Skip to main content

Stem Cell Transplantation Supports the Repair of Injured Olfactory Neuroepithelium After Permanent Lesion

  • Chapter
  • First Online:
Trends in Stem Cell Biology and Technology

Abstract

We investigated whether human cord blood-selected CD133+ stem cells (HSC) may engraft the olfactory mucosa and contribute to restoration of neuro-olfactory epithelium (NE) in nod-scid mice damaged by dichlobenil. The herbicide dichlobenil selectively causes necrosis of the dorsomedial part of the NE and underlying mucosa, while the lateral part of the olfactory region remains undamaged. The aim of this research was to demonstrate that HSC stimulate self-renewal of neuronal stem cells and promote their differentiation into bipolar olfactory neurons to replace the injured NE. By PCR, we tested the presence of three human-specific microsatellites (CODIS; Combined DNS Index System), used as DNA markers for traceability of the engrafted cells, demonstrating their presence in various tissues of the host, including the olfactory mucosa, 1 month after transplantation. By immunohistochemistry and lectin staining, we demonstrated that, in injured mice, HSC contributed to stimulating residual endogenous olfactory neurons, promoting recovery of the original phenotype of the NE, in contrast to the lack of spontaneous regeneration in similar injured areas always seen in the nontransplanted control mice. Multiple colour fluorescence in situ hybridisation (M-FISH) analysis detected seven human genomic sequences present in different chromosomes and provided further evidence of positive prolonged engraftment of chimeric cells in the olfactory mucosa. This study provides the first evidence that transplanted HSC migrating to the neuro-olfactory mucosa may contribute to NE structure restoration with resumption of the sensorineural olfactory loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farbman AI. Cell biology of olfaction. Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  2. Ding XX, Coon MJ. Purification and characterization of two unique forms of cytochrome P 450 from rabbit nasal microsomes. Biochemistry 1988;27:8330–7.

    Article  PubMed  CAS  Google Scholar 

  3. Chen Y, Getchell ML, Ding X, et al. Immunolocalization of two cytochrome P450 isozymes in rat nasal chemosensory tissue. Neuroreport 1992;3:749–52.

    Article  PubMed  CAS  Google Scholar 

  4. Suzuki Y, Schafer J, Farbman AI. Phagocytic cells in the rat olfactory epithelium after bulbectomy. Exp Neurol 1995;136:225–33.

    Article  PubMed  CAS  Google Scholar 

  5. Suzuki Y, Takeda M, Farbman AI. Supporting cells as phagocytes in the olfactory epithelium after bulbectomy. J Comp Neurol 1996;376:509–17.

    Article  PubMed  CAS  Google Scholar 

  6. Huard JM, Schwob JE. Cell cycle of globose basal cells in rat olfactory epithelium. Dev Dyn 1995;203:17–26.

    Article  PubMed  CAS  Google Scholar 

  7. Calderon-Garciduenas L, Rodriguez-Alcaraz A, Villarreal-Calderon A, et al. Nasal epithelium as a sentinel for airborne environmental pollution. Toxicol Sci 1998;46:352–64.

    Article  PubMed  CAS  Google Scholar 

  8. Graziadei, PPC, Monti Graziadei GA. Continuous nerve cell renewal in the olfactory system. In: Jacobson M, editor. Handbook of sensory physiology. Vol. 9 Development of sensory systems. Springer, New York, 1978:55–83.

    Google Scholar 

  9. Farbman AI. Olfactory neurogenesis: genetic or environmental controls? Trends Neurosci 1990;13:362–5.

    Article  PubMed  CAS  Google Scholar 

  10. Beyers DW, Farmer MS. Effects of copper on olfaction of Colorado pikeminnow. Environ Toxicol Chem 2001;20:907–12.

    Article  PubMed  CAS  Google Scholar 

  11. Baldwin DH, Sandhal JF, Labenia JS, et al. Sublethal effect of copper on coho salmon: impacts on nonoverlapping receptor pathways in the peripheral olfactory nervous system. Environ Toxicol Chem 2003;22:2266–74.

    Article  PubMed  CAS  Google Scholar 

  12. Schwob JE, Youngentob SL, Mezza RC. Reconstitution of the rat olfactory epithelium after methyl bromide-induced lesion. J Comp Neurol 1995;359:15–37.

    Article  PubMed  CAS  Google Scholar 

  13. Bergman U, Brittebo EB. Methimazole toxicity in rodents: covalent binding in the olfactory mucosa and detection of glial fibrillary acidic protein in the olfactory bulb. Toxicol Appl Pharmacol 1999;155:190–200.

    Article  PubMed  CAS  Google Scholar 

  14. Brandt I, Brittebo EB, Feil VJ, et al. Irreversible binding and toxicity of the herbicide dichlorobenil (2,6-dichlorobenzonitrile) in the olfactory mucosa of mice. Toxicol Appl Pharmacol 1990;103:491–501.

    Article  PubMed  CAS  Google Scholar 

  15. Bergman U, Ostergren A, Gustafson A-L, et al. Differential effects of olfactory toxicants on olfactory regeneration. Arch Toxicol 2002;76:104–12.

    Article  PubMed  CAS  Google Scholar 

  16. Buckland ME, Cunningham AM. Alterations in expression of the neurotrophic factors glial cell line-derived neurotrophic factor, ciliary neurotrophic factor and brain-derived neurotrophicfactor, in the target-deprived olfactory neuroepithelium. Neuroscience 1999;90:333–47.

    Article  PubMed  CAS  Google Scholar 

  17. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–7.

    Article  PubMed  CAS  Google Scholar 

  18. Strem BM, Hicok KC, Zhu M, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 2005;54:132–41.

    Article  PubMed  CAS  Google Scholar 

  19. Mizuno H, Zuk PA, Zhu M, et al. Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg 2002;109:199–209.

    Article  PubMed  Google Scholar 

  20. Van Damme EJM, Peumans WJ, Pusztai A, et al. Handbook of plant lectins: properties and biomedical applications. Wiley, Chichester, England, 1998.

    Google Scholar 

  21. Ricci U, Sani I, Guarducci S, et al. Infrared fluorescent automated detection of thirteen short tandem repeat polymorphisms and one gender-determining system of the CODIS core system. Electrophoresis 2000;213:564–70.

    Google Scholar 

  22. Taniguchi K, Saito H, Okamura M, et al. Immunohistochemical demonstration of protein gene product 9.5 (PGP 9.5) in the primary olfactory system of the rat. Neurosci Lett 1993;156:24–6.

    Article  PubMed  CAS  Google Scholar 

  23. Johnson EW, Eller PM, Jafek BW. Protein gene product 9.5 in the developing and mature rat vomeronasal organ. Dev Brain Res 1994;78:259–64.

    Article  CAS  Google Scholar 

  24. Schofield JN, Day INM, Thompson RJ, et al. PGP 9.5, a ubiquitin C-terminal hydrolase; pattern of mRNA and protein expression during neural development in the mouse. Dev Brain Res 1995;85:229–38.

    Article  CAS  Google Scholar 

  25. Key B, Akeson RA. Olfactory neurons express a unique glycosylated form of the neural cell adhesion molecule NCAM. J Cell Biol 1990;110:1729–43.

    Article  PubMed  CAS  Google Scholar 

  26. Key B, Akeson RA. Immunochemical markers for the frog olfactory neuroepithelium. Dev Brain Res 1990;57:103–17.

    Article  CAS  Google Scholar 

  27. Breer H. Molecular reaction cascade in olfactory signal transduction. J Steroid Biochem Mol Biol 1991;39:621–5.

    Article  PubMed  CAS  Google Scholar 

  28. Franceschini V, Lazzari M, Revoltella RP, et al. Histochemical study by lectin binding of surface glycoconjugates in the developing olfactory system of rat. Int J Dev Neurosci 1994;12:197–206.

    Article  PubMed  CAS  Google Scholar 

  29. Lipscomb BW, Treolar HB, Klehoff J, et al. Cell surface carbohydrates and glomerular targeting of olfactory sensory neuron axons in the mouse. J Comp Neurol 2003;467:22–31.

    Article  PubMed  CAS  Google Scholar 

  30. Henion TR, Raitcheva D, Grosholz R, et al. β1,3-N-Acetylglucosaminyltransferase 1 glycosilation is required for axon pathfinding by olfactory sensory neurons. J Neurosci 2005;25:1894–903.

    Article  PubMed  CAS  Google Scholar 

  31. St. John J, Key B. A model for axonal navigation based on glycocodes in the primary olfactory system. Chem Senses 2005;30 Suppl 1:i123–4.

    Article  Google Scholar 

  32. Hao HN, Zhao J, Thomas RL, et al. Fetal human hemopoietic stem cells can differentiate sequentially into neural stem cells and then astrocytes in vitro. J Hematother Stem Cell Res 2003;12:23–32.

    Article  PubMed  CAS  Google Scholar 

  33. Baal N, Reisinger K, Jahr H, et al. Expression of transcription factor Oct-4 and other embryonic genes in CD133 positive cells from human umbilical cord blood. Thromb Haemost 2004;92:767–75.

    PubMed  CAS  Google Scholar 

  34. Nan B, Getchell ML, Partin JV, et al. Leukemia inhibitory factor, interleukin-6, and their receptors are expressed transiently in the olfactory mucosa after target ablation. J Comp Neurol 2001;435:60–77.

    Article  PubMed  CAS  Google Scholar 

  35. Getchell TV, Shah DS, Partin JV, et al. Leukemia inhibitory factor mRNA expression is upregulated in macrophages and olfactory receptor neurons after target ablation. J Neurosci Res 2002;67:246–54.

    Article  PubMed  CAS  Google Scholar 

  36. Getchell TV, Subhedar NK, Shah DS, et al. Chemokine regulation of macrophage recruitment into the olfactory epithelium following target ablation: involvement of macrophage inflammatory protein-1 and monocyte chemoattractant protein-1. J Neurosci Res 2002;70:784–93.

    Article  PubMed  CAS  Google Scholar 

  37. Bauer S, Rasika S, Han J, et al. Leukemia inhibitory factor is a key signal for injury-induced neurogenesis in the adult mouse olfactory epithelium. J Neurosci 2003;23:1792–803.

    PubMed  CAS  Google Scholar 

  38. Michelini M, Franceschini V, Sihui Chen S, et al. Primate embryonic stem cells create their own niche while differentiating in three-dimensional culture systems. Cell Prolif 2006;39:217–29.

    Article  PubMed  CAS  Google Scholar 

  39. Awenagha O, Campbell G, Bird MM. Distribution of GAP-43, β-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment. J Neurocyt 2003;32:1077–89.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Isabella Andreini for her valuable suggestions and generous help. Supporting grants to RPR by: C.N.R.: RSTL 2007; Italian Ministry of Health (Project “Stem 2001”; Istituto Zooprofilattico Sperimentale Lazio e Toscana, I.F. 2005–2007); Italian Ministry of University and Research (M.I.U.R.) (FIRB: “New Medical Engineering” and “Technologies in Oncology”); Joint Project “Kontakt” between the Ministries of Foreign Affairs of Italy and Czech Republic; Foundation “Stem Cells & Life” Pisa, Italy. Supporting Grants to VF by M.I.U.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto P. Revoltella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Franceschini, V., Bettini, S., Saccardi, R., Revoltella, R.P. (2009). Stem Cell Transplantation Supports the Repair of Injured Olfactory Neuroepithelium After Permanent Lesion. In: Baharvand, H. (eds) Trends in Stem Cell Biology and Technology. Humana Press. https://doi.org/10.1007/978-1-60327-905-5_16

Download citation

Publish with us

Policies and ethics