Skip to main content

Reprogramming Male Germ Cells to Pluripotent Stem Cells

  • Chapter
  • First Online:
Trends in Stem Cell Biology and Technology

Abstract

Reprogramming of a differentiated cell into a cell capable of giving rise to many different cell types, a pluripotent cell, which in turn could repopulate or repair nonfunctional or damaged tissue, would present beneficial applications in regenerative medicine. It was shown by different groups that germ cells can be reprogrammed to pluripotent stem cells in all diploid stages of development. Specification of germline lineage is one of the most essential events in development, since this process ensures the acquisition, modification, and reservation of the totipotent genome for subsequent generations. We and other groups have shown that adult male germline stem cells, spermatogonial stem cells, can be converted into embryonic stem cell–like cells that can differentiate into the somatic stem cells of three germ layers. Importantly, cultured germ cells demonstrate normal and stable karyotypes as well as normal patterns of genomic imprinting. Transplantation studies have begun in a variety of models in hopes of defining their potential application of pluripotent stem cells derived from germ cells to treat a wide variety of human conditions, including cardiovascular and neurological disorders. This chapter describes general considerations regarding molecular and cellular aspects of reprogramming of germ cells at different developmental stages to stem cells compared with their counterpart, embryonic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hogan, B. Developmental biology: decision, decisions! Nature 2002;418:282–3.

    Article  PubMed  CAS  Google Scholar 

  2. Chiquoine, AD. The identification, origin and migration of the primordial germ cells in the mouse embryo. Anat Rec 1954;118:135–46.

    Article  PubMed  CAS  Google Scholar 

  3. Ginsburg M, Snow MHL, McLaren A. Primordial germ cells in the mouse embryo during gastrulation. Development 1990;110:521–8.

    PubMed  CAS  Google Scholar 

  4. Lawson KA, Dunn NR, Roelen BA, et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 1999;13:424–36.

    Article  PubMed  CAS  Google Scholar 

  5. Ying Y, Liu XM, Marble A, et al. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 2000;14:1053–63.

    Article  PubMed  CAS  Google Scholar 

  6. Fujiwara T, Dunn NR, Hogan BL. Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and survival of primordial germ cells in the mouse. Proc Natl Acad Sci U S A 2001;98:13739–44.

    Article  PubMed  CAS  Google Scholar 

  7. Ying Y, Zhao GQ. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev Biol 2001;232:484–92.

    Article  PubMed  CAS  Google Scholar 

  8. Tam PP, Snow MH. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J Embryol Exp Morphol 1981;64:133–47.

    PubMed  CAS  Google Scholar 

  9. Witschi E. Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contrib Embryol 1948;32:67–80.

    Google Scholar 

  10. McKay D, Hertig AT, Adams EC, et al. Histochemical observations on the germ cells of human embryos. Anat Rec 1953;117:201–19.

    Article  PubMed  CAS  Google Scholar 

  11. Clermont Y, Perey B. Quantitative study of the cell population of the seminiferous tubules in immature rats. Am J Anat 1957;100:241–67.

    Article  PubMed  CAS  Google Scholar 

  12. Sapsford C. Changes in the cells of the sex cords and the seminiferous tubules during development of the testis of the rat and the mouse. Aust J Zool 1962;101:178–92.

    Article  Google Scholar 

  13. Wartenberg H. Development of the early human ovary and role of the mesonephros in the differentiation of the cortex. Anat Embryol 1982;165:253–80.

    Article  PubMed  CAS  Google Scholar 

  14. Bendsen E, Byskov AG, Laursen SB, et al. Number of germ cells and somatic cells in human fetal testes during the first weeks after sex differentiation. Hum Reprod 2003;18:13–8.

    Article  PubMed  CAS  Google Scholar 

  15. Bendel-Stenzel M, Anderson R, Heasman J, et al. The origin and migration of primordial germ cells in the mouse. Semin Cell Dev Biol 1998;9:393–400.

    Article  PubMed  CAS  Google Scholar 

  16. Olive V, Cuzin F. The spermatogonial stem cells: from basic knowledge to transgenic technology. Int J Biochem Cell Biol 2005;37:246–50.

    Article  PubMed  CAS  Google Scholar 

  17. Nayernia K, Li M, Engel W. Spermatogial stem cells. Methods Mol Biol 2004;253:105–20.

    PubMed  Google Scholar 

  18. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 2004;101:16489–94.

    Article  PubMed  CAS  Google Scholar 

  19. Chambers I, Silva J, Colby D, et al. Nanog safeguards pluripotency and mediates germline development. Nature 2007;450:1230–4.

    Article  PubMed  CAS  Google Scholar 

  20. Mitsiu K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003;113:631–42.

    Article  Google Scholar 

  21. Kehler J, Tolkunova E, Koschorz B, et al. Oct4 is required for primordial germ cell survival. EMBO Rep 2004;5:1078–83.

    Article  PubMed  CAS  Google Scholar 

  22. Chambers I. The molecular basis of pluripotency in mouse embryonic stem cells. Cloning Stem Cells 2004;6:386–91.

    Article  PubMed  CAS  Google Scholar 

  23. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008;132:567–82.

    Article  PubMed  CAS  Google Scholar 

  24. Kerr CL, Hill CM, Blumenthal PD, Gearhart JD. Expression of pluripotent stem cell markers in the human fetal testis. Stem Cells 2008;26:412–21.

    Article  PubMed  Google Scholar 

  25. Hoei-Hansen CE, Almstrup K, Nielsen JE, et al. Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours. Histopathology 2005;47:48–56.

    Article  PubMed  CAS  Google Scholar 

  26. Kanatsu-Shinohara M, Lee J, Inoue K, et al. Pluripotency of a single spermatogonial stem cells in mice. Biol Reprod 2008;78:681–7.

    Article  PubMed  CAS  Google Scholar 

  27. Perrett RM, Tumpenny L, Eckert JJ, et al. The early human germ cell lineage does not express SOX2 during in vivo development or upon in vitro culture. Biol Reprod 2008;78:852–8.

    Article  PubMed  CAS  Google Scholar 

  28. Pesce M, Gross MK, Schoeler HR. In line with our ancestors: Oct-4 and the mammalian germ. Bioassays 1998;20:722–32.

    Article  CAS  Google Scholar 

  29. Kerr CL, Gearhart JD, Elliott AM, et al. Embryonic germ cells: when germ cells become stem cells. Semin Reprod Med 2006;24:304–13.

    Article  PubMed  CAS  Google Scholar 

  30. Kerr CL, Shamblott KJ, Gearhart JD. Pluripotent stem cells from germ cells. Methods Enzymol 2006;419:400–26.

    Article  PubMed  CAS  Google Scholar 

  31. Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripoten stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 1998;95:13726–31.

    Article  PubMed  CAS  Google Scholar 

  32. McLAren A, Durcova-Hills G. Germ cells and pluripotent stem cells in the mouse. Reprod Fertil Dev 2001;13:661–64.

    Article  PubMed  CAS  Google Scholar 

  33. Cooke JE, Godin I, Ffrench-Constant C, et al. Culture and manipulation of primordial germ cells. Methods Enzymol 1993;225:37–58.

    Article  PubMed  CAS  Google Scholar 

  34. Stevens LC. Origin of testicular teratomas from primordial germ cells in mice. J Natl Cancer Inst 1967;38:549–52.

    PubMed  CAS  Google Scholar 

  35. Damjanov I. Teratocarcinoma stem cells. Cancer Surv 1990;9:303–19.

    PubMed  CAS  Google Scholar 

  36. Bonner AE, Wang Y, You M. Gene expression profiling of mouse teratocarcinomas uncover epigenetic changes associated with the transformation of mouse embryonic stem cells. Neoplasia 2004;6:490–502.

    Article  PubMed  CAS  Google Scholar 

  37. Kanatsu-Shinohara M, Inoue K, Lee J, et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 2004;119:1001–12.

    Article  PubMed  CAS  Google Scholar 

  38. Guan K, Nayernia K, Maier LS, et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006;440:1199–203.

    Article  PubMed  CAS  Google Scholar 

  39. Seandel M, James D, Shmelkov SV, et al. Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 2007;449:346–50.

    Article  PubMed  CAS  Google Scholar 

  40. Kubota H, Brinster RL. Culture of rodent spermatogonial stem cells, male germline stem cells of the postnatal animal. Methods Cell Biol 2008;86:59–84.

    Article  PubMed  CAS  Google Scholar 

  41. Falciatori I, Lillard-Wetherell K, Wu Z, et al. Deriving mouse spermatogonial stem cell lines. Methods Mol Biol 2008;450:163–79.

    Article  Google Scholar 

  42. . Van Saen D, Goossens E, De Block G, et al. Regeneration of spermatogenesis by grafting testicular tissue or injecting testicular cells into the testes of sterile mice: a comparative study. Fertil Steril 2008 Apr. 2.

    Google Scholar 

  43. McLaren DJ. Spermatogonial stem cell transplantation, testicular function, and restoration of male fertility in mice. Methods Mol Biol 2008;450:149–62.

    Article  Google Scholar 

  44. Kanatsu-Shinohara M, Ogonuki N, Inoue K, et al. Restoration of fertility in infertile mice by transplantation of cryopreserved male germline stem cells. Hum Reprod 2003;18:2660–7.

    Article  PubMed  CAS  Google Scholar 

  45. Kanatsu-Shinohara M, Ogonuki N, Iwano T, et al. Genetic and epigenetic properties of mouse male germline stemcells during long-term culture. Development 2005;132:4155–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The University of Newcastle upon Tyne, ONE North East, and German Research council. We thank Hamed Nayernia for excellent graphical images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Nayernia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mardanpour, P. et al. (2009). Reprogramming Male Germ Cells to Pluripotent Stem Cells. In: Baharvand, H. (eds) Trends in Stem Cell Biology and Technology. Humana Press. https://doi.org/10.1007/978-1-60327-905-5_5

Download citation

Publish with us

Policies and ethics