Skip to main content

Wnt Signaling in Cancer: From Embryogenesis to Stem Cell Self-Renewal

  • Chapter
  • First Online:
Stem Cells and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 951 Accesses

Abstract

Over the years, the role of the Wingless-int (Wnt) signaling pathway during embryogenesis has been the focus of many researchers, its role being fundamental for physiological organogenesis. More recently, during adulthood, the Wnt signaling pathway has been found to be involved in the regulation of a myriad of cellular processes, including cellular motility, proliferation, differentiation, survival, and apoptosis. It is therefore unsurprising that when this pathway becomes aberrant through anomalous regulation that cancer ensues. Indeed, this developmental pathway has been involved in cancers of the blood, thyroid, breast, lung, prostate, and colon. Key is the role that Wnt signaling plays in the regulation of stem cell fates, all within tightly regulated “niches.” Careful dissection of the various mechanisms controlling this pathway and the subsequent understanding of their functional significance during tissue homeostasis; how it affects stem cells and how it may contribute to carcinogenesis will result in new molecular-based disease markers and novel therapeutic agents to specifically target these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. 1.Davidson, E.H. and D.H. Erwin, Gene regulatory networks and the evolution of animal body plans. Science, 2006. 311(5762): pp. 796–800.

    Article  PubMed  CAS  Google Scholar 

  2. 2.Rodbell, M., Nobel lecture. Signal transduction: evolution of an idea. Biosci Rep, 1995. 15(3): pp. 117–33.

    Article  PubMed  CAS  Google Scholar 

  3. 3. Suel, G.M., et al, An excitable gene regulatory circuit induces transient cellular differentiation. Nature, 2006. 440(7083): pp. 545–50.

    Article  PubMed  CAS  Google Scholar 

  4. 4. Suel, G.M., et al, Tunability and noise dependence in differentiation dynamics. Science, 2007. 315(5819): pp. 1716–9.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Maamar, H., A. Raj, and D. Dubnau, Noise in gene expression determines cell fate in Bacillus subtilis. Science, 2007. 317(5837): pp. 526–9.

    Article  PubMed  CAS  Google Scholar 

  6. 6. Martinez Arias, A. and A. Stewart, Molecular Principles of Animal Development, 2002, New York, NY: Oxford University Press.

    Google Scholar 

  7. 7. Barolo, S. and J.W. Posakony, Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev, 2002. 16(10): pp. 1167–81.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Silver, S.J. and I. Rebay, Signaling circuitries in development: insights from the retinal determination gene network. Development, 2005. 132(1): pp. 3–13.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Voas, M.G. and I. Rebay, Signal integration during development: insights from the Drosophila eye. Dev Dyn, 2004. 229(1): pp. 162–75.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Rose, L.S. and K.J. Kemphues, Early patterning of the C. elegans embryo. Annu Rev Genet, 1998. 32: pp. 521–45.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Newman-Smith, E.D. and J.H. Rothman, The maternal-to-zygotic transition in embryonic patterning of Caenorhabditis elegans. Curr Opin Genet Dev, 1998. 8(4): pp. 472–80.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Platzer, U. and H.P. Meinzer, Genetic networks in the early development of Caenorhabditis elegans. Int Rev Cytol, 2004. 234: pp. 47–100.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Brennan, K., et al, The abruptex mutations of notch disrupt the establishment of proneural clusters in Drosophila. Dev Biol, 1999. 216(1): pp. 230–42.

    Article  PubMed  CAS  Google Scholar 

  14. 14. Carmena, A., S. Speicher, and M. Baylies, The PDZ protein Canoe/AF-6 links Ras-MAPK, Notch and Wingless/Wnt signaling pathways by directly interacting with Ras, Notch and Dishevelled. PLoS ONE, 2006. 1: p. e66.

    Article  CAS  Google Scholar 

  15. 15. Strutt, D., et al, Asymmetric localization of frizzled and the determination of notch-dependent cell fate in the Drosophila eye. Curr Biol, 2002. 12(10): pp. 813–24.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Tomlinson, A. and G. Struhl, Delta/Notch and Boss/Sevenless signals act combinatorially to specify the Drosophila R7 photoreceptor. Mol Cell, 2001. 7(3): pp. 487–95.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Rijsewijk, F., et al, The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell, 1987. 50(4): pp. 649–57.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Widelitz, R., Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors, 2005. 23(2): pp. 111–6.

    Article  PubMed  CAS  Google Scholar 

  19. 19. Akiyama, T., Wnt/beta-catenin signaling. Cytokine Growth Factor Rev, 2000. 11(4): pp. 273–82.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Veeman, M.T., J.D. Axelrod, and R.T. Moon, A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell, 2003. 5(3): pp. 367–77.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Nusse, R., Cell biology: relays at the membrane. Nature, 2005. 438(7069): pp. 747–9.

    Article  PubMed  CAS  Google Scholar 

  22. 22. Kramps, T., et al, Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell, 2002. 109(1): pp. 47–60.

    Article  PubMed  CAS  Google Scholar 

  23. 23. Krieghoff, E., J. Behrens, and B. Mayr, Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention. J Cell Sci, 2006. 119(Pt 7): pp. 1453–63.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Sampietro, J., et al, Crystal structure of a beta-catenin/BCL9/Tcf4 complex. Mol Cell, 2006. 24(2): pp. 293–300.

    Article  PubMed  CAS  Google Scholar 

  25. 25. Cavallo, R.A., et al, Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature, 1998. 395(6702): pp. 604–8.

    Article  PubMed  CAS  Google Scholar 

  26. 26. Logan, C.Y. and R. Nusse, The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 2004. 20: pp. 781–810.

    Article  PubMed  CAS  Google Scholar 

  27. 27. Chen, G., et al, A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev, 1999. 13(17): pp. 2218–30.

    Article  PubMed  CAS  Google Scholar 

  28. 28. Oishi, I., et al, The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells, 2003. 8(7): pp. 645–54.

    Article  PubMed  CAS  Google Scholar 

  29. 29. Chen, A.E., D.D. Ginty, and C.M. Fan, Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature, 2005. 433(7023): pp. 317–22.

    Article  PubMed  CAS  Google Scholar 

  30. 30. Miller, J.R., The Wnts. Genome Biol, 2002. 3(1): p. REVIEWS3001.

    Google Scholar 

  31. 31. Hofmann, K., A superfamily of membrane-bound O-acyltransferases with implications for Wnt signaling. Trends Biochem Sci, 2000. 25(3): pp. 111–2.

    Article  PubMed  CAS  Google Scholar 

  32. 32. Willert, K., et al, Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 2003. 423(6938): pp. 448–52.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Zhai, L., D. Chaturvedi, and S. Cumberledge, Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem, 2004. 279(32): pp. 33220–7.

    Article  PubMed  CAS  Google Scholar 

  34. 34. Banziger, C., et al, Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell, 2006. 125(3): pp. 509–22.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Bartscherer, K., et al, Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell, 2006. 125(3): pp. 523–33.

    Article  PubMed  CAS  Google Scholar 

  36. 36. Lin, X., Functions of heparan sulfate proteoglycans in cell signaling during development. Development, 2004. 131(24): pp. 6009–21.

    Article  PubMed  CAS  Google Scholar 

  37. 37. Bhanot, P., et al, A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature, 1996. 382(6588): pp. 225–30.

    Article  PubMed  CAS  Google Scholar 

  38. 38. Liu, T., et al, G protein signaling from activated rat frizzled-1 to the beta-catenin-Lef-Tcf pathway. Science, 2001. 292(5522): pp. 1718–22.

    Article  PubMed  CAS  Google Scholar 

  39. 39. Tamai, K., et al, LDL-receptor-related proteins in Wnt signal transduction. Nature, 2000. 407(6803): pp. 530–5.

    Article  PubMed  CAS  Google Scholar 

  40. 40. Lu, W., et al, Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell, 2004. 119(1): pp. 97–108.

    Article  PubMed  CAS  Google Scholar 

  41. 41. Mikels, A.J. and R. Nusse, Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol, 2006. 4(4): pp. e115.

    Article  PubMed  CAS  Google Scholar 

  42. 42. Hsieh, J.C., et al, A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature, 1999. 398(6726): pp. 431–6.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Jones, S.E. and C. Jomary, Secreted frizzled-related proteins: searching for relationships and patterns. Bioessays, 2002. 24(9): pp. 811–20.

    Article  PubMed  CAS  Google Scholar 

  44. 44. Uren, A., et al, Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J Biol Chem, 2000. 275(6): pp. 4374–82.

    Article  PubMed  CAS  Google Scholar 

  45. 45. Fedi, P., et al, Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling. J Biol Chem, 1999. 274(27): pp. 19465–72.

    Article  PubMed  CAS  Google Scholar 

  46. 46. Ehebauer, M.T., et al, High-resolution crystal structure of the human Notch 1 ankyrin domain. Biochem J, 2005. 392(Pt 1): pp. 13–20.

    PubMed  CAS  Google Scholar 

  47. 47. Nam, Y., et al, Structural requirements for assembly of the CSL.intracellular Notch1.Mastermind-like 1 transcriptional activation complex. J Biol Chem, 2003. 278(23): pp. 21232–9.

    Article  PubMed  CAS  Google Scholar 

  48. 48. Nam, Y., et al, Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell, 2006. 124(5): pp. 973–83.

    Article  PubMed  CAS  Google Scholar 

  49. 49. Zweifel, M.E., et al, Structure and stability of the ankyrin domain of the Drosophila Notch receptor. Protein Sci, 2003. 12(11): pp. 2622–32.

    Article  PubMed  CAS  Google Scholar 

  50. 50. Kopan, R., Notch: a membrane-bound transcription factor. J Cell Sci, 2002. 115(Pt 6): pp. 1095–7.

    PubMed  CAS  Google Scholar 

  51. 51. Bray, S.J., Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol, 2006. 7(9): pp. 678–89.

    Article  PubMed  CAS  Google Scholar 

  52. 52. Ehebauer, M., P. Hayward, and A.M. Arias, Notch, a universal arbiter of cell fate decisions. Science, 2006. 314(5804): pp. 1414–5.

    Article  PubMed  CAS  Google Scholar 

  53. 53. Le Borgne, R., Regulation of Notch signalling by endocytosis and endosomal sorting. Curr Opin Cell Biol, 2006. 18(2): pp. 213–22.

    Article  PubMed  CAS  Google Scholar 

  54. 54. Jaekel, R. and T. Klein, The Drosophila Notch inhibitor and tumor suppressor gene lethal (2) giant discs encodes a conserved regulator of endosomal trafficking. Dev Cell, 2006. 11(5): pp. 655–69.

    Article  PubMed  CAS  Google Scholar 

  55. 55. Moberg, K.H., et al, Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev Cell, 2005. 9(5): pp. 699–710.

    Article  PubMed  CAS  Google Scholar 

  56. 56. Thompson, B.J., et al, Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev Cell, 2005. 9(5): pp. 711–20.

    Article  PubMed  CAS  Google Scholar 

  57. 57. Vaccari, T. and D. Bilder, The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev Cell, 2005. 9(5): pp. 687–98.

    Article  PubMed  CAS  Google Scholar 

  58. 58. Couso, J.P. and A. Martinez Arias, Notch is required for wingless signaling in the epidermis of Drosophila. Cell, 1994. 79(2): pp. 259–72.

    Article  PubMed  CAS  Google Scholar 

  59. 59. Hing, H.K., X. Sun, and S. Artavanis-Tsakonas, Modulation of wingless signaling by Notch in Drosophila. Mech Dev, 1994. 47(3): pp. 261–8.

    Article  PubMed  CAS  Google Scholar 

  60. 60. Klein, T. and A.M. Arias, The vestigial gene product provides a molecular context for the interpretation of signals during the development of the wing in Drosophila. Development, 1999. 126(5): pp. 913–25.

    PubMed  CAS  Google Scholar 

  61. 61. Zecca, M. and G. Struhl, Recruitment of cells into the Drosophila wing primordium by a feed-forward circuit of vestigial autoregulation. Development, 2007. 134(16): pp. 3001–10.

    Article  PubMed  CAS  Google Scholar 

  62. 62. Klein, T. and A.M. Arias, Interactions among Delta, Serrate and Fringe modulate Notch activity during Drosophila wing development. Development, 1998. 125(15): pp. 2951–62.

    PubMed  CAS  Google Scholar 

  63. 63. Diaz-Benjumea, F.J. and S.M. Cohen, Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development, 1995. 121(12): pp. 4215–25.

    PubMed  CAS  Google Scholar 

  64. 64. Neumann, C.J. and S.M. Cohen, A hierarchy of cross-regulation involving Notch, wingless, vestigial and cut organizes the dorsal/ventral axis of the Drosophila wing. Development, 1996. 122(11): pp. 3477–85.

    PubMed  CAS  Google Scholar 

  65. 65. Micchelli, C.A., E.J. Rulifson, and S.S. Blair, The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development, 1997. 124(8): pp. 1485–95.

    PubMed  CAS  Google Scholar 

  66. 66. de Celis, J.F. and S. Bray, Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development, 1997. 124(17): pp. 3241–51.

    PubMed  CAS  Google Scholar 

  67. 67. Mahoney, M.B., et al, Presenilin-based genetic screens in Drosophila melanogaster identify novel notch pathway modifiers. Genetics, 2006. 172(4): pp. 2309–24.

    Article  PubMed  CAS  Google Scholar 

  68. 68. Go, M.J. and S. Artavanis-Tsakonas, A genetic screen for novel components of the notch signaling pathway during Drosophila bristle development. Genetics, 1998. 150(1): pp. 211–20.

    PubMed  CAS  Google Scholar 

  69. 69. Langdon, T., et al, Notch receptor encodes two structurally separable functions in Drosophila: a genetic analysis. Dev Dyn, 2006. 235(4): pp. 998–1013.

    Article  PubMed  CAS  Google Scholar 

  70. 70. Verheyen, E.M., et al, Analysis of dominant enhancers and suppressors of activated Notch in Drosophila. Genetics, 1996. 144(3): pp. 1127–41.

    PubMed  CAS  Google Scholar 

  71. 71. Aulehla, A., et al, Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell, 2003. 4(3): pp. 395–406.

    Article  PubMed  CAS  Google Scholar 

  72. 72. Aulehla, A. and B.G. Herrmann, Segmentation in vertebrates: clock and gradient finally joined. Genes Dev, 2004. 18(17): pp. 2060–7.

    Article  PubMed  CAS  Google Scholar 

  73. 73. Estrach, S., et al, Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development, 2006. 133(22): pp. 4427–38.

    Article  PubMed  CAS  Google Scholar 

  74. 74. Cheng, Y.C., et al, Notch activation regulates the segregation and differentiation of rhombomere boundary cells in the zebrafish hindbrain. Dev Cell, 2004. 6(4): pp. 539–50.

    Article  PubMed  CAS  Google Scholar 

  75. 75. Alon, U., An Introduction to Systems Biology: Design Principles of Biological Circuits, 2006, Boca Raton, FL: Chapman & Hall.

    Google Scholar 

  76. 76. Arias, A.M., New alleles of Notch draw a blueprint for multifunctionality. Trends Genet, 2002. 18(4): pp. 168–70.

    Article  PubMed  CAS  Google Scholar 

  77. 77. Heitzler, P. and P. Simpson, Altered epidermal growth factor-like sequences provide evidence for a role of Notch as a receptor in cell fate decisions. Development, 1993. 117(3): pp. 1113–23.

    PubMed  CAS  Google Scholar 

  78. 78. de Celis, J.F. and S.J. Bray, The Abruptex domain of Notch regulates negative interactions between Notch, its ligands and Fringe. Development, 2000. 127(6): pp. 1291–302.

    CAS  Google Scholar 

  79. 79. Ramain, P., et al, Novel Notch alleles reveal a Deltex-dependent pathway repressing neural fate. Curr Biol, 2001. 11(22): pp. 1729–38.

    Article  PubMed  CAS  Google Scholar 

  80. 80. Brennan, K., et al, Wingless modulates the effects of dominant negative notch molecules in the developing wing of Drosophila. Dev Biol, 1999. 216(1): pp. 210–29.

    Article  PubMed  CAS  Google Scholar 

  81. 81. Suzuki, D. and Griffiths, A., An Introduction to Genetic Analysis, 1976, New York, NY: W. H. Freeman.

    Google Scholar 

  82. 82. Brennan, K., M. Baylies, and A.M. Arias, Repression by Notch is required before Wingless signalling during muscle progenitor cell development in Drosophila. Curr Biol, 1999. 9(13): pp. 707–10.

    Article  PubMed  CAS  Google Scholar 

  83. 83. Carmena, A., et al, Combinatorial signaling codes for the progressive determination of cell fates in the Drosophila embryonic mesoderm. Genes Dev, 1998. 12(24): pp. 3910–22.

    Article  PubMed  CAS  Google Scholar 

  84. 84. Brennan, K., et al, A functional analysis of Notch mutations in Drosophila. Genetics, 1997. 147(1): pp. 177–88.

    PubMed  CAS  Google Scholar 

  85. 85. Heitzler, P. and P. Simpson, The choice of cell fate in the epidermis of Drosophila. Cell, 1991. 64(6): pp. 1083–92.

    Article  PubMed  CAS  Google Scholar 

  86. 86. Lawrence, N., et al, Notch signaling targets the Wingless responsiveness of a Ubx visceral mesoderm enhancer in Drosophila. Curr Biol, 2001. 11(6): pp. 375–85.

    Article  PubMed  CAS  Google Scholar 

  87. 87. Hayward, P., T. Kalmar, and A.M. Arias, Wnt/Notch signalling and information processing during development. Development, 2008. 135(3): pp. 411–24.

    Article  PubMed  CAS  Google Scholar 

  88. 88. Galceran, J., et al, LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis. Genes Dev, 2004. 18(22): pp. 2718–23.

    Article  PubMed  CAS  Google Scholar 

  89. 89. Pourquie, O., The segmentation clock: converting embryonic time into spatial pattern. Science, 2003. 301(5631): pp. 328–30.

    Article  PubMed  CAS  Google Scholar 

  90. 90. McMahon, A.P., More surprises in the Hedgehog signaling pathway. Cell, 2000. 100(2): pp. 185–8.

    Article  PubMed  CAS  Google Scholar 

  91. 91. Ingham, P.W., Transducing Hedgehog: the story so far. EMBO J, 1998. 17(13): pp. 3505–11.

    Article  PubMed  CAS  Google Scholar 

  92. 92. Goodrich, L.V. and M.P. Scott, Hedgehog and patched in neural development and disease. Neuron, 1998. 21(6): pp. 1243–57.

    Article  PubMed  CAS  Google Scholar 

  93. 93. Lee, J.J., et al, Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell, 1992. 71(1): pp. 33–50.

    Article  PubMed  CAS  Google Scholar 

  94. 94. Kalderon, D., Transducing the hedgehog signal. Cell, 2000. 103(3): pp. 371–4.

    Article  PubMed  CAS  Google Scholar 

  95. 95. Porter, J.A., K.E. Young, and P.A. Beachy, Cholesterol modification of hedgehog signaling proteins in animal development. Science, 1996. 274(5285): pp. 255–9.

    Article  PubMed  CAS  Google Scholar 

  96. 96. Pepinsky, R.B., et al, Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem, 1998. 273(22): pp. 14037–45.

    Article  PubMed  CAS  Google Scholar 

  97. 97. Denef, N., et al, Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell, 2000. 102(4): pp. 521–31.

    Article  PubMed  CAS  Google Scholar 

  98. 98. Stone, D.M., et al, The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature, 1996. 384(6605): pp. 129–34.

    Article  PubMed  CAS  Google Scholar 

  99. 99. Taipale, J., et al, Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature, 2000. 406(6799): pp. 1005–9.

    Article  PubMed  CAS  Google Scholar 

  100. 100. Aza-Blanc, P., et al, Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell, 1997. 89(7): pp. 1043–53.

    Article  PubMed  CAS  Google Scholar 

  101. 101. Robbins, D.J., et al, Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell, 1997. 90(2): pp. 225–34.

    Article  PubMed  CAS  Google Scholar 

  102. 102. Chen, C.H., et al, Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell, 1999. 98(3): pp. 305–16.

    Article  PubMed  CAS  Google Scholar 

  103. 103. Freeman, M., Feedback control of intercellular signalling in development. Nature, 2000. 408(6810): pp. 313–9.

    Article  PubMed  CAS  Google Scholar 

  104. 104. Hooper, J.E. and M.P. Scott, Communicating with Hedgehogs. Nat Rev Mol Cell Biol, 2005. 6(4): pp. 306–17.

    Article  PubMed  CAS  Google Scholar 

  105. 105. Gregorieff, A. and H. Clevers, Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev, 2005. 19(8): pp. 877–90.

    Article  PubMed  CAS  Google Scholar 

  106. 106. Taipale, J. and P.A. Beachy, The Hedgehog and Wnt signalling pathways in cancer. Nature, 2001. 411(6835): pp. 349–54.

    Article  PubMed  CAS  Google Scholar 

  107. 107. McMahon, A.P., P.W. Ingham, and C.J. Tabin, Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol, 2003. 53: pp. 1–114.

    Article  PubMed  CAS  Google Scholar 

  108. 108. Noramly, S., A. Freeman, and B.A. Morgan, Beta-catenin signaling can initiate feather bud development. Development, 1999. 126(16): pp. 3509–21.

    PubMed  CAS  Google Scholar 

  109. 109. Bitgood, M.J. and A.P. McMahon, Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol, 1995. 172(1): pp. 126–38.

    Article  PubMed  CAS  Google Scholar 

  110. 110. Reddy, S., et al, Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev, 2001. 107(1–2): pp. 69–82.

    Article  PubMed  CAS  Google Scholar 

  111. 111. Heemskerk, J. and S. DiNardo, Drosophila hedgehog acts as a morphogen in cellular patterning. Cell, 1994. 76(3): pp. 449–60.

    Article  PubMed  CAS  Google Scholar 

  112. 112. Silva-Vargas, V., et al, Beta-catenin and hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev Cell, 2005. 9(1): pp. 121–31.

    Article  PubMed  CAS  Google Scholar 

  113. 113. Iwatsuki, K., et al, Wnt signaling interacts with Shh to regulate taste papilla development. Proc Natl Acad Sci USA, 2007. 104(7): pp. 2253–8.

    Article  PubMed  CAS  Google Scholar 

  114. 114. van den Brink, G.R., et al, Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet, 2004. 36(3): pp. 277–82.

    Article  PubMed  CAS  Google Scholar 

  115. 115. Akiyoshi, T., et al, Gli1, downregulated in colorectal cancers, inhibits proliferation of colon cancer cells involving Wnt signalling activation. Gut, 2006. 55(7): pp. 991–9.

    Article  PubMed  CAS  Google Scholar 

  116. 116. Crittenden, S.L., et al, A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature, 2002. 417(6889): pp. 660–3.

    Article  PubMed  CAS  Google Scholar 

  117. 117. Xie, T. and A.C. Spradling, A niche maintaining germ line stem cells in the Drosophila ovary. Science, 2000. 290(5490): pp. 328–30.

    Article  PubMed  CAS  Google Scholar 

  118. 118. Kiger, A.A., H. White-Cooper, and M.T. Fuller, Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature, 2000. 407(6805): pp. 750–4.

    Article  PubMed  CAS  Google Scholar 

  119. 119. Palmer, T.D., A.R. Willhoite, and F.H. Gage, Vascular niche for adult hippocampal neurogenesis. J Comp Neurol, 2000. 425(4): pp. 479–94.

    Article  PubMed  CAS  Google Scholar 

  120. 120. Calvi, L.M., et al, Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 2003. 425(6960): pp. 841–6.

    Article  PubMed  CAS  Google Scholar 

  121. 121. Zhang, J., et al, Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 2003. 425(6960): pp. 836–41.

    Article  PubMed  CAS  Google Scholar 

  122. 122. Kiel, M.J., et al, SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 2005. 121(7): pp. 1109–21.

    Article  PubMed  CAS  Google Scholar 

  123. 123. Jones, P.H. and F.M. Watt, Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell, 1993. 73(4): pp. 713–24.

    Article  PubMed  CAS  Google Scholar 

  124. 124. Jensen, U.B., S. Lowell, and F.M. Watt, The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development, 1999. 126(11): pp. 2409–18.

    PubMed  CAS  Google Scholar 

  125. 125. Garcion, E., et al, Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development, 2004. 131(14): pp. 3423–32.

    Article  PubMed  CAS  Google Scholar 

  126. 126. Ohta, M., et al, Suppression of hematopoietic activity in tenascin-C-deficient mice. Blood, 1998. 91(11): pp. 4074–83.

    PubMed  CAS  Google Scholar 

  127. 127. Batlle, E., et al, Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell, 2002. 111(2): pp. 251–63.

    Article  PubMed  CAS  Google Scholar 

  128. 128. Reya, T., et al, A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 2003. 423(6938): pp. 409–14.

    Article  PubMed  CAS  Google Scholar 

  129. 129. Korinek, V., et al, Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet, 1998. 19(4): pp. 379–83.

    Article  PubMed  CAS  Google Scholar 

  130. 130. Brennan, K.R. and A.M. Brown, Wnt proteins in mammary development and cancer. J Mammary Gland Biol Neoplasia, 2004. 9(2): pp. 119–31.

    Article  PubMed  Google Scholar 

  131. 131. Weidenfeld, J., Wnt signaling and pulmonary fibrosis. Am J Pathol, 2003. 162(5): pp. 1393–7.

    Article  Google Scholar 

  132. 132. Weidenfeld, J., et al., The WNT7b promoter is regulated by TTF-1, GATA6, and Foxa2 in lung epithelium. J Biol Chem, 2002. 277(23): pp. 21061–70.

    Article  PubMed  CAS  Google Scholar 

  133. 133. Li, C., et al, Wnt5a participates in distal lung morphogenesis. Dev Biol, 2002. 248(1): pp. 68–81.

    Article  PubMed  CAS  Google Scholar 

  134. 134. Shu, W., et al, Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development, 2002. 129(20): pp. 4831–42.

    PubMed  CAS  Google Scholar 

  135. 135. Yamaguchi, T.P., et al, A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development, 1999. 126(6): pp. 1211–23.

    PubMed  CAS  Google Scholar 

  136. 136. Polesskaya, A., P. Seale, and M.A. Rudnicki, Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell, 2003. 113(7): pp. 841–52.

    Article  PubMed  CAS  Google Scholar 

  137. 137. Shackel, N.A., et al, Identification of novel molecules and pathogenic pathways in primary biliary cirrhosis: cDNA array analysis of intrahepatic differential gene expression. Gut, 2001. 49(4): pp. 565–76.

    Article  PubMed  CAS  Google Scholar 

  138. 138. Surendran, K. and T.C. Simon, CNP gene expression is activated by Wnt signaling and correlates with Wnt4 expression during renal injury. Am J Physiol Renal Physiol, 2003. 284(4): pp. F653–62.

    PubMed  CAS  Google Scholar 

  139. 139. Monga, S.P., et al, Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration. Hepatology, 2001. 33(5): pp. 1098–109.

    Article  PubMed  CAS  Google Scholar 

  140. 140. Liu, B.Y., et al, The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA, 2004. 101(12): pp. 4158–63.

    Article  PubMed  CAS  Google Scholar 

  141. 141. Bhardwaj, G., et al, Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol, 2001. 2(2): pp. 172–80.

    Article  PubMed  CAS  Google Scholar 

  142. 142. Owens, D.M. and F.M. Watt, Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer, 2003. 3(6): pp. 444–51.

    Article  PubMed  CAS  Google Scholar 

  143. 143. Pinto, D., et al, Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev, 2003. 17(14): pp. 1709–13.

    Article  PubMed  CAS  Google Scholar 

  144. 144. Perez-Losada, J. and A. Balmain, Stem-cell hierarchy in skin cancer. Nat Rev Cancer, 2003. 3(6): pp. 434–43.

    Article  PubMed  CAS  Google Scholar 

  145. 145. Szabowski, A., et al, c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell, 2000. 103(5): pp. 745–55.

    Article  PubMed  CAS  Google Scholar 

  146. 146. Donjacour, A.A. and G.R. Cunha, Stromal regulation of epithelial function. Cancer Treat Res, 1991. 53: pp. 335–64.

    Article  PubMed  CAS  Google Scholar 

  147. 147. Sternlicht, M.D., et al, The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell, 1999. 98(2): pp. 137–46.

    Article  PubMed  CAS  Google Scholar 

  148. 148. Muller, A., et al, Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001. 410(6824): pp. 50–6.

    Article  PubMed  CAS  Google Scholar 

  149. 149. Al-Hajj, M., et al, Therapeutic implications of cancer stem cells. Curr Opin Genet Dev, 2004. 14(1): pp. 43–7.

    Article  PubMed  CAS  Google Scholar 

  150. 150. Bixby, S., et al, Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron, 2002. 35(4): pp. 643–56.

    Article  PubMed  CAS  Google Scholar 

  151. 151. Wicha, M.S., S. Liu, and G. Dontu, Cancer stem cells: an old idea – a paradigm shift. Cancer Res, 2006. 66(4): pp. 1883–90; discussion 1895–6.

    Article  Google Scholar 

  152. 152. Sell, S., Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol, 2004. 51(1): pp. 1–28.

    Article  PubMed  Google Scholar 

  153. 153. Houghton, J., et al, Stem cells and cancer. Semin Cancer Biol, 2007. 17(3): pp. 191–203.

    Article  PubMed  CAS  Google Scholar 

  154. 154. Beachy, P.A., S.S. Karhadkar, and D.M. Berman, Tissue repair and stem cell renewal in carcinogenesis. Nature, 2004. 432(7015): pp. 324–31.

    Article  PubMed  CAS  Google Scholar 

  155. 155. Park, C.H., D.E. Bergsagel, and E.A. McCulloch, Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst, 1971. 46(2): pp. 411–22.

    PubMed  CAS  Google Scholar 

  156. 156. Bruce, W.R. and H. Van Der Gaag, A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature, 1963. 199: pp. 79–80.

    Article  PubMed  CAS  Google Scholar 

  157. 157. Wodinsky, I. and C.J. Kensler, Growth of L1210 leukemia cells. Nature, 1966. 210(5039): pp. 962.

    Article  PubMed  CAS  Google Scholar 

  158. 158. Bergsagel, D.E. and F.A. Valeriote, Growth characteristics of a mouse plasma cell tumor. Cancer Res, 1968. 28(11): pp. 2187–96.

    PubMed  CAS  Google Scholar 

  159. 159. Derksen, P.W., et al, Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc Natl Acad Sci USA, 2004. 101(16): pp. 6122–7.

    Article  PubMed  CAS  Google Scholar 

  160. 160. Chung, E.J., et al, Regulation of leukemic cell adhesion, proliferation, and survival by beta-catenin. Blood, 2002. 100(3): pp. 982–90.

    Article  PubMed  CAS  Google Scholar 

  161. 161. Suzuki, H., et al, Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet, 2004. 36(4): pp. 417–22.

    Article  PubMed  CAS  Google Scholar 

  162. 162. Lee, A.Y., et al, Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma. Oncogene, 2004. 23(39): pp. 6672–6.

    Article  PubMed  CAS  Google Scholar 

  163. 163. You, L., et al, Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene, 2004. 23(36): pp. 6170–4.

    Article  PubMed  CAS  Google Scholar 

  164. 164. Hoang, B.H., et al, Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer, 2004. 109(1): pp. 106–11.

    Article  PubMed  CAS  Google Scholar 

  165. 165. Hoang, B.H., et al, Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res, 2004. 64(8): pp. 2734–9.

    Article  PubMed  CAS  Google Scholar 

  166. 166. Sogabe, Y., et al, Epigenetic inactivation of SFRP genes in oral squamous cell carcinoma. Int J Oncol, 2008. 32(6): pp. 1253–61.

    PubMed  CAS  Google Scholar 

  167. 167. Kaern, M., et al, Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet, 2005. 6(6): pp. 451–64.

    Article  PubMed  CAS  Google Scholar 

  168. 168. Elowitz, M.B., et al, Stochastic gene expression in a single cell. Science, 2002. 297(5584): pp. 1183–6.

    Article  PubMed  CAS  Google Scholar 

  169. 169. Gregor, T., et al, Probing the limits to positional information. Cell, 2007. 130(1): pp. 153–64.

    Article  PubMed  CAS  Google Scholar 

  170. 170. Raser, J.M. and E.K. O’Shea, Control of stochasticity in eukaryotic gene expression. Science, 2004. 304(5678): pp. 1811–4.

    Article  PubMed  CAS  Google Scholar 

  171. 171. Arias, A.M. and P. Hayward, Filtering transcriptional noise during development: concepts and mechanisms. Nat Rev Genet, 2006. 7(1): pp. 34–44.

    Article  PubMed  CAS  Google Scholar 

  172. 172. Boutros, M., et al, Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science, 2004. 303(5659): pp. 832–5.

    Article  PubMed  CAS  Google Scholar 

  173. 173. Lepourcelet, M., et al, Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell, 2004. 5(1): pp. 91–102.

    Article  PubMed  CAS  Google Scholar 

  174. 174. Meijer, L., et al, GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem Biol, 2003. 10(12): pp. 1255–66.

    Article  PubMed  CAS  Google Scholar 

  175. 175. Lum, L., et al, Identification of hedgehog pathway components by RNAi in Drosophila cultured cells. Science, 2003. 299(5615): pp. 2039–45.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The work is supported by the Kazan Foundation and the NIH/NCI R011R01CA093708-01A3 Grant. We would like to express our enormous gratitude for the thorough, meticulous and careful constructive reading and feedback of our manuscript by our dear colleague Dr. Geneviève Clément from the Thoracic Oncology Laboratory, Department of Surgery at the University of California San Francisco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M Jablons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yagui-Beltrán, A., He, B., Jablons, D.M. (2009). Wnt Signaling in Cancer: From Embryogenesis to Stem Cell Self-Renewal. In: Teicher, B., Bagley, R. (eds) Stem Cells and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-933-8_4

Download citation

Publish with us

Policies and ethics