Skip to main content

Mesenchymal Stem Cells in Tumor Stroma

  • Chapter
  • First Online:
Stem Cells and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Mesenchymal stem cells (MSC) are defined, minimally, as cells that display a fibroblastic morphology in cell culture, exhibit a robust self-renewal capacity, and retain the ability to undergo trilineage differentiation into adipocytes, chondrocytes, and osteoblasts. MSC can be isolated from diverse tissues but are most commonly isolated from red bone marrow. Accumulating evidence suggests that bone marrow MSC can be mobilized into the periphery to serve as regenerative stem cells at sites of injury and inflammation. Although the in vivo biology of MSC is poorly understood, several studies have demonstrated that MSC can be selectively recruited into tumors. Following engraftment within tumor stroma, MSC proliferate and acquire an activated phenotype similar tumor-associated fibroblasts (TAF). Tumor-homing properties of MSC have lead to their utility as therapeutic cell-based antitumor protein delivery vehicles. However, with a greater appreciation for the influential role that the tumor microenvironment can serve during tumor initiation, promotion, and progression, MSC may enhance tumor progression following acquisition of TAF-like characteristics. A more comprehensive delineation of the biological role of MSC within tumor stroma will improve our understanding pf tumor-stroma interactions and facilitate future development of MSC-based clinical therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. Orimo A, Gupta PB, Sgroi DC, et al Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005;121(3):335–48.

    Article  PubMed  CAS  Google Scholar 

  2. Radisky DC, Levy DD, Littlepage LE, et al Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005;436(7047):123–7.

    Article  PubMed  CAS  Google Scholar 

  3. Kurose K, Hoshaw-Woodard S, Adeyinka A, Lemeshow S, Watson PH, Eng C. Genetic model of multi-step breast carcinogenesis involving the epithelium and stroma: clues to tumour-microenvironment interactions. Hum Mol Genet 2001;10(18):1907–13.

    Article  PubMed  CAS  Google Scholar 

  4. Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA. Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer research 2000;60(9):2562–6.

    PubMed  CAS  Google Scholar 

  5. Kenny PA, Bissell MJ. Tumor reversion: correction of malignant behavior by microenvironmental cues. Int J Cancer 2003;107(5):688–95.

    Article  PubMed  CAS  Google Scholar 

  6. Hill R, Song Y, Cardiff RD, Van Dyke T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 2005;123(6):1001–11.

    Article  PubMed  CAS  Google Scholar 

  7. McCullough KD, Coleman WB, Ricketts SL, Wilson JW, Smith GJ, Grisham JW. Plasticity of the neoplastic phenotype in vivo is regulated by epigenetic factors. Proc Natl Acad Sci USA 1998;95(26):15333–8.

    Article  PubMed  CAS  Google Scholar 

  8. Qiu W, Hu M, Sridhar A, et al No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nature genetics 2008;40:650–5.

    Article  PubMed  CAS  Google Scholar 

  9. Rinn JL, Bondre C, Gladstone HB, Brown PO, Chang HY. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS genetics 2006;2(7):e119.

    Article  PubMed  Google Scholar 

  10. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001;294(5547):1708–12.

    Article  PubMed  CAS  Google Scholar 

  11. Javazon E H, Beggs K J, Flake A W. Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 2004;32(5):414–25.

    Article  PubMed  CAS  Google Scholar 

  12. Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, Lorenz K, Lee EH, Barcellos-Hoff MH, Peterson OW, Gray JW, Bissell MJ. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 2007;1:84–96.

    Article  PubMed  CAS  Google Scholar 

  13. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006;6(5):392–401.

    Article  PubMed  CAS  Google Scholar 

  14. Beacham DA, Cukierman E. Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 2005;15(5):329–41.

    Article  PubMed  Google Scholar 

  15. Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 2000;97(7):3213–8.

    Article  PubMed  CAS  Google Scholar 

  16. Pittenger MF, Mackay AM, Beck SC, et al Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143–7.

    Article  PubMed  CAS  Google Scholar 

  17. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 2004;103(5):1662–8.

    Article  PubMed  CAS  Google Scholar 

  18. Dominici M, Le Blanc K, Mueller I, et al Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8(4):315–7.

    Article  PubMed  CAS  Google Scholar 

  19. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem cells (Dayton, Ohio) 2007;25(11):2896–902.

    Article  Google Scholar 

  20. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889;1:571–3.

    Article  Google Scholar 

  21. Kuperwasser C, Chavarria T, Wu M, et al Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 2004;101(14):4966–71.

    Article  PubMed  CAS  Google Scholar 

  22. Maffini MV, Soto AM, Calabro JM, Ucci AA, Sonnenschein C. The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 2004;117(Pt 8):1495–502.

    Article  PubMed  CAS  Google Scholar 

  23. Barcellos-Hoff MH, Ravani SA. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 2000;60(5):1254–60.

    PubMed  CAS  Google Scholar 

  24. Bissell MJ, Labarge MA. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer cell 2005;7(1):17–23.

    PubMed  CAS  Google Scholar 

  25. Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 2002;32(3):355–7.

    Article  PubMed  CAS  Google Scholar 

  26. Sternlicht MD, Lochter A, Sympson CJ, et al The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 1999;98(2):137–46.

    Article  PubMed  CAS  Google Scholar 

  27. Tlsty TD, Hein PW. Know thy neighbor: stromal cells can contribute oncogenic signals. Curr Opin Genet Dev 2001;11(1):54–9.

    Article  PubMed  CAS  Google Scholar 

  28. Mueller MM, Fusenig NE. Friends or foes – bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 2004;4(11):839–49.

    Article  PubMed  CAS  Google Scholar 

  29. Kunz-Schughart LA, Knuechel R. Tumor-associated fibroblasts (part II): functional impact on tumor tissue. Histol Histopathol 2002;17(2):623–37.

    PubMed  CAS  Google Scholar 

  30. Kunz-Schughart LA, Knuechel R. Tumor-associated fibroblasts (part I): Active stromal participants in tumor development and progression? Histol Histopathol 2002;17(2):599–621.

    PubMed  CAS  Google Scholar 

  31. Rowley DR. What might a stromal response mean to prostate cancer progression?Cancer Metastasis Rev 1998;17(4):411–9.

    Article  PubMed  CAS  Google Scholar 

  32. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986;315(26):1650–9.

    Article  PubMed  CAS  Google Scholar 

  33. Haddow A. Molecular repair, wound healing, and carcinogenesis: tumor production a possible overhealing? Adv Cancer Res 1972;16:181–234.

    Article  PubMed  CAS  Google Scholar 

  34. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol 2003;200(4):429–47.

    Article  PubMed  CAS  Google Scholar 

  35. Hasebe T, Mukai K, Tsuda H, Ochiai A. New prognostic histological parameter of invasive ductal carcinoma of the breast: clinicopathological significance of fibrotic focus. Pathol Int 2000;50(4):263–72.

    Article  PubMed  CAS  Google Scholar 

  36. Kurosumi M, Tabei T, Inoue K, et al Prognostic significance of scoring system based on histological heterogeneity of invasive ductal carcinoma for node-negative breast cancer patients. Oncol Rep 2003;10(4):833–7.

    PubMed  Google Scholar 

  37. Karnoub AE, Dash AB, Vo AP, et al Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007;449(7162):557–63.

    Article  PubMed  CAS  Google Scholar 

  38. Ortiz LA, Gambelli F, McBride C, et al Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 2003;100(14):8407–11.

    Article  PubMed  CAS  Google Scholar 

  39. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002;62(13):3603–8.

    PubMed  CAS  Google Scholar 

  40. Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 2006;36(10):2566–73.

    Article  PubMed  CAS  Google Scholar 

  41. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003;75(3):389–97.

    Article  PubMed  CAS  Google Scholar 

  42. Le Blanc K, Ringden O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2005;11(5):321–34.

    Article  PubMed  CAS  Google Scholar 

  43. Hall B, Andreeff M, Marini F. The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 2007(180):263–83.

    Article  Google Scholar 

  44. Studeny M, Marini FC, Dembinski JL, et al Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004;96(21):1593–603.

    Article  PubMed  CAS  Google Scholar 

  45. Nakamizo A, Marini F, Amano T, et al Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005;65(8):3307–18.

    PubMed  CAS  Google Scholar 

  46. Zhu W, Xu W, Jiang R, et al Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 2006;80(3):267–74.

    Article  PubMed  CAS  Google Scholar 

  47. Houghton J, Stoicov C, Nomura S, et al Gastric cancer originating from bone marrow-derived cells. Science 2004; 306(5701):1568–71.

    Article  PubMed  Google Scholar 

  48. Prindull G, Zipori D. Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood 2004;103(8):2892–9.

    Article  PubMed  CAS  Google Scholar 

  49. Hombauer H, Minguell JJ. Selective interactions between epithelial tumour cells and bone marrow mesenchymal stem cells. Br J Cancer 2000;82(7):1290–6.

    Article  PubMed  CAS  Google Scholar 

  50. Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F. Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol 2007;86(1):8–16.

    Article  PubMed  CAS  Google Scholar 

  51. Emura M, Ochiai A, Horino M, Arndt W, Kamino K, Hirohashi S. Development of myofibroblasts from human bone marrow mesenchymal stem cells cocultured with human colon carcinoma cells and TGF beta 1. In Vitro Cell Dev Biol Anim 2000;36(2):77–80.

    Article  PubMed  CAS  Google Scholar 

  52. Ishii G, Sangai T, Oda T, et al Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 2003;309(1):232–40.

    Article  PubMed  CAS  Google Scholar 

  53. Di Nicola M, Carlo-Stella C, Magni M, et al Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99(10):3838–43.

    Article  PubMed  CAS  Google Scholar 

  54. Bartholomew A, Sturgeon C, Siatskas M, et al Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002;30(1):42–8.

    Article  PubMed  Google Scholar 

  55. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105(4):1815–22.

    Article  PubMed  CAS  Google Scholar 

  56. Djouad F, Plence P, Bony C, et al Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003;102(10):3837–44.

    Article  PubMed  CAS  Google Scholar 

  57. Sasser AK, Mundy BL, Smith KM, et al Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments. Cancer Lett 2007;254(2):255–64.

    Article  PubMed  CAS  Google Scholar 

  58. Sasser AK, Sullivan NJ, Studebaker AW, Hendey LF, Axel AE, Hall BM. Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. Faseb J 2007;21(13):3763–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett M. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sullivan, N.J., Hall, B.M. (2009). Mesenchymal Stem Cells in Tumor Stroma. In: Teicher, B., Bagley, R. (eds) Stem Cells and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-933-8_3

Download citation

Publish with us

Policies and ethics