Skip to main content

Observing and Manipulating Pluripotency in Normal and Cloned Mouse Embryos

  • Chapter
  • First Online:

Abstract

The mouse ooplasm is the ideal platform to study and compare induced and natural pluripotency because it can support both, after somatic cell nuclear transfer (cloning) and after fertilization, respectively. The amount of pluripotency induced after cloning is variable but always limited compared to fertilization. It can be visualized conveniently if the nucleus donor cells carry a green fluorescent protein (GFP) reporter under control of the pluripotency-associated gene Oct4 promoter. Thus we produced cloned and fertilized mouse embryos transgenic for Oct4-GFP (GOF18-∆PE-EGFP). We also developed and validated a live cell imaging method, whereby we resolve and selectively pick cloned embryos that hold distinct amounts of induced pluripotency as predicted by GFP intensity and measured by embryonic stem cell derivation. Currently we are developing a microinjection method to change the level of Oct4 without modifying the genome of the embryo. Here we discuss our findings in relation to the epigenetic reprogramming of the nucleus transplant and to cell fate decisions in the cloned or fertilized mouse embryo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tarkowski AK, Ozdzeński W, Czołowska R. How many blastomeres of the 4-cell embryo contribute cells to the mouse body? Int J Dev Biol 2001;45:811–6.

    PubMed  CAS  Google Scholar 

  2. Tarkowski AK, Ozdzenski W, Czolowska R. Identical triplets and twins developed from isolated blastomeres of 8- and 16-cell mouse embryos supported with tetraploid blastomeres. Int J Dev Biol 2005;49:825–32.

    Article  PubMed  Google Scholar 

  3. Chung Y, Klimanskaya I, Becker S, et alet al. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 2006;439:216–9.

    Article  PubMed  CAS  Google Scholar 

  4. Rossant J. Postimplantation development of blastomeres isolated from 4- and 8-cell mouse eggs. J Embryol Exp Morphol 1976;36:283–90.

    PubMed  CAS  Google Scholar 

  5. Boiani M, Schöler HR. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 2005;6:872–84.

    Article  PubMed  CAS  Google Scholar 

  6. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000;24:372–6.

    Article  PubMed  CAS  Google Scholar 

  7. Hübner K, Fuhrmann G, Christenson LK, et alet al. Derivation of oocytes from mouse embryonic stem cells. Science 2003;300:1251–6.

    Article  PubMed  Google Scholar 

  8. Seguin C, Draper JS. Chapter 11. Extraembryonic differentiation of human ES cell. In: Sullivan S, Cowan CA, Eggan K, editors. Human Embryonic Stem Cells: The Practical Handbook. Wiley, West Sussex, England, 2007:404.

    Google Scholar 

  9. Masui S, Nakatake Y, Toyooka Y, et alet al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 2007;9:625–35.

    Article  PubMed  CAS  Google Scholar 

  10. Boyer LA, Lee TI, Cole MF, et alet al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005;122:947–56.

    Article  PubMed  CAS  Google Scholar 

  11. Babaie Y, Herwig R, Greber B, et alet al. Analysis of OCT4 dependent transcriptional networks regulating self renewal and pluripotency in human embryonic stem cells. Stem Cells 2006;25:500–10.

    Article  PubMed  Google Scholar 

  12. Greber B, Lehrach H and Adjaye J. FGF2 modulates TGFβ signaling in MEFs and human ES cells to support hESC self-renewal. Stem Cells 2006;25:455–64.

    Article  PubMed  Google Scholar 

  13. Reményi A, Schöler HR, Wilmanns M. Combinatorial control of gene expression. Nat Struct Mol Biol 2004;11:812–5.

    Article  PubMed  Google Scholar 

  14. Hatano SY, Tada M, Kimura H, et alet al. Pluripotential competence of cells associated with Nanog activity. Mech Dev 2005;122:67–79.

    Article  PubMed  CAS  Google Scholar 

  15. Darr H, Mayshar Y, Benvenisty N. Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development 2006;133: 1193–201.

    Article  PubMed  CAS  Google Scholar 

  16. Tanaka Y, Era T, Nishikawa S, Kawamata S. Forced expression of Nanog in hematopoietic stem cells results in a gamma delta T-cell disorder. Blood 2007;110:107–15.

    Article  PubMed  CAS  Google Scholar 

  17. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663–76.

    Article  PubMed  CAS  Google Scholar 

  18. Schöler HR, Hatzopoulos AK, Balling R, Suzuki N, Gruss P. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J 1989;8:2543–50.

    PubMed  Google Scholar 

  19. Okamoto K, Okazawa H, Okuda A, Sakai M, Muramatsu M, Hamada H. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 1990;60:461–72.

    Article  PubMed  CAS  Google Scholar 

  20. Rosner MH, Vigano MA, Ozato K, et alet al. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 1990;345:686–92.

    Article  PubMed  CAS  Google Scholar 

  21. Lengner CJ, Camargo FD, Hochedlinger K, et alet al. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 2007;1:403–15.

    Article  PubMed  CAS  Google Scholar 

  22. Nichols J, Zevnik B, Anastassiadis K, et alet al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998;95:379–91.

    Article  PubMed  CAS  Google Scholar 

  23. Zeineddine D, Papadimou E, Chebli K, et alet al. Oct-3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development. Dev Cell 2006;11:535–46.

    Article  PubMed  CAS  Google Scholar 

  24. Ramos-Mejía V, Escalante-Alcalde D, Kunath T, et alet al. Phenotypic analyses of mouse embryos with ubiquitous expression of Oct4: effects on mid-hindbrain patterning and gene expression. Dev Dyn 2005;232:180–90.

    Article  PubMed  Google Scholar 

  25. Hochedlinger K, Yamada Y, Beard C, Jaenisch R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 2005;121:465–77.

    Article  PubMed  CAS  Google Scholar 

  26. Rodriguez RT, Velkey JM, Lutzko C,et alet al. Manipulation of OCT4 levels in human embryonic stem cells results in induction of differential cell types. Exp Biol Med 2007;232:1368–80.

    Article  CAS  Google Scholar 

  27. Gidekel S, Pizov G, Bergman Y, Pikarsky E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 2003;4:361–70.

    Article  PubMed  CAS  Google Scholar 

  28. Camara-Clayette V, Le Pesteur F, Vainchenker W, Sainteny F. Quantitative Oct4 overproduction in mouse embryonic stem cells results in prolonged mesoderm commitment during hematopoietic differentiation in vitro. Stem Cells 2006;24:1937–45.

    Article  PubMed  CAS  Google Scholar 

  29. Wei F, Schöler HR, Atchison ML. Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J Biol Chem 2007;282:21551–60.

    Article  PubMed  CAS  Google Scholar 

  30. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 2001;11:1553–8.

    Article  PubMed  CAS  Google Scholar 

  31. Ng RK, Gurdon JB. Epigenetic memory of active gene transcription is inherited through somatic cell nuclear transfer. Proc Natl Acad Sci U S A 2005;102:1957–62.

    Article  PubMed  CAS  Google Scholar 

  32. Eggan K, Akutsu H, Hochedlinger K, Rideout W3rd, Yanagimachi R, Jaenisch R. X-chromosome inactivation in cloned mouse embryos. Science 2000;290:1578–81.

    Article  PubMed  CAS  Google Scholar 

  33. Kimura H, Tada M, Hatano S, Yamazaki M, Nakatsuji N, Tada T. Chromatin reprogramming of male somatic cell-derived XIST and TSIX in ES hybrid cells. Cytogenet Genome Res 2002;99:106–14.

    Article  PubMed  CAS  Google Scholar 

  34. Egli D, Rosains J, Birkhoff G, Eggan K. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 2007;447:679–85.

    Article  PubMed  CAS  Google Scholar 

  35. Do JT, Schöler HR. Cell–cell fusion as a means to establish pluripotency. Ernst Schering Res Found Workshop 2006;60:35–45.

    Article  PubMed  CAS  Google Scholar 

  36. Matsumura H, Tada M, Otsuji T, et alet al. Targeted chromosome elimination from ES-somatic hybrid cells. Nat Methods 2007;4:23–5.

    Article  PubMed  CAS  Google Scholar 

  37. Takahashi K, Tanabe K, Ohnuki M, et alet al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;31:861–72.

    Article  Google Scholar 

  38. Yu J, Vodyanik MA, Smuga-Otto K, et alet al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917–20.

    Article  PubMed  CAS  Google Scholar 

  39. Nakagawa M, Koyanagi M, Tanabe K, et alet al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008;26:101–6.

    Article  PubMed  CAS  Google Scholar 

  40. Taranger CK, Noer A, Sørensen AL, Håkelien AM, Boquest AC, Collas P. Induction of dedifferentiation, genome wide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 2005;16:5719–35.

    Article  PubMed  CAS  Google Scholar 

  41. Ding S, Schultz PG. Small molecules and future regenerative medicine. Curr Top Med Chem 2005;5:383–95.

    Article  PubMed  CAS  Google Scholar 

  42. Patsch C, Edenhofer F. Conditional mutagenesis by cell-permeable proteins: potential, limitations and prospects. Handbook Exp Pharmacol 2007;178:203–32.

    Article  CAS  Google Scholar 

  43. Fittipaldi A, Giacca M. Transcellular protein transduction using the Tat protein of HIV-1. Adv Drug Deliv Rev 2005;57:597–608.

    Article  PubMed  CAS  Google Scholar 

  44. Cavaleri F, Gentile L, Schöler HR, Boiani M. Recombinant human albumin supports development of somatic cell nuclear transfer embryos in mice: toward the establishment of a chemically defined cloning protocol. Cloning Stem Cells 2006;8:24–40.

    Article  PubMed  CAS  Google Scholar 

  45. Kues WA, Niemann H. The contribution of farm animals to human health. Trends Biotechnol 2004;22:286–94.

    Article  PubMed  CAS  Google Scholar 

  46. Fulka JJr, Miyashita N, Nagai T, Ogura A. Do cloned mammals skip a reprogramming step. Nat Biotechnol 2004;22:25–6.

    Article  PubMed  CAS  Google Scholar 

  47. Bortvin A, Eggan K, Skaletsky H, et alet al. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 2003;130:1673–80.

    Article  PubMed  CAS  Google Scholar 

  48. Li X, Kato Y, Tsunoda Y. Comparative analysis of development-related gene expression in mouse preimplantation embryos with different developmental potential. Mol Reprod Dev 2005;72:152–60.

    Article  PubMed  CAS  Google Scholar 

  49. Li X, Amarnath D, Kato Y, Tsunoda Y. Analysis of development-related gene expression in cloned bovine blastocysts with different developmental potential. Cloning Stem Cells 2006;8:41–50.

    Article  PubMed  Google Scholar 

  50. Balbach ST, Jauch A, Böhm-Steuer B, Cavaleri FM, Han YM, Boiani M. Chromosome stability differs in cloned mouse embryos and derivative ES cells. Dev Biol 2007;308:309–21.

    Article  PubMed  CAS  Google Scholar 

  51. Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 2007;445:214–8.

    Article  PubMed  CAS  Google Scholar 

  52. Yadav J, Lee J, Kim J, et alet al. Bedford. Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice, Proc Natl Acad Sci U S A 2003;100:6464–8.

    Article  PubMed  CAS  Google Scholar 

  53. Sebastiano V, Gentile L, Garagna S, Redi CA, Zuccotti M. Cloned pre-implantation mouse embryos show correct timing but altered levels of gene expression. Mol Reprod Dev 2005;70:146–54.

    Article  PubMed  CAS  Google Scholar 

  54. Hadjantonakis AK, Papaioannou VE. Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol 2004;4:33.

    Article  PubMed  Google Scholar 

  55. Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M, Nagy A. Non-invasive sexing of preimplantation stage mammalian embryos. Nat Genet 1998;19:220–2.

    Article  PubMed  CAS  Google Scholar 

  56. Godwin AR, Stadler HS, Nakamura K, Capecchi MR. Detection of targeted GFP-Hox gene fusions during mouse embryogenesis. Proc Natl Acad Sci U S A 1998;95:13042–7.

    Article  PubMed  CAS  Google Scholar 

  57. Yeom YI, Fuhrmann G, Ovitt CE, et alet al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 1996;122:881–94.

    PubMed  CAS  Google Scholar 

  58. Yoshimizu T, Sugiyama N, De Felice M, et alet al. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev Growth Differ 1999;41:675–84.

    Article  PubMed  CAS  Google Scholar 

  59. Nordhoff V, Hübner K, Bauer A, Orlova I, Malapetsa A, Schöler HR. Comparative analysis of human, bovine, and murine Oct-4 upstream promoter sequences. Mamm Genome 2001;12:309–17.

    Article  PubMed  CAS  Google Scholar 

  60. Szabo PE, Hübner K, Schöler H, Mann JR. Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech Dev 2002;115:157–60.

    Article  PubMed  CAS  Google Scholar 

  61. Anderson R, Fässler R, Georges-Labouesse E, et alet al. Mouse primordial germ cells lacking β1 integrins enter the germline but fail to migrate normally to the gonads. Development 1999;126:1655–64.

    PubMed  CAS  Google Scholar 

  62. Molyneaux KA, Stallock J, Schaible K, Wylie C. Time-lapse analysis of living mouse germ cell migration. Dev Biol 2001;240:488–98.

    Article  PubMed  CAS  Google Scholar 

  63. Takeuchi A, Mishina Y, Miyaishi O, Kojima E, Hasegawa T, Isobe K. Heterozygosity with respect to Zfp148 causes complete loss of fetal germ cells during mouse embryogenesis. Nat Genet 2003;33:172–6.

    Article  PubMed  CAS  Google Scholar 

  64. Cavaleri F, Balbach ST, Gentile L, et alet al. Subsets of cloned mouse embryos and their non-random relationship to development and nuclear reprogramming. Mech Dev 2008;25:153.

    Article  Google Scholar 

  65. Boiani M, Eckardt S, Schöler HR, McLaughlin KJ. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev 2002;16:1209–19.

    Article  PubMed  CAS  Google Scholar 

  66. Ross PJ, Perez GI, Ko T, Yoo MS, Cibelli JB. Full developmental potential of mammalian preimplantation embryos is maintained after imaging using a spinning-disk confocal microscope. Biotechniques 2006;41:741–50.

    Article  PubMed  CAS  Google Scholar 

  67. Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with ImageJ. Biophoton Int 2004;11:36–42.

    Google Scholar 

  68. Brambrink T, Hochedlinger K, Bell G, Jaenisch R. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci U S A 2006;103:933–8.

    Article  PubMed  CAS  Google Scholar 

  69. Wakayama S, Jakt ML, Suzuki M, et alet al. Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts. Stem Cells 2006;24:2023–33.

    Article  PubMed  CAS  Google Scholar 

  70. Hikichi T, Wakayama S, Mizutani E, et alet al. Differentiation potential of parthenogenetic embryonic stem cells is improved by nuclear transfer. Stem Cells 2007;25:46–53.

    Article  PubMed  CAS  Google Scholar 

  71. Kirchhof N, Carnwath JW, Lemme E, Anastassiadis K, Schöler H, Niemann H. Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod 2000;63:1698–705.

    Article  PubMed  CAS  Google Scholar 

  72. Kauffman SA. Antichaos and adaptation. Sci Am 1991;265:78–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Konstantinos Anastassiadis (Technical University Dresden) for sharing unpublished data on GOF18-ΔPE-EGFP; to Dr. Yong-Mahn Han (KAIST, Korea) for contributing to the article of Cavaleri et al., 2008 (64) which provides the groundwork for this chapter; and to Prof. Ivan Dikic (Goethe University, Frankfurt am Main) for supporting the quantitative analysis of Oct4 protein in preimplantation mouse embryos and the synthesis of recombinant Oct4 for microinjection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Boiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Balbach, S.T. et al. (2009). Observing and Manipulating Pluripotency in Normal and Cloned Mouse Embryos. In: Baharvand, H. (eds) Trends in Stem Cell Biology and Technology. Humana Press. https://doi.org/10.1007/978-1-60327-905-5_7

Download citation

Publish with us

Policies and ethics