus intravascular sonography. Am J Roentgenol. 2009;192:W84–W89.

    Article  Google Scholar 

  69. Moroi M, Kunimasa T, Furuhashi T, Fukuda H, Sugi K. Possible assessment of coronary plaque morphology before and after treatment with statin by multislice spiral computed tomographic coronary angiography—a case report. Int J Angiol. 2005;14:225–227.

    Article  Google Scholar 

  70. Min JK, Lin FY, Saba S. Coronary CT angiography: clinical utility and prognosis. Curr Cardiol Rep. 2009;11:47–53.

    Article  PubMed  Google Scholar 

  71. Hendel RC, Patel MR, Kramer CM, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48:1475–1497.

    Article  PubMed  Google Scholar 

  72. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med. 1979;300:1350–1358.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Donnelly, P., Hoffmann, U. (2011). Cardiac Computed Tomography. In: Toth, P., Cannon, C. (eds) Comprehensive Cardiovascular Medicine in the Primary Care Setting. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-963-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-963-5_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-962-8

  • Online ISBN: 978-1-60327-963-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics