Skip to main content

Abstract

Coronary artery bypass grafting (CABG) is one of the most common cardiac surgery procedures performed in the United States to treat coronary artery disease (CAD) and has evolved since its introduction in the 1960s (1).

Key Points

• The primary care physician plays a very important role in providing the patient with treatment options and helping the patient make decisions regarding treatment based on the relative risks and interventions.

• The selection of the specific management strategy must incorporate the extent of the patient’s coronary artery disease, co-morbidities, expected symptomatic relief, and survival benefits that have been established and quantitated by clinical trials.

• Current treatment options for coronary artery disease include medical management, percutaneous coronary intervention (PCI), and coronary artery bypass grafting (CABG).

• Several landmark studies performed at the Cleveland Clinic and other institutions from 1985 to 1996 have revealed the left internal mammary (LIMA) to left anterior descending (LAD) artery graft to result in excellent patency rates and outcomes after CABG, and this technique has led to major advances in CABG surgery.

• Trials comparing the outcomes of medical therapy with CABG have shown that in patients with multivessel disease, left ventricular (LV) dysfunction (LVEF less than 50%), and moderate-to-severe angina/ischemia, the survival benefits of CABG clearly exceed the benefits of medical therapy.

• Trials comparing the outcomes of medical therapy with PCI have shown that in patients with stable angina, PCI showed no benefit over medical management in terms of survival, MI, or freedom from subsequent revascularization and that all patients with stable angina should have a trial of optimized medical therapy prior to consideration of PCI.

• Trials comparing CABG to PCI and medical therapy consistently demonstrated that patients with proximal multivessel disease, diabetes mellitus, left main artery disease, left main artery equivalent disease (referring to combined proximal left anterior descending artery disease and proximal left circumflex artery disease), and LV dysfunction have better outcomes with CABG.

• The dominant theme demonstrating the superiority of CABG over medical management and PCI in the context of event-free survival, freedom from major adverse cardiac and cerebrovascular events (MACCE), and lower rates of repeat revascularization occurs in patients with left main disease, left main equivalent disease, multivessel disease, proximal vessel disease, diabetes, and LV dysfunction.

• It is important that a multidisciplinary approach be used to optimally tailor treatment options for the patient with CAD, and the primary care provider is in the unique position to advocate for the patient’s best treatment option from an unbiased perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Góngora E, Sundt T. Myocardial Revascularization with Cardiopulmonary Bypass. In: Cohn LH, ed. Cardiac Surgery in the Adult. New York, NY: McGraw-Hill; 2008:599–632.

    Google Scholar 

  2. Sones FM, Shirey EK. Cine coronary arteriography. Mod Concepts Cardiovasc Dis. 1962;31:735–738.

    PubMed  Google Scholar 

  3. Stephenson L, Rodengen J. Coronary Artery Disease and Treatment Options. State of the Heart. Fort Lauderdale: Write Stuff Enterprises; 1999:110–129.

    Google Scholar 

  4. Favalaro RG. Saphenous vein autograft replacement of severe segmental coronary artery occlusion. Ann Thorac Surg. 1968;5:334–339.

    Article  Google Scholar 

  5. Johnson WD, Flemma RJ, Lepley D Jr, Ellison EH. Extended treatment of severe coronary artery disease: a total surgical approach. Ann Surg. 1969;170:460–470.

    Article  PubMed  CAS  Google Scholar 

  6. Bailey CP, Hirose T. Successful internal mammary-coronary arterial anastomosis using a “minivascular” suturing technic. Int Surg. 1968;49:416–427.

    PubMed  CAS  Google Scholar 

  7. Green GE. Internal mammary artery-to-coronary artery anastomosis. Three-year experience with 165 patients. Ann Thorac Surg. 1972;14:260–271.

    Article  PubMed  CAS  Google Scholar 

  8. Cosgrove DM, Loop FD, Lytle BW, et al. Does mammary artery grafting increase surgical risk? Circulation. 1985;72(3 Pt 2):II170–II174.

    PubMed  CAS  Google Scholar 

  9. Edwards FH, Clark RE, Schwartz M. Impact of internal mammary artery conduits on operative mortality in coronary revascularization. Ann Thorac Surg. 1994;57:27–32.

    Article  PubMed  CAS  Google Scholar 

  10. Grover FL, Johnson RR, Marshall G, et al. Impact of mammary grafts on coronary bypass operative mortality and morbidity. Department of Veterans Affairs Cardiac Surgeons. Ann Thorac Surg. 1994;57:559–568.

    Article  PubMed  CAS  Google Scholar 

  11. Sergeant P, Lesaffre E, Flameng W, et al. Internal mammary artery: methods of use and their effect on survival after coronary bypass surgery. Eur J Cardiothorac Surg. 1990;4:72–78.

    Article  PubMed  CAS  Google Scholar 

  12. Loop FD, Lytle BW, Cosgrove DM, et al. Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med. 1986;314:1–6.

    Article  PubMed  CAS  Google Scholar 

  13. Cameron A, Davis KB, Green G, et al. Coronary bypass surgery with internal-thoracic-artery grafts—effects on survival over a 15-year period. N Engl J Med. 1996;334:216–219.

    Article  PubMed  CAS  Google Scholar 

  14. Gruntzig AR, Senning A, Siegenthaler WE. Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med. 1979;301:61–68.

    Article  PubMed  CAS  Google Scholar 

  15. Nirav J, Mehta MD, Ijaz A, Khan MD. Cardiology’s 10 greatest discoveries of the 20th century. Texas Heart Inst J. 29(3):164–171.

    Google Scholar 

  16. Jameson JN, Kasper DL, Harrison TR, et al. Harrison’s Principles of Internal Medicine. 16th ed. New York, NY: McGraw-Hill Medical Publishing Division; 2005.

    Google Scholar 

  17. CASS Principal Investigators and Their Associates. Coronary Artery Surgery Study (CASS): a randomized trial of coronary artery bypass surgery; survival data. Circulation. 1983;68:939–950.

    Article  Google Scholar 

  18. Veterans Administration Coronary Artery Bypass Surgery Cooperative Study Group. Eleven-year survival in the Veterans Administration Randomized Trial of Coronary Bypass Surgery for Stable Angina. N Engl J Med.1984;311: 1333–1339.

    Article  Google Scholar 

  19. Murphy ML, Hultgren HN, Detre K, et al. Treatment of chronic stable angina: a preliminary report of survival data of the randomized Veterans Administration Cooperative Study. N Engl J Med. 1997;1297:621–627.

    Google Scholar 

  20. Varnauskas E. European Coronary Surgery Study Group. Twelve-year follow-up of survival in the randomized European Coronary Surgery Study. N Engl J Med. 1988;319:332–337.

    Article  PubMed  CAS  Google Scholar 

  21. European Coronary Surgery Study Group. Prospective, randomized study of coronary artery bypass surgery in stable angina pectoris: second interim report. Lancet.1980;2:491–495.

    Google Scholar 

  22. Norris RM, Agnew TM, Brandt PWT, et al. Coronary surgery after recurrent myocardial infarction: progress of a trial comparing surgical and nonsurgical management for asymptomatic patients with advanced coronary disease. Circulation. 1981;63:788–792.

    Article  Google Scholar 

  23. Mathur VS, Guinn GA. Prospective randomized study of the surgical therapy of stable angina. Cardiovasc Clin. 1977;8:131–144.

    PubMed  CAS  Google Scholar 

  24. Kloster FE, Kremkau EL, Ritzman LW, et al. Coronary bypass for stable angina. N Engl J Med. 1979;300:149–157.

    Article  PubMed  CAS  Google Scholar 

  25. Yusuf S, Zucker D, Peduzzi P, et al. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomized trials by the Coronary Artery Bypass Graft Surgery Trialist Collaboration. Lancet. 1994;344:563–570.

    Article  PubMed  CAS  Google Scholar 

  26. Parisi AF, Folland ED, Hartigan P, on behalf of the Veterans Affairs ACME Investigators. A comparison of angioplasty with medical therapy in the treatment of single-vessel coronary artery disease. N Engl J Med. 1992;326:10–16.

    Article  PubMed  CAS  Google Scholar 

  27. Ryan TJ, Bauman WB, Kennedy J, et al. ACC/AHA Task Force Report: guidelines for percutaneous transluminal coronary angioplasty. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Percutaneous Transluminal Angioplasty). J Am Coll Cardiol. 1993;22:2033–2054.

    Article  Google Scholar 

  28. Folland ED, Hartigan PM, Parisi AF, for the Veterans Affairs ACME Investigators. Percutaneous transluminal coronary angioplasty versus medical therapy for stable angina pectoris: outcomes for patients with double-vessel versus single-vessel coronary artery disease in a Veterans Affairs cooperative randomized trial. J Am Coll Cardiol. 1997;29: 1505–1511.

    Article  PubMed  CAS  Google Scholar 

  29. Pocock SJ, Henderson RA, Clayton T, et al. Quality of life after coronary angioplasty or continued medical treatment for angina: three-year follow-up in the RITA-2 trial. Randomized intervention treatment of angina. J Am Coll Cardiol. 2000;35:907–914.

    Article  PubMed  CAS  Google Scholar 

  30. Scandinavian Simvastatin Survival Study Group. Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344:1383–1389.

    Google Scholar 

  31. Katritsis DG, Ioannidis JP. Percutaneous coronary intervention versus conservative therapy in nonacute coronary artery disease: a meta-analysis. Circulation. 2005;111:2906–2912.

    Article  PubMed  Google Scholar 

  32. Boden WE, O’Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503–1516.

    Article  PubMed  CAS  Google Scholar 

  33. Frye RL, August P, Brooks MM, et al. BARI 2D Study Group. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360:2503–2515.

    Article  PubMed  CAS  Google Scholar 

  34. Young LH, Wackers FJ, Chyun DA, et al. DIAD Investigators. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301(15):1547–1555.

    Article  PubMed  CAS  Google Scholar 

  35. Hueb W, Soares PR, Gersh BJ, et al. The Medicine, Angioplasty, or Surgery Study (MASS-II): a randomized, controlled clinical trial of three therapeutic strategies for multivessel coronary artery disease: one-year results. J Am Coll Cardiol. 2004;43:1743–1751.

    Article  PubMed  Google Scholar 

  36. Serruys PW, Unger F, Sousa JE, et al. Arterial Revascularization Therapies Study Group: comparison of coronary-artery bypass surgery and stenting for the treatment of multivessel disease. N Engl J Med. 2001;344:1117–1124.

    Article  PubMed  CAS  Google Scholar 

  37. Rodriguez A, Bernardi V, Navia J, et al. ERACI II Investigators. Argentine Randomized Study: coronary angioplasty with stenting versus coronary bypass surgery in patients with multiple-vessel disease (ERACI II): 30-day and 1-year follow-up results. J Am Coll Cardiol. 2001;37:51–58.

    Article  PubMed  CAS  Google Scholar 

  38. Ellis SG, Cowley MJ, DiSciascio G, et al. Determinants of 2-year outcome after coronary angioplasty in patients with multivessel disease on the basis of comprehensive procedural evaluation: implications for patient selection. Circulation. 1991;83:1905–1914.

    Article  PubMed  CAS  Google Scholar 

  39. Weintraub WS, Jones EL, King SBIII, et al. Changing use of coronary angioplasty in coronary bypass surgery in the treatment of chronic coronary artery disease. Am J Cardiol. 1990;65:183–188.

    Article  PubMed  CAS  Google Scholar 

  40. Bell MR, Gersh BJ, Schaff HV, et al. Effect of completeness of revascularization on long-term outcome of patients with three-vessel disease undergoing coronary artery bypass surgery: a report from the Coronary Artery Surgery Study (CASS) registry. Circulation. 1992;86:446–457.

    Article  PubMed  CAS  Google Scholar 

  41. Abizaid A, Costa MA, Centemero M, et al. Arterial Revascularization Therapy Study Group. Clinical and economic impact of diabetes mellitus on percutaneous and surgical treatment of multivessel coronary disease patients: insights from the Arterial Revascularization Therapy Study (ARTS) trial. Circulation. 2001;104(5):533–538.

    Article  PubMed  CAS  Google Scholar 

  42. BARI Investigators. Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. The Bypass Angioplasty Revascularization Investigation (BARI) Investigators. N Engl J Med. 1996;335(4):217–225.

    Article  Google Scholar 

  43. Zhang Z, Pertus JA, Mahoney EM, et al. The impact of acute coronary syndrome on clinical, economic, and cardiac-specific health status after coronary artery bypass surgery versus stent-assisted percutaneous coronary intervention: 1-year results from the stent or surgery (SoS) trial. Am Heart J. 2005;140:175–181.

    Article  Google Scholar 

  44. Hannan EL, Racz MJ, Walford G, et al. Long-term outcomes of coronary-artery bypass grafting versus stent implantation. N Engl J Med. 2005;352:21742183.

    Article  Google Scholar 

  45. Hannan E, Wu C, Walford G, et al. Drug-eluding stents vs. coronary artery bypass grafting in multivessel coronary disease. N Engl J Med. 2008;358:331–341.

    Article  PubMed  CAS  Google Scholar 

  46. Serruys PW, Morice M-C, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360(10):961–972.

    Article  PubMed  CAS  Google Scholar 

  47. Campeau L. Grading of angina pectoris (letter). Circulation. 1976;54:522.

    PubMed  CAS  Google Scholar 

  48. Goldman L, Hashimoto B, Cook EF, et al. Comparative reproducibility and validity of systems for assessing cardiovascular functional class: advantage of a new activity scale. Circulation. 1976;54:522–523.

    Google Scholar 

  49. Christian TF, Millder TD, Chareonthaitawee P, et al. Prevalence of normal resting left ventricular function with normal rest electrocardiograms. Am J Cardiol. 1997;79:1295–1298.

    Article  PubMed  CAS  Google Scholar 

  50. Rihal CS, Eagle KA, Gersh BJ. The utility of clinical, electrocardiographic, and roentgenographic criteria in the estimation of left ventricular function. Am J Cardiol. 1995;75:220–223.

    Article  PubMed  CAS  Google Scholar 

  51. Gibbons RJ, Chatterjee K, Daley J, et al. ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: a report for the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 1999;33:2092–2197.

    Article  PubMed  CAS  Google Scholar 

  52. Gibbons RJ, Balady GJ, Beasley JW, et al. ACC/AHA guidelines for exercise testing: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). J Am Coll Cardiol. 1997;30:260–311.

    Article  PubMed  CAS  Google Scholar 

  53. Chang JA, Froelicher VF. Clinical and exercise test markers of prognosis in patients with stable coronary artery disease. Curr Probl Cardiol. 1994;19:533587.

    Article  Google Scholar 

  54. Ribisl PM, Morris CK, Kawaguchi T, et al. Angiographic patterns and severe coronary artery disease: exercise test correlates. Arch Intern Med. 1992;152:1618–1624.

    Article  PubMed  CAS  Google Scholar 

  55. Pagley PR, Beller GA, Watson DD, et al. Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation. 1997;96:793–800.

    Article  PubMed  CAS  Google Scholar 

  56. Bonow RO. Identification of viable myocardium (editorial). Circulation. 1996;94:2674–2680.

    Article  PubMed  CAS  Google Scholar 

  57. Ritchie JL, Bateman TM, Bonow RO, et al. Guidelines for clinical use of cardiac radionuclide imaging: report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Radionuclide Imaging), developed in collaboration with the American Society of Nuclear Cardiology. J Am Coll Cardiol. 1995;25:521–547.

    Article  PubMed  CAS  Google Scholar 

  58. Iskandrian AS, Heo J, Lemlek J, et al. Identification of high-risk patients with left main and three-vessel coronary artery disease by adenosine-single photon emission computed tomographic thallium imaging. Am Heart J. 1993;125: 1130–1135.

    Article  PubMed  CAS  Google Scholar 

  59. Taillefer R, Amyot R, Turpin S, et al. Comparison between dipyridamole and adenosine as pharmacologic coronary vasodilators in detection of coronary artery disease with thallium-201 imaging. J Nucl Cardiol. 1996;3:204–211.

    Article  PubMed  CAS  Google Scholar 

  60. Pennell DJ, Underwood SR, Ell PJ. Safety of dobutamine stress for thallium-201 myocardial perfusion tomography in patients with asthma. Am J Cardiol. 1993;71:1346–1350.

    Article  PubMed  CAS  Google Scholar 

  61. Calnon DA, Glover DK, Beller GA, et al. Effects of dobutamine stress on myocardial blood flow, 99mTc-sestamibi uptake, and systolic wall thickening in the presence of coronary artery stenoses: implications for dobutamine stress testing. Circulation. 1997;96:2353–2360.

    Article  PubMed  CAS  Google Scholar 

  62. Dagianti A, Penco M, Agati L, et al. Stress echocardiography: comparison of exercise, dipyridamole and dobutamine in detecting and predicting the extent of coronary artery disease. J Am Coll Cardiol. 1995;26:18–25.

    Article  PubMed  CAS  Google Scholar 

  63. Beleslin BD, Ostojic M, Stephanovic J, et al. Stress echocardiography in the detection of myocardial ischemia: head-to-head comparison of exercise, dobutamine, and dipyridamole tests. Circulation. 1994;90:1168–1176.

    Article  PubMed  CAS  Google Scholar 

  64. Perrone-Filardi P, Pace L, Prastaro M, et al. Assessment of myocardial 24-hour 201Tl tomography versus dobutamine echocardiography. Circulation. 1996;94:2712–2719.

    Article  PubMed  CAS  Google Scholar 

  65. Bax JJ, Poldermans D, Elhendy A, et al. Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease: rest-4-hour-24-hour 201Tl tomography versus dobutamine echocardiography. Circulation. 1999;34:163–169.

    CAS  Google Scholar 

  66. Lloyd SG, Gupta H. Assessment of myocardial viability by cardiovascular magnetic resonance. Echocardiography. 2005;22(2):179–193.

    Article  PubMed  Google Scholar 

  67. Girzadas M, Varga P, Dajani K. A single-center experience of detecting coronary anomalies on 64-slice computed tomography. J Cardiovasc Med. 2009; Epub ahead of print.

    Google Scholar 

  68. Briones E, Lacalle JR, Marin I. Transmyocardial laser revascularization versus medical therapy for refractory angina. Cochrane Database Syst Rev. 2009;21(1):CD003712. Review.

    Google Scholar 

  69. Eagle KA, Guyton RA, Davidoff R, et al. ACC/AHA 2004 guideline update for coronary artery bypass graft surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for Coronary Artery Bypass Graft Surgery). Circulation. 2004;110: e340–e437.

    Article  PubMed  Google Scholar 

  70. Alexander JH, Hafley G, Harrington RA, et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA. 2005;294:2446–2454.

    Article  PubMed  Google Scholar 

  71. BARI Investigators. The final 10-year follow-up results from the BARI randomized trial. J Am Coll Cardiol. 2007;49:1600–1606.

    Google Scholar 

  72. Kim KB, Cho KR, Jeong DS. Midterm angiographic follow-up after off-pump coronary artery bypass: serial comparison using early, 1-year, and 5-year postoperative angiograms. J Thorac Cardiovasc Surg. 2008;135:300–307.

    Article  PubMed  Google Scholar 

  73. Hayward PA, Buxton BF. Contemporary coronary graft patency: 5-year observational data from a randomized trial of conduits. Ann Thorac Surg. 2007;84:795–799.

    Article  PubMed  Google Scholar 

  74. Tatoulis J, Buxton BF, Fuller JA. Patencies of 2127 arterial to coronary conduits over 15 years. Ann Thorac Surg. 2004;77:93–101.

    Article  PubMed  Google Scholar 

  75. Versaci F, Gaspardone A, Tomai F, Crea F, Chiariello L, Gioffre PA. A comparison of coronary-artery stenting with angioplasty for isolated stenosis of the proximal left anterior descending coronary artery. N Engl J Med. 1997;336: 817–822.

    Article  PubMed  CAS  Google Scholar 

  76. Kastrati A, Schomig A, Elezi S, et al. Predictive factors of restenosis after coronary stent placement. J Am Coll Cardiol. 1997;30:1428–1436.

    Article  PubMed  CAS  Google Scholar 

  77. Puskas JD, Williams WH, Mahoney EM, et al. Off-pump vs conventional coronary artery bypass grafting: early and 1-year graft patency, cost, and quality-of-life outcomes: a randomized trial. JAMA. 2004;291:1841–1849.

    Article  PubMed  CAS  Google Scholar 

  78. Balacumaraswami L, Taggart DP. Intraoperative imaging techniques to assess coronary artery bypass graft patency. Ann Thorac Surg. 2007;83:2251–2257.

    Article  PubMed  Google Scholar 

  79. Vander Salm TJ, Chowdhary S, Okike ON, Pezzella AT, Pasque MK. Internal mammary artery grafts: the shortest route to the coronary arteries. Ann Thorac Surg. 1989;47:421–427.

    Article  PubMed  CAS  Google Scholar 

  80. Battellini R, Borger MA, Climente C, Mohr FW. Extending the in situ right internal mammary artery graft with retrocaval positioning. Ann Thorac Surg. 2003;75:1335–1336.

    Article  PubMed  Google Scholar 

  81. Lytle BW, Blackstone EH, Loop FD, et al. Two internal thoracic artery grafts are better than one. J Thorac Cardiovasc Surg. 1999;117:855–872.

    Article  PubMed  CAS  Google Scholar 

  82. Endo M, Nishida H, Tomizawa Y, Kasanuki H. Benefit of bilateral over single internal mammary artery grafts for multiple coronary artery bypass grafting. Circulation. 2001;104:2164–2170.

    Article  PubMed  CAS  Google Scholar 

  83. Taggart DP, D’Amico R, Altman DG. Effect of arterial revascularisation on survival: a systematic review of studies comparing bilateral and single internal mammary arteries. Lancet. 2001;358:870–875.

    Article  PubMed  CAS  Google Scholar 

  84. Carpentier A, Guermonprez JL, Deloche A, et al. The aorta-to-coronary radial artery bypass graft. A technique avoiding pathological changes in grafts. Ann Thorac Surg. 1973;16:111–121.

    Article  PubMed  CAS  Google Scholar 

  85. Carpenteier A. Selection of coronary bypass. Anatomic, physiological, and angiographic considerations of vein and mammary artery grafts. Discussion. J Thorac Cardiovasc Surg. 1975;70:414–431.

    Google Scholar 

  86. Iaco AL, Teodori G, Di Giammarco G, et al. Radial artery for myocardial revascularization: long-term clinical and angiographic results. Ann Thorac Surg. 2001;72:464–468.

    Article  PubMed  CAS  Google Scholar 

  87. Tatoulis J, Royse AG, Buxton BF, et al. The radial artery in coronary surgery: a 5-year experience—clinical and angiographic results. Ann Thorac Surg. 2002;73:143–147.

    Article  PubMed  Google Scholar 

  88. Possati G, Gaudino M, Alessandrini F, et al. Midterm clinical and angiographic results of radial artery grafts used for myocardial revascularization. J Thorac Cardiovasc Surg. 1998;116:1015–1021.

    Article  PubMed  CAS  Google Scholar 

  89. Gao C, Ren C, Li D, Li L. Clopidogrel and aspirin versus clopidogrel alone on graft patency after coronary artery bypass grafting. Ann Thorac Surg. 2009;88(1):59–62.

    Article  PubMed  Google Scholar 

  90. Dobell AR, Jain AK. Catastrophic hemorrhage during redo sternotomy. Ann Thorac Surg. 1984;37:273–278.

    Article  PubMed  CAS  Google Scholar 

  91. Ban T, Soga Y. [Resternotomy]. Nippon Geka Gakkai Zasshi. 1998;99:63–67.

    PubMed  CAS  Google Scholar 

  92. Elami A, Laks H, Merin G. Technique for reoperative median sternotomy in the presence of a patent left internal mammary artery graft. J Card Surg. 1994;9:123–127.

    Article  PubMed  CAS  Google Scholar 

  93. English TA, Milstein BB. Repeat open intracardiac operation: analysis of fifty operations. J Thorac Cardiovasc Surg. 1978;76:56–60.

    PubMed  CAS  Google Scholar 

  94. Macmanus Q, Okies JE, Phillips SJ, Starr A. Surgical considerations in patients undergoing repeat median sternotomy. J Thorac Cardiovasc Surg. 1975;69:138–143.

    PubMed  CAS  Google Scholar 

  95. Calafiore AM, Di Giammarco G, Teodori G, et al. Left anterior descending coronary artery bypass grafting via left anterior small thoracotomy without cardiopulmonary bypass. Ann Thorac Surg. 1996;61: 1658–1663.

    Article  PubMed  CAS  Google Scholar 

  96. Cremer J, Struber M, Wittwer T, et al. Off-bypass coronary bypass grafting via minithoracotomy using mechanical epicardial stabilization. Ann Thorac Surg. 1997;63:S79–S83.

    Article  PubMed  CAS  Google Scholar 

  97. Subramanian VA, McCabe JC, Geiler CM. Minimally invasive direct coronary artery bypass grafting: two-year clinical experience. Ann Thorac Surg. 1997;64:1648–1653.

    Article  PubMed  CAS  Google Scholar 

  98. Diegeler A, Matin M, Kayser S, et al. Angiographic results after minimally invasive coronary bypass grafting using the minimally invasive direct coronary bypass grafting (MIDCAB) Approach. Eur J Cardiothorac Surg. 1999;15:680–684.

    Article  PubMed  CAS  Google Scholar 

  99. Loulmet D, Carpentier A, d‘Attellis N, et al. Endoscopic coronary artery bypass grafting with the aid of robotic assisted instruments. J Thorac Cardiovasc Surg. 1999;118:4–10.

    Article  PubMed  CAS  Google Scholar 

  100. Lee JH, Chuu K, Spertus J, et al. Widespread patient misconceptions regarding the benefits of elective coronary percutaneous intervention. Circulation. 2008;118:S1161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Umakanthan, R., Solenkova, N.V., Leacche, M., Byrne, J.G., Ahmad, R.M. (2011). Coronary Artery Bypass Surgery. In: Toth, P., Cannon, C. (eds) Comprehensive Cardiovascular Medicine in the Primary Care Setting. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-963-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-963-5_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-962-8

  • Online ISBN: 978-1-60327-963-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics