Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1097 Accesses

Abstract

The striking improvement in cardiovascular therapies during the last several decades has caused a marked decrease in mortality linked to atherosclerotic diseases in Western societies. Nonetheless, coronary artery disease (CAD) remains the main cause of non-fatal events, and it is associated with substantial functional impairment in survivors of acute events, imposing a very large economic burden on societies. The use of risk scoring tools helps to identify patients both at higher risk of disease and those who are most likely to benefit from therapeutic intervention. Unfortunately, it has become apparent that most of these tools are not completely accurate, and many patients considered to be at low risk suffer coronary events, and, on the contrary, intermediate- to high-risk patients may actually be at a much lower risk than predicted. The attention of several investigators, therefore, turned to the development of imaging tools to identify atherosclerosis or its signature in its pre-clinical stages.

Key Points

• Most risk stratification tools are not completely accurate, and many patients considered to be at low risk suffer coronary events, while some intermediate- to high-risk patients may be at lower than predicted risk. The focus has, therefore, turned to imaging tools to identify atherosclerosis in its pre-clinical stages.

• Calcium deposition accompanies the formation of atherosclerotic plaque from its inception, and it proceeds via active processes of mineralization similar to bone formation. The extent of coronary artery calcium is a good marker of the presence of atherosclerosis, although it represents only 15–20% of the total atheroma volume.

• There is a large amount of data to show that coronary artery calcium is an independent predictor of cardiovascular events among patients at intermediate risk in the general population. It also adds incremental prognostic information beyond traditional risk factors in this segment of the population.

• There are no data to support calcium imaging in low-risk patients, while there are good initial data to support its use even in high-risk individuals such as diabetic patients and the elderly.

• Women benefit from calcium screening even more than men because the accuracy of risk prediction models based on traditional risk factors is lower in women.

• The ability of coronary artery calcium to predict risk has been shown to be equal for patients of different ethnicities (Caucasian, African-American, Asian, and Hispanic).

• Extent of coronary calcium can be used to adjust the age of the individual patient according to the extent of subclinical atherosclerosis detected. The concept of vascular age can be applied to predict the number of life years lost by the individual.

• Calcium screening in low-risk symptomatic patients helps discriminate patients in need of further testing from those that can be managed medically and discharged from the emergency department.

• Regression of coronary artery calcium has not yet been conclusively shown to be attainable. However, continued accumulation of large amounts of calcium has been clearly shown to be linked with unfavorable cardiovascular events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kondos GT, Hoff JA, Sevrukov A, et al. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5,635 initially asymptomatic low- to intermediate-risk adults. Circulation. 2003;107:2571–2576.

    Article  PubMed  Google Scholar 

  2. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology. 2003;228:826–833.

    Article  PubMed  Google Scholar 

  3. Budoff MJ, Shaw LJ, Liu ST, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49:1860–1870.

    Article  PubMed  Google Scholar 

  4. Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J Am Coll Cardiol. 2005;46(1):158–165.

    Article  PubMed  CAS  Google Scholar 

  5. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;29:210–215.

    Article  Google Scholar 

  6. LaMonte MJ, FitzGerald SJ, Church TS, et al. Coronary artery calcium score and coronary heart disease events in a large cohort of asymptomatic men and women. Am J Epidemiol. 2005;162(5):421–429.

    Article  PubMed  Google Scholar 

  7. Taylor AJ, Bindeman J, Feuerstein I, Cao F, Brazaitis M, O’Malley PG. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J Am Coll Cardiol. 2005;46:807–814.

    Article  PubMed  CAS  Google Scholar 

  8. Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–1345.

    Article  PubMed  CAS  Google Scholar 

  9. Becker A, Leber A, Becker C, Knez A. Predictive value of coronary calcifications for future cardiac events in asymptomatic individuals. Am Heart J. 2008;155:154–160.

    Article  PubMed  Google Scholar 

  10. De Backer G, Ambrosioni E, Borch-Johnsen K, et al. European guidelines on cardiovascular disease prevention in clinical practice. Third Joint Task Force of European and Other Societies on Cardiovascular Disease Prevention in Clinical Practice. Eur Heart J. 2003;24:1601–1610.

    Article  PubMed  Google Scholar 

  11. Budoff MJ, Achenbach S, Blumenthal RS, et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation. 2006;114:1761–1791.

    Article  PubMed  Google Scholar 

  12. Shaw LJ, Raggi P, Berman DS, Callister TQ. Coronary artery calcium as a measure of biologic age. Atherosclerosis. 2006;188:112–119.

    Article  PubMed  CAS  Google Scholar 

  13. Raggi P, Callister TQ, Cooil B, et al. Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation. 2000;101:850–855.

    Article  PubMed  CAS  Google Scholar 

  14. Raggi P, Cooil B, Callister TQ. Use of electron beam tomography data to develop models for prediction of hard coronary events. Am Heart J. 2001;141:375–382.

    Article  PubMed  CAS  Google Scholar 

  15. Kalia NK, Miller LG, Nasir K, Blumenthal RS, Agrawal N, Budoff MJ. Visualizing coronary calcium is associated with improvements in adherence to statin therapy. Atherosclerosis. 2006;185:394–399.

    Article  PubMed  CAS  Google Scholar 

  16. Nasir K, Budoff MJ, Wong ND, et al. Family history of premature coronary heart disease and coronary artery calcification: Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2007;116:619–626.

    Article  PubMed  Google Scholar 

  17. He ZX, Hedrick TD, Pratt CM, et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation. 2000;101:244–251.

    Article  PubMed  CAS  Google Scholar 

  18. Berman DS, Wong ND, Gransar H, et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol. 2004;44:923–930.

    Article  PubMed  CAS  Google Scholar 

  19. Garrison FH. On Thomas Sydenham (1624–1689). NY Acad Med. 1928;4:993.

    Google Scholar 

  20. Hoff JA, Chomka EV, Krainik AJ, Daviglus M, Rich S, Kondos GT. Age and gender distributions of coronary artery calcium detected by electron beam tomography in 35,246 adults. Am J Cardiol. 2001;87:1335–1339.

    Article  PubMed  CAS  Google Scholar 

  21. Vliegenthart R, Oudkerk M, Hofman A, et al. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation. 2005;112:572–577.

    Article  PubMed  Google Scholar 

  22. Sirineni GK, Raggi P, Shaw LJ, Stillman AE. Calculation of coronary age using calcium scores in multiple ethnicities. Int J Cardiovasc Imag. 2008;24:107–111.

    Google Scholar 

  23. Raggi P, Gongora MC, Gopal A, Callister TQ, Budoff M, Shaw LJ. Coronary artery calcium to predict all-cause mortality in elderly men and women. J Am Coll Cardiol. 2008;52:17–23.

    Article  PubMed  Google Scholar 

  24. Margolis JR, Kannel WS, Feinleib M, Dawber TR, McNamara PM. Clinical features of unrecognized myocardial infarction—silent and symptomatic. Eighteen year follow-up: the Framingham study. Am J Cardiol. 1973;32:1–7.

    Article  PubMed  CAS  Google Scholar 

  25. Miller TD, Rajagopalan N, Hodge DO, Frye RL, Gibbons RJ. Yield of stress single-photon emission computed tomography in asymptomatic patients with diabetes. Am Heart J. 2004;147:890–896.

    Article  PubMed  Google Scholar 

  26. Nesto RW, Phillips RT, Kett KG, et al. Angina and exertional myocardial ischemia in diabetic and nondiabetic patients: assessment by exercise thallium scintigraphy. Ann Intern Med. 1988;108:170–175.

    PubMed  CAS  Google Scholar 

  27. Bax JJ, Young LH, Frye RL, Bonow RO, Steinberg HO, Barrett EJ. Screening for coronary artery disease in patients with diabetes. Diabetes Care. 2007;30:2729–2736.

    Article  PubMed  Google Scholar 

  28. Iwasaki K, Matsumoto T, Aono H, Furukawa H, Samukawa M. Prevalence of subclinical atherosclerosis in asymptomatic diabetic patients by 64-slice computed tomography. Coron Artery Dis. 2008;19:195–201.

    Article  PubMed  Google Scholar 

  29. Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43:1663–1669.

    Article  PubMed  CAS  Google Scholar 

  30. Elkeles RS, Godsland IF, Feher MD, et al. Coronary calcium measurement improves prediction of cardiovascular events in asymptomatic patients with type 2 diabetes: the PREDICT study. Eur Heart J. 2008;29:2244–2251.

    Article  PubMed  CAS  Google Scholar 

  31. Anand DV, Lim E, Lahiri A, Bax JJ. The role of non-invasive imaging in the risk stratification of asymptomatic diabetic subjects. Eur Heart J. 2006;27:905–912.

    Article  PubMed  Google Scholar 

  32. Anand DV, Lim E, Hopkins D, et al. Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J. 2006;27:713–721.

    Article  PubMed  Google Scholar 

  33. Wong ND, Rozanski A, Gransar H, et al. Metabolic syndrome and diabetes are associated with an increased likelihood of inducible myocardial ischemia among patients with subclinical atherosclerosis. Diabetes Care. 2005;28: 1445–1450.

    Article  PubMed  Google Scholar 

  34. Shaw LJ, Miller DD, Romeis JC, Kargl D, Younis LT, Chaitman BR. Gender differences in the noninvasive evaluation and management of patients with suspected coronary artery disease. Ann Intern Med. 1994;120:559–566.

    PubMed  CAS  Google Scholar 

  35. Mosca L, Grundy SM, Judelson D, et al. AHA/ACC scientific statement: consensus panel statement. Guide to preventive cardiology for women. American Heart Association/American College of Cardiology. J Am Coll Cardiol. 1999;33:1751–1755.

    Article  PubMed  CAS  Google Scholar 

  36. Vaccarino V, Abramson JL, Veledar E, Weintraub WS. Sex differences in hospital mortality after coronary artery bypass surgery: evidence for a higher mortality in younger women. Circulation. 2002;105:1176–1181.

    Article  PubMed  Google Scholar 

  37. Vaccarino V, Parsons L, Every NR, Barron HV, Krumholz HM. Sex-based differences in early mortality after myocardial infarction. National Registry of Myocardial Infarction 2 Participants. N Engl J Med. 1999;341:217–225.

    Article  PubMed  CAS  Google Scholar 

  38. Michos ED, Nasir K, Braunstein JB, et al. Framingham risk equation underestimates subclinical atherosclerosis risk in asymptomatic women. Atherosclerosis. 2006;184:201–206.

    Article  PubMed  CAS  Google Scholar 

  39. Raggi P, Shaw LJ, Berman DS, Callister TQ. Gender-based differences in the prognostic value of coronary calcification. J Womens Health. 2004;13:273–283.

    Article  Google Scholar 

  40. Lakoski SG, Greenland P, Wong ND, et al. Coronary artery calcium scores and risk for cardiovascular events in women classified as “low risk” based on Framingham risk score: the Multi-Ethnic Study of Atherosclerosis (MESA). Arch Intern Med. 2007;167:2437–2442.

    Article  PubMed  Google Scholar 

  41. Bellasi A, Lacey C, Taylor AJ, et al. Comparison of prognostic usefulness of coronary artery calcium in men versus women (results from a meta- and pooled analysis estimating all-cause mortality and coronary heart disease death or myocardial infarction). Am J Cardiol. 2007;100:409–414.

    Article  PubMed  CAS  Google Scholar 

  42. Baber U, de Lemos JA, Khera A, et al. Non-traditional risk factors predict coronary calcification in chronic kidney disease in a population-based cohort. Kidney Int. 2008;73:615–621.

    Article  PubMed  CAS  Google Scholar 

  43. Bursztyn M, Motro M, Grossman E, Shemesh J. Accelerated coronary artery calcification in mildly reduced renal function of high-risk hypertensives: a 3-year prospective observation. J Hypertens. 2003;21:1953–1959.

    Article  PubMed  CAS  Google Scholar 

  44. Sigrist M, Bungay P, Taal MW, McIntyre CW. Vascular calcification and cardiovascular function in chronic kidney disease. Nephr Dial Transplant. 2006;21:707–714.

    Article  Google Scholar 

  45. Block GA, Raggi P, Bellasi A, Kooienga L, Spiegel DM. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Intl. 2007;71:438–441.

    Article  CAS  Google Scholar 

  46. Raggi P, Boulay A, Chasan-Taber S, et al. Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol. 2002;39:695–701.

    Article  PubMed  Google Scholar 

  47. Goodman WG, Goldin J, Kuizon BD, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 2000;342:1478–1483.

    Article  PubMed  CAS  Google Scholar 

  48. Oh J, Wunsch R, Turzer M, et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation. 2002;106:100–105.

    Article  PubMed  Google Scholar 

  49. Wang AY, Wang M, Woo J, et al. Cardiac valve calcification as an important predictor for all-cause mortality and cardiovascular mortality in long-term peritoneal dialysis patients: a prospective study. J Am Soc Nephr. 2003;14: 159–168.

    Article  Google Scholar 

  50. Chertow GM, Raggi P, Chasan-Taber S, Bommer J, Holzer H, Burke SK. Determinants of progressive vascular calcification in haemodialysis patients. Nephr Dial Transplant. 2004;19:1489–1496.

    Article  Google Scholar 

  51. Chertow GM, Burke SK, Raggi P. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 2002;62:245–252.

    Article  PubMed  CAS  Google Scholar 

  52. Guerin AP, London GM, Marchais SJ, Metivier F. Arterial stiffening and vascular calcifications in end-stage renal disease. Nephr Dial Transplant. 2000;15:1014–1021.

    Article  CAS  Google Scholar 

  53. Matsuoka M, Iseki K, Tamashiro M, et al. Impact of high coronary artery calcification score (CACS) on survival in patients on chronic hemodialysis. Clin Experimental Nephr. 2004;8:54–58.

    Article  Google Scholar 

  54. Budoff MJ, Gul KM. Expert review on coronary calcium. Vasc Health Risk Manag. 2008;4:315–324.

    PubMed  Google Scholar 

  55. Baumgart D, Schmermund A, Goerge G, et al. Comparison of electron beam computed tomography with intracoronary ultrasound and coronary angiography for detection of coronary atherosclerosis. J Am Coll Cardiol. 1997;30:57–64.

    Article  PubMed  CAS  Google Scholar 

  56. Mintz GS, Pichard AD, Popma JJ, et al. Determinants and correlates of target lesion calcium in coronary artery disease: a clinical, angiographic and intravascular ultrasound study. J Am Coll Cardiol. 1997;29:268–274.

    Article  PubMed  CAS  Google Scholar 

  57. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation. 1995;92:2157–2162.

    Article  PubMed  CAS  Google Scholar 

  58. Shareghi S, Ahmadi N, Young E, Gopal A, Liu ST, Budoff MJ. Prognostic significance of zero coronary calcium scores on cardiac computed tomography. J Cardiovasc Comput Tomogr. 2007;1:155–159.

    Article  PubMed  Google Scholar 

  59. Cheng VY, Lepor NE, Madyoon H, Eshaghian S, Naraghi AL, Shah PK. Presence and severity of noncalcified coronary plaque on 64-slice computed tomographic coronary angiography in patients with zero and low coronary artery calcium. Am J Cardiol. 2007;99:1183–1186.

    Article  PubMed  Google Scholar 

  60. Laudon DA, Vukov LF, Breen JF, Rumberger JA, Wollan PC, Sheedy PF 2nd. Use of electron-beam computed tomography in the evaluation of chest pain patients in the emergency department. Ann Emerg Med. 1999;33:15–21.

    Article  PubMed  CAS  Google Scholar 

  61. Georgiou D, Budoff MJ, Kaufer E, Kennedy JM, Lu B, Brundage BH. Screening patients with chest pain in the emergency department using electron beam tomography: a follow-up study. J Am Coll Cardiol. 2001;38:105–110.

    Article  PubMed  CAS  Google Scholar 

  62. Becker A, Leber A, White CW, Becker C, Reiser MF, Knez A. Multislice computed tomography for determination of coronary artery disease in a symptomatic patient population. Int J Cardiovasc Imaging. 2007;23:361–367.

    Article  PubMed  Google Scholar 

  63. Budoff MJ, Diamond GA, Raggi P, et al. Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation. 2002;105:1791–1796.

    Article  PubMed  Google Scholar 

  64. Esteves FP, Sanyal R, Nye JA, Santana CA, Verdes L, Raggi P. Adenosine stress rubidium-82 PET/computed tomography in patients with known and suspected coronary artery disease. Nucl Med Commun. 2008;29:674–678.

    Article  PubMed  Google Scholar 

  65. Gottlieb I, Miller JM, Arbab-Zadeh A, Dewey M, Clouse ME, Sara L, Niinuma H, Bush DE, Paul N, Vavere AL, Texter J, Brinker J, Lima JA, Rochitte CE. The absence of coronary calcification does not exclude obstructive coronary artery disease or the need for revascularization in patients referred for conventional coronary angiography. J Am Coll Cardiol. 2010;55(7):627–634.

    Google Scholar 

  66. Groen JM, Greuter MJ, Schmidt B, Suess C, Vliegenthart R, Oudkerk M. The influence of heart rate, slice thickness, and calcification density on calcium scores using 64-slice multidetector computed tomography: a systematic phantom study. Invest Radiol. 2007;42:848–855.

    Article  PubMed  Google Scholar 

  67. Horiguchi J, Matsuura N, Yamamoto H, et al. Variability of repeated coronary artery calcium measurements by 1.25-mm- and 2.5-mm-thickness images on prospective electrocardiograph-triggered 64-slice CT. Eur Radiol. 2008;18: 209–216.

    Article  PubMed  Google Scholar 

  68. Horiguchi J, Yamamoto H, Hirai N, et al. Variability of repeated coronary artery calcium measurements on low-dose ECG-gated 16-MDCT. AJR. 2006;187:W1–W6.

    Article  PubMed  Google Scholar 

  69. Becker A, Leber A, von Ziegler F, Becker C, Knez A. Comparison of progression of coronary calcium in postmenopausal women on versus not on estrogen/progestin therapy. Am J Cardiol. 2007;99:374–378.

    Article  PubMed  CAS  Google Scholar 

  70. Budoff MJ, Chen GP, Hunter CJ, Takasu J, Agrawal N, Sorochinsky B, Mao S. Effects of hormone replacement on progression of coronary calcium as measured by electron beam tomography. J Women’s Health. 2005;14: 410–417.

    Article  Google Scholar 

  71. Budoff MJ, Raggi P. Coronary artery disease progression assessed by electron-beam computed tomography. Am J Cardiol. 2001;88:46E–50E.

    Article  PubMed  CAS  Google Scholar 

  72. Gopal A, Nasir K, Liu ST, Flores FR, Chen L, Budoff MJ. Coronary calcium progression rates with a zero initial score by electron beam tomography. International J Cardiol. 2007;117:227–231.

    Article  Google Scholar 

  73. Hsia J, Klouj A, Prasad A, Burt J, Adams-Campbell LL, Howard BV. Progression of coronary calcification in healthy postmenopausal women. BMC Cardiovasc Disord. 2004;4:21.

    Article  PubMed  Google Scholar 

  74. Raggi P, Cooil B, Shaw LJ, et al. Progression of coronary calcium on serial electron beam tomographic scanning is greater in patients with future myocardial infarction. Am J Cardiol. 2003;92:827–829.

    Article  PubMed  Google Scholar 

  75. Rasouli ML, Nasir K, Blumenthal RS, Park R, Aziz DC, Budoff MJ. Plasma homocysteine predicts progression of atherosclerosis. Atherosclerosis. 2005;181:159–165.

    Article  PubMed  CAS  Google Scholar 

  76. Shemesh J, Apter S, Stolero D, Itzchak Y, Motro M. Annual progression of coronary artery calcium by spiral computed tomography in hypertensive patients without myocardial ischemia but with prominent atherosclerotic risk factors, in patients with previous angina pectoris or healed acute myocardial infarction, and in patients with coronary events during follow-up. Am J Cardiol. 2001;87:1395–1397.

    Article  PubMed  CAS  Google Scholar 

  77. Sutton-Tyrrell K, Kuller LH, Edmundowicz D, et al. Usefulness of electron beam tomography to detect progression of coronary and aortic calcium in middle-aged women. Am J Cardiol. 2001;87:560–564.

    Article  PubMed  CAS  Google Scholar 

  78. Yoon HC, Emerick AM, Hill JA, Gjertson DW, Goldin JG. Calcium begets calcium: progression of coronary artery calcification in asymptomatic subjects. Radiology. 2002;224:236–241.

    Article  PubMed  Google Scholar 

  79. Cassidy AE, Bielak LF, Zhou Y, Sheedy PF 2nd, et al. Progression of subclinical coronary atherosclerosis: does obesity make a difference? Circulation. 2005;111:1877–1882.

    Article  PubMed  Google Scholar 

  80. Kawakubo M, LaBree L, Xiang M, et al. Race-ethnic differences in the extent, prevalence, and progression of coronary calcium. Ethn Dis. 2005;15:198–204.

    PubMed  Google Scholar 

  81. Kronmal RA, McClelland RL, Detrano R, et al. Risk factors for the progression of coronary artery calcification in asymptomatic subjects: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2007;115: 2722–2730.

    Article  PubMed  Google Scholar 

  82. Mehrotra R, Budoff M, Christenson P, et al. Determinants of coronary artery calcification in diabetics with and without nephropathy. Kidney Intl. 2004;66:2022–2031.

    Article  Google Scholar 

  83. Raggi P, Cooil B, Ratti C, Callister TQ, Budoff M. Progression of coronary artery calcium and occurrence of myocardial infarction in patients with and without diabetes mellitus. Hypertension. 2005;46:238–243.

    Article  PubMed  CAS  Google Scholar 

  84. Snell-Bergeon JK, Hokanson JE, Jensen L, et al. Progression of coronary artery calcification in type 1 diabetes: the importance of glycemic control. Diabetes Care. 2003;26:2923–2928.

    Article  PubMed  Google Scholar 

  85. Budoff MJ, Lane KL, Bakhsheshi H, et al. Rates of progression of coronary calcium by electron beam tomography. Am J Cardiol. 2000;86:8–11.

    Article  PubMed  CAS  Google Scholar 

  86. Budoff MJ, Yu D, Nasir K, et al. Diabetes and progression of coronary calcium under the influence of statin therapy. Am Heart J. 2005;149:695–700.

    Article  PubMed  CAS  Google Scholar 

  87. Callister TQ, Raggi P, Cooil B, Lippolis NJ, Russo DJ. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med. 1998;339:1972–1978.

    Article  PubMed  CAS  Google Scholar 

  88. Raggi P, Davidson M, Callister TQ, et al. Aggressive versus moderate lipid-lowering therapy in hypercholesterolemic postmenopausal women: Beyond Endorsed Lipid Lowering with EBT Scanning (BELLES). Circulation. 2005;112: 563–571.

    Article  PubMed  CAS  Google Scholar 

  89. Schmermund A, Achenbach S, Budde T, et al. Effect of intensive versus standard lipid-lowering treatment with atorvastatin on the progression of calcified coronary atherosclerosis over 12 months: a multicenter, randomized, double-blind trial. Circulation. 2006;113:427–437.

    Article  PubMed  CAS  Google Scholar 

  90. Achenbach S, Ropers D, Pohle K, et al. Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation. 2002;106:1077–1082.

    Article  PubMed  CAS  Google Scholar 

  91. Manson JE, Allison MA, Rossouw JE, et al. Estrogen therapy and coronary-artery calcification. N Engl J Med. 2007;356:2591–2602.

    Article  PubMed  CAS  Google Scholar 

  92. Raggi P, Callister TQ, Shaw LJ. Progression of coronary artery calcium and risk of first myocardial infarction in patients receiving cholesterol-lowering therapy. Arterioscler Thromb Vasc Biol. 2004;24:1272–1277.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alexopoulos, N., McLean, D.S., Lerakis, S., Raggi, P. (2011). Screening for Coronary Artery Calcium. In: Toth, P., Cannon, C. (eds) Comprehensive Cardiovascular Medicine in the Primary Care Setting. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-963-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-963-5_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-962-8

  • Online ISBN: 978-1-60327-963-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics