Skip to main content

Strategies Toward Beta-Cell Replacement

  • Chapter
  • First Online:
Trends in Stem Cell Biology and Technology

Abstract

Embryonic and adult stem cells are considered to be potential sources of insulin-secreting cells to be transplanted into type 1 and advanced stages of type 2 diabetic patients. After years of study, the key determinants necessary for the differentiation process are beginning to be fully characterised, and several protocols have been published. However, investigators still have to face several problems before finding a therapeutic application, such as to increase the amount of insulin produced by the final cell product, to examine the processing of the hormone in these protocols, and to confirm the existence of a stimulus-coupled secretory process. Concerning transplantation, we must also pay attention to implant survival, tumour formation, and immune rejection. Mimicking endocrine pancreas development in vitro seems to yield the best results in terms of obtaining insulin-secreting cells from embryonic stem cells. To this end, definitive endoderm precursors have been generated. The final cell product contained amounts of insulin and phenotypic traits similar to mature β cells. However, these cells seemed to be immature, since they did not respond to stimulatory concentrations of extracellular glucose and coexpressed two hormones in the same cell (insulin glucagon, insulin somatostatin). Therefore, further improvements are required. Concerning adult stem cells, the possibility of identifying pancreatic precursors or of reprogramming extrapancreatic-derived cells are key possibilities that may circumvent some of the problems that appear when using embryonic stem cells. However, current protocols are not capable of obtaining a functional cell product useful for therapeutic purposes. The identification of signals that operate in vivo in the different niches could help in the design of more adequate strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeFronzo RA, Ferrannini E, Keen H, et al. International textbook of diabetes mellitus, 3th ed. Wiley, Chichester, UK, 2004.

    Google Scholar 

  2. Isermann B, Ritzel R, Zorn M, Schilling T, Nawroth PP. Autoantibodies in diabetes mellitus: current utility and perspectives. Exp Clin Endocrinol Diabetes 2007;115:483–90.

    PubMed  CAS  Google Scholar 

  3. Prentki M, Joly E, El-Assaad W, Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes 2002;51:S405–13.

    PubMed  CAS  Google Scholar 

  4. Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000;343:230–8.

    PubMed  CAS  Google Scholar 

  5. Roche E, Reig JA, Campos A, et al. Insulin-secreting cells derived from stem cells: clinical perspectives, hypes and hopes. Transplant Immunol 2005;15:113–29.

    CAS  Google Scholar 

  6. Ryan EA, Paty BW, Senior PA, et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005;54:2060–9.

    PubMed  CAS  Google Scholar 

  7. Hermann M, Margreiter R, Hengster P. Molecular and cellular key players in human islet transplantation. J Cell Mol Med 2007;11:398–415.

    PubMed  CAS  Google Scholar 

  8. Laybutt DR, Hawkins YC, Lock J, et al. Influence of diabetes on the loss of β-cell differentiation after islet transplantation in rats. Diabetologia 2007;50:2117–25.

    PubMed  CAS  Google Scholar 

  9. Marzorati S, Pileggi A, Ricordi C. Allogeneic islet transplantation. Expert Opin Biol Ther 2007;7:1627–45.

    PubMed  CAS  Google Scholar 

  10. Kaestner KH. Beta cell transplantation and immunosuppression: can’t live with it, can’t live without it. J Clin Invest 2007;117:2380–2.

    PubMed  CAS  Google Scholar 

  11. Smith AG. Embryo-derived stem cells of mice and men. Annu Rev Cell Dev Biol 2001;17:435–62.

    PubMed  CAS  Google Scholar 

  12. Smith AG. Culture and differentiation of embryonic stem cells. J Tissue Culture Methods 1991;13:89–94.

    Google Scholar 

  13. Prowse AB, McQuade LR, Bryant KJ, Marcal H, Gray PP. Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. J Proteome Res 2007;6:3796–807.

    PubMed  CAS  Google Scholar 

  14. Roche E, Sepulcre P, Reig JA, Santana A, Soria B. Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells. FASEB J 2005;19:1341–3.

    PubMed  CAS  Google Scholar 

  15. Ensenat-Waser R, Santana A, Vicente-Salar N, et al. Isolation and characterization of residual undifferentiated mouse embryonic stem cells from embryoid body cultures by fluorescence tracking. In Vitro Cell Develop Biol Animal 2006;42:115–23.

    CAS  Google Scholar 

  16. Kahan BW, Jacobson LM, Hullett DA, et al. Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells. An in vitro model to study islet differentiation. Diabetes 2003;52:2016–24.

    PubMed  CAS  Google Scholar 

  17. Skoudy A, Rovira M, Savatier P, et al. Transforming growth factor (TGF)β, fibroblast growth factor (FGF) and retinoid signaling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells. Biochem J 2004;379:749–56.

    PubMed  CAS  Google Scholar 

  18. Ensenat-Waser R, Santana A, Paredes B, et al. Embryonic stem cell processing in obtaining insulin-producing cells: a technical review. Cell Preserv Technol 2006;4:278–89.

    CAS  Google Scholar 

  19. Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science 2000;287:1427–30.

    PubMed  CAS  Google Scholar 

  20. Barrilleaux B, Phinney DG, Prockop DJ, O’Connor KC. Ex vivo engineering of living tissues with adult stem cells. Tissue Eng 2006;12:3007–19.

    PubMed  CAS  Google Scholar 

  21. Fellous TG, Guppy NJ, Brittan M, Alison MR. Cellular pathways to β-cell replacement. Diabetes/Metab Res Rev 2007;23:87–99.

    CAS  Google Scholar 

  22. Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 2003;111:843–50.

    PubMed  CAS  Google Scholar 

  23. Hess D, Li L, Martin M, et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 2003;21:763–70.

    PubMed  CAS  Google Scholar 

  24. Ferber S, Halkin A, Cohen H, et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 2000;6:568–72.

    PubMed  CAS  Google Scholar 

  25. Kojima H, Fujimiya M, Matsumura K, et al. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med 2003;9:596–603.

    PubMed  CAS  Google Scholar 

  26. Soria B, Roche E, Bernat G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000;49:157–62.

    PubMed  CAS  Google Scholar 

  27. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M. Insulin production by human embryonic stem cells. Diabetes 2001;50:1691–7.

    PubMed  CAS  Google Scholar 

  28. Lumelsky N, Blondel O, Laeng P, et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001;292:1389–94.

    PubMed  CAS  Google Scholar 

  29. Jones EA, Tosh D, Wilson DI, Lindsay S, Forrester LM. Hepatic differentiation of murine embryonic stem cells. Exp Cell Res 2002;272:15–22.

    PubMed  CAS  Google Scholar 

  30. Shiroi A, Yoshikawa M, Yokota H, et al. Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone. Stem Cells 2002;20:284–92.

    PubMed  CAS  Google Scholar 

  31. Kubo A, Shinozaki K, Shannon JM, et al. Development of definitive endoderm from embryonic stem cells in culture. Development 2004;131:1651–62.

    PubMed  CAS  Google Scholar 

  32. Ku HT, Zhang N, Kubo A, et al. Committing embryonic stem cells to early endocrine pancreas in vitro. Stem Cells 2004;22:1205–17.

    PubMed  Google Scholar 

  33. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005;23:1534–41.

    PubMed  Google Scholar 

  34. Ishii T, Yasuchika K, Fujii H, et al. In vitro differentiation and maturation of mouse embryonic stem cells into hepatocytes. Exp Cell Res 2005;309:68–77.

    PubMed  CAS  Google Scholar 

  35. Milne HM, Burns CJ, Kitsou-Mylona I, et al. Generation of insulin-expressing cells from mouse embryonic stem cells. Biochem Biophys Res Commun 2005;328:399–403.

    PubMed  CAS  Google Scholar 

  36. Tada S, Era T, Furusawa C, et al. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 2005;132:4363–74.

    PubMed  CAS  Google Scholar 

  37. Yasunaga M, Tada S, Torikai-Nishikawa S, et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 2005;23:1542–50.

    PubMed  CAS  Google Scholar 

  38. D’Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006;24:1392–401.

    PubMed  Google Scholar 

  39. Gadue P, Huber TL, Paddison PJ, Keller GM. Wnt and TGF-β signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A 2006;103:16806–11.

    PubMed  CAS  Google Scholar 

  40. Gouon-Evans V, Boussemart L, Gadue P, et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol 2006;24:1402–11.

    PubMed  CAS  Google Scholar 

  41. Jiang W, Shi Y, Zhao D, et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 2007;17:333–44.

    PubMed  CAS  Google Scholar 

  42. Nakanishi M, Hamazaki TS, Komazaki S, Okochi H, Asashima M. Pancreatic tissue formation from murine embryonic stem cells in vitro. Differentiation 2007;75:1–11.

    PubMed  CAS  Google Scholar 

  43. Rajagopal J, Anderson WJ, Kume S, Martinez OI, Melton DA. Insulin staining of ES cell progeny from insulin uptake. Science 2003;299:363.

    PubMed  Google Scholar 

  44. Hori Y, Rulifson IC, Tsai BC, Heit JJ, Cahoy JD, Kim SK. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci U S A 2002;99:16105–10.

    PubMed  CAS  Google Scholar 

  45. Moritoh Y, Yamato E, Yasui Y, Miyazaki S, Miyazaki J. Analysis of insulin-producing cells during in vitro differentiation from feeder-free embryonic stem cells. Diabetes 2003;52:1163–8.

    PubMed  CAS  Google Scholar 

  46. Blyszczuk P, Czyz J, Kania G, et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci U S A 2003;100:998–1003.

    PubMed  CAS  Google Scholar 

  47. Santana A, Enseñat-Waser R, Arribas MI, Reig JA, Roche E. Insulin-producing cells derived from stem cells: recent progress and future directions. J Cell Mol Med 2006;10:866–83.

    PubMed  CAS  Google Scholar 

  48. Madsen OD, Serup P. Towards cell therapy for diabetes. Nat Biotechnol 2006;24:1481–3.

    PubMed  CAS  Google Scholar 

  49. Shook D, Keller R. Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development. Mech Dev 2003;120:1351–83.

    PubMed  CAS  Google Scholar 

  50. Yamanaka Y, Ralston A, Stephenson RO, Rossant J. Cell and molecular regulation of the mouse blastocyst. Dev Dyn 2006;235:2301–14.

    PubMed  CAS  Google Scholar 

  51. Inman KE, Downs KM. Localization of brachyury (T) in embryonic and extraembryonic tissues during mouse gastrulation. Gene Expr Patterns 2006;6:783–93.

    PubMed  CAS  Google Scholar 

  52. Wang L, Schulz TC, Sherrer ES, et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 2007;110:4111–9.

    PubMed  CAS  Google Scholar 

  53. Nguyen TT, Sheppard AM, Kaye PL, Noakes PG. IGF-1 and insulin activate mitogen-activated protein kinase via the type 1 IGF receptor in mouse embryonic stem cells. Reproduction 2007;134:41–9.

    PubMed  CAS  Google Scholar 

  54. McLean AB, D’Amour KA, Jones KL, et al. Activin A efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 2007;25:29–38.

    PubMed  CAS  Google Scholar 

  55. Schroeder IS, Rolletschek A, Blyszczuk P, Kania G, Wobus AM. Differentiation of mouse embryonic stem cells to insulin-producing cells. Nat Protocols 2006;1:495–507.

    CAS  Google Scholar 

  56. Mfopou JK, De Groote V, Xu X, Heimberg H, Bouwens L. Sonic hedgehog and other soluble factors from differentiating embryoid bodies inhibit pancreas development. Stem Cells 2007;25:1156–65.

    PubMed  CAS  Google Scholar 

  57. Brolén GKC, Heins N, Edsbagge J, Semb H. Signals from the embryonic mouse pancreas induce differentiation of human embryonic stem cells into insulin-producing β-cell-like cells. Diabetes 2005;54:2867–74.

    PubMed  Google Scholar 

  58. Rivas-Carrillo JD, Okitsu T, Tanaka N, Kobayashi N. Pancreas development and beta-cell differentiation of embryonic stem cells. Curr Med Chem 2007;14:1573–8.

    PubMed  CAS  Google Scholar 

  59. Vaca P, Martin F, Vegara-Meseguer JM, Rovira JM, Berna G, Soria B. Induction of differentiation of embryonic stem cells into insulin secreting cells by fetal soluble factors. Stem Cells 2006;24:258–65.

    PubMed  CAS  Google Scholar 

  60. Bonner-Weir S, Taneja M, Weir GC, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci U S A 2000;97:7999–8004.

    PubMed  CAS  Google Scholar 

  61. Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 2000;6:278–82.

    PubMed  CAS  Google Scholar 

  62. Zulewski H, Abraham EJ, Gerlach MJ, et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine and hepatic phenotypes. Diabetes 2001;50:521–33.

    PubMed  CAS  Google Scholar 

  63. Hao E, Tyrberg B, Itkin-Ansari P, et al. Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Nat Med 2006;12:310–6.

    PubMed  CAS  Google Scholar 

  64. Taguchi M, Yamaguchi T, Otsuki M. Induction of PDX-1-positive cells in the main duct during regeneration after acute necrotizing pancreatitis in rats. J Pathol 2002;197:638–46.

    PubMed  Google Scholar 

  65. Kritzik MR, Jones E, Chen Z, et al. PDX-1 and Msx-2 expression in the regenerating and developing pancreas. J Endocrinol 1999;163:523–30.

    PubMed  CAS  Google Scholar 

  66. Roche E, Jones J, Arribas MI, Leon-Quinto T, Soria B. Role of small bioorganic molecules in stem cell differentiation to insulin-producing cells. Bioorg Med Chem 2006;14:6466–74.

    PubMed  CAS  Google Scholar 

  67. Rafaeloff R, Pittenger GL, Barlow SW, et al. Cloning and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene and its expression in islet neogenesis in hamsters. J Clin Invest 1997;99:2100–9.

    PubMed  CAS  Google Scholar 

  68. Zulewski H. Stem cells with potential to generate insulin-producing cells in man. Swiss Med Wkly 2006;136:647–54.

    PubMed  CAS  Google Scholar 

  69. Gershengorn MC, Hardikar AA, Hardikar A, Geras-Raaka E, Marcus-Samuels B, Raaka BM. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 2004;306:2261–4.

    PubMed  CAS  Google Scholar 

  70. Davani B, Ikonomou L, Raaka BM, et al. Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo. Stem Cells 2007;25:3215.

    PubMed  CAS  Google Scholar 

  71. Atouf F, Park CH, Pechhold K, Ta M, Choi Y, Lumelsky NL. No evidence for mouse pancreatic beta-cell epithelial-mesenchymal transition in vitro. Diabetes 2007;56:699–702.

    PubMed  CAS  Google Scholar 

  72. Chase LG, Ulloa-Montoya F, Kidder BL, Verfaillie CM. Islet-derived fibroblast-like cells are not derived via epithelial–mesenchymal transition from Pdx-1 or insulin-positive cells. Diabetes 2007;56:3–7.

    PubMed  CAS  Google Scholar 

  73. Eberhardt M, Salmon P, von Mach MA, et al. Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem Biophys Res Commun 2006;345:1167–76.

    PubMed  CAS  Google Scholar 

  74. Weinberg N, Ouziel-Yahalom L, Knoller S, Efrat S, Dor Y. Lineage tracing evidence for in vitro dedifferentiation but rare proliferation of mouse pancreatic beta-cells. Diabetes 2007;56:1299–304.

    PubMed  CAS  Google Scholar 

  75. D’Alessandro JS, Lu K, Fung BP, Colman A, Clarke DL. Rapid and efficient in vitro generation of pancreatic islet progenitor cells from nonendocrine epithelial cells in the adult human pancreas. Stem Cells Dev 2007;16:75–89.

    PubMed  Google Scholar 

  76. Minami K, Okuno M, Miyawaki K, et al. Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci U S A 2005;102:15116–21.

    PubMed  CAS  Google Scholar 

  77. Desai BM, Oliver-Krasinski J, De Leon DD, et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell regeneration. J Clin Invest 2007;117:971–7.

    PubMed  CAS  Google Scholar 

  78. Ackermann AM, Gannon M. Molecular regulation of pancreatic β-cell mass development, maintenance, and expansion. J Mol Endocrinol 2007;38:193–206.

    PubMed  CAS  Google Scholar 

  79. Murtaugh LC. Pancreas and beta-cell development: from the actual to the possible. Development 2007;134:427–38.

    PubMed  CAS  Google Scholar 

  80. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004;429:41–6.

    PubMed  CAS  Google Scholar 

  81. Kodama S, Kuhtreiber W, Fujimura S, Dale EA, Faustman DL. Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science 2003;302:1223–7.

    PubMed  CAS  Google Scholar 

  82. Banerjee M, Kanitkar M, Bhonde RR. Approaches towards endogenous pancreatic regeneration. Rev Diab Stud 2005;2:165–76.

    Google Scholar 

  83. Efrat S. Prospects for gene therapy of insulin-dependent diabetes mellitus. Diabetologia 1998;41:1401–9.

    PubMed  CAS  Google Scholar 

  84. Choi JB, Uchino H, Azuma K, et al. Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia 2003;46:1366–74.

    PubMed  CAS  Google Scholar 

  85. Lechner A, Yang Y-Q, Blacken RA, Wang L, Nolan AL, Habener JF. No evidence for significant transdifferentiation of bone marrow into pancreatic β-cells in vivo. Diabetes 2004;53:616–23.

    PubMed  CAS  Google Scholar 

  86. Hasegawa Y, Ogihara T, Yamada T, et al. Bone marrow (BM) transplantation promotes beta-cell regeneration after acute injury through BM cell mobilization. Endocrinology 2007;148:2006–15.

    PubMed  CAS  Google Scholar 

  87. Butler AE, Huang A, Rao PN, et al. Hematopoietic stem cells derived from adult donors are not a source of pancreatic beta-cells in adult nondiabetic humans. Diabetes 2007;56:1810–6.

    PubMed  CAS  Google Scholar 

  88. Lavazais E, Pogu S, Sai P, Martignat L. Cytokine mobilization of bone marrow cells and pancreatic lesion do not improve streptozotocin-induced diabetes in mice by transdifferentiation of bone marrow cells into insulin-producing cells. Diabetes Metab 2007;33:68–78.

    PubMed  CAS  Google Scholar 

  89. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 2004;117:2971–81.

    PubMed  Google Scholar 

  90. Tayaramma T, Ma B, Rohde M, Mayer H. Chromatin-remodeling factors allow differentiation of bone marrow cells into insulin-producing cells. Stem Cells 2006;24:2858–67.

    PubMed  CAS  Google Scholar 

  91. Moriscot C, de Fraipont F, Richard MJ, et al. Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells 2005;23:594–604.

    PubMed  CAS  Google Scholar 

  92. Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 2007;25:2837–44.

    PubMed  CAS  Google Scholar 

  93. Yu S, Li C, Xin-guo H, et al. Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chin Med J (Engl) 2007;120:771–6.

    Google Scholar 

  94. Timper K, Seboek D, Eberhardt M, et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 2006;341:1135–40.

    PubMed  CAS  Google Scholar 

  95. Ruhnke M, Ungefroren H, Nussler A, et al. Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells. Gastroenterology 2005;128:1774–86.

    PubMed  CAS  Google Scholar 

  96. Zhao Y, Huang Z, Lazzarini P, Wang Y, Di A, Chen M. A unique human blood-derived cell population displays high potential for producing insulin. Biochem Biophys Res Commun 2007;360:205–11.

    PubMed  CAS  Google Scholar 

  97. Yang L, Li S, Hatch H, et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci U S A 2002;99:8078–83.

    PubMed  CAS  Google Scholar 

  98. Kim S, Shin JS, Kim HJ, Fisher RC, Lee MJ, Kim CW. Streptozotocin-induced diabetes can be reversed by hepatic oval cell activation through hepatic transdifferentiation and pancreatic islet regeneration. Lab Invest 2007;87:702–12.

    PubMed  CAS  Google Scholar 

  99. Zalzman M, Gupta S, Giri RK, et al. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc Natl Acad Sci U S A 2003;100:7253–8.

    PubMed  CAS  Google Scholar 

  100. Shternhall-Ron K, Quintana FJ, Perl S, et al. Ectopic PDX-1 expression in liver ameliorates type 1 diabetes. J Autoimmun 2007;28:134–42.

    PubMed  CAS  Google Scholar 

  101. Kojima H, Nakamura T, Fujita Y, et al. Combined expression of pancreatic duodenal homeobox 1 and islet factor 1 induces immature enterocytes to produce insulin. Diabetes 2002;51:1398–408.

    PubMed  CAS  Google Scholar 

  102. Han J, Lee HH, Kwon H, Shin S, Yoon JW, Jun HS. Engineered enteroendocrine cells secrete insulin in response to glucose and reverse hyperglycemia in diabetic mice. Mol Ther 2007;15:1195–202.

    PubMed  CAS  Google Scholar 

  103. Choi D, Lee HJ, Jee S, et al. In vitro differentiation of mouse embryonic stem cells: enrichment of endodermal cells in the embryoid body. Stem Cells 2005;23:817–27.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Roche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roche, E., Vicente-Salar, N., Arribas, M., Paredes, B. (2009). Strategies Toward Beta-Cell Replacement. In: Baharvand, H. (eds) Trends in Stem Cell Biology and Technology. Humana Press. https://doi.org/10.1007/978-1-60327-905-5_17

Download citation

Publish with us

Policies and ethics