Skip to main content

Spermatogonial Stem Cells

  • Chapter
  • First Online:
Trends in Stem Cell Biology and Technology
  • 890 Accesses

Abstract

New developments in the field of spermatogonial stem cell (SSC) research have been reviewed. Novel techniques have rendered interesting results in studies on SSC kinetics in nonprimate mammals as well as in primates, and the classical views on the nature and the behavior of SSC are being challenged. However, no definite conclusions can yet be drawn. Many new proteins have been detected that function in the pathways that regulate SSC self-renewal and differentiation. Regretfully, no specific marker for SSCs has yet been detected. Furthermore, it has become clear that SSCs are located in specific niches that are related to the vasculature that surrounds the seminiferous tubules. Great progress has been made in the development of methods for culturing mouse and bovine SSCs. These cells can now be propagated in vitro for many months, while they retain their genomic integrity and capacity to colonize a recipient mouse testis. Finally, it has become abundantly clear that at least mouse SSCs can become multipotent embryonic stem–like cells again, capable of differentiation into many other cell lineages. Future study will determine whether the latter is also possible for human SSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huckins C. The spermatogonial stem cell population in adult rats I. Their morphology, proliferation and maturation. Anat Rec 1971;169:533–57.

    Article  PubMed  CAS  Google Scholar 

  2. Oakberg EF. Spermatogonial stem-cell renewal in the mouse. Anat Rec 1971;169:515–31.

    Article  PubMed  CAS  Google Scholar 

  3. Huckins C. The spermatogonial stem cell population in adult rats. II. A radioautographic analysis of their cell cycle properties. Cell Tissue Kinet 1971;4:313–34.

    PubMed  CAS  Google Scholar 

  4. Huckins C. Cell cycle properties of differentiating spermatogonia in adult Sprague–Dawley rats. Cell Tissue Kinet 1971;4:139–54.

    PubMed  CAS  Google Scholar 

  5. Lok D, deRooij DG. Spermatogonial multiplication in the Chinese hamster I. Cell cycle properties and synchronization of differentiating spermatogonia. Cell Tissue Kinet 1983;16:7–18.

    PubMed  CAS  Google Scholar 

  6. Lok D, de Rooij DG. Spermatogonial multiplication in the Chinese hamster. III. Labelling indices of undifferentiated spermatogonia throughout the cycle of the seminiferous epithelium. Cell Tissue Kinet 1983;16:31–40.

    PubMed  CAS  Google Scholar 

  7. Lok D, Jansen MT, de Rooij DG. Spermatogonial multiplication in the Chinese hamster. II. Cell cycle properties of undifferentiated spermatogonia. Cell Tissue Kinet 1983;16:19–29.

    PubMed  CAS  Google Scholar 

  8. Lok D, Jansen MT, de Rooij DG. Spermatogonial multiplication in the Chinese hamster. IV. Search for long cycling stem cells. Cell Tissue Kinet 1984;17:135–43.

    PubMed  CAS  Google Scholar 

  9. Lok D, Weenk D, de Rooij DG. Morphology, proliferation, and differentiation of undifferentiated spermatogonia in the Chinese hamster and the ram. Anat Rec 1982;203:83–99.

    Article  PubMed  CAS  Google Scholar 

  10. Tegelenbosch RAJ, de Rooij DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 1993;290:193–200.

    Article  PubMed  CAS  Google Scholar 

  11. Nakagawa T, Nabeshima Y, Yoshida S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 2007;12:195–206.

    Article  PubMed  CAS  Google Scholar 

  12. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A 1994;91:11303–7.

    Article  PubMed  CAS  Google Scholar 

  13. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A 1994;91:11298–302.

    Article  PubMed  CAS  Google Scholar 

  14. Ogawa T, Arechaga JM, Avarbock MR, Brinster RL. Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol 1997;41:111–22.

    PubMed  CAS  Google Scholar 

  15. Creemers LB, Meng X, Den Ouden K, et al. Transplantation of germ cells from glial cell line-derived neurotrophic factor-overexpressing mice to host testes depleted of endogenous spermatogenesis by fractionated irradiation. Biol Reprod 2002;66:1579–84.

    Article  PubMed  CAS  Google Scholar 

  16. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc Natl Acad Sci U S A 2000;97:8346–51.

    Article  PubMed  CAS  Google Scholar 

  17. Nagano MC. Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice. Biol Reprod 2003;69:701–7.

    Article  PubMed  CAS  Google Scholar 

  18. van Beek MEAB, Meistrich ML, de Rooij DG. Probability of self-renewing divisions of spermatogonial stem cells in colonies, formed after fission neutron irradiation. Cell Tissue Kinet 1990;23:1–16.

    PubMed  CAS  Google Scholar 

  19. Meng X, Lindahl M, Hyvonen ME, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 2000;287:1489–93.

    Article  PubMed  CAS  Google Scholar 

  20. Tadokoro Y, Yomogida K, Ohta H, Tohda A, Nishimune Y. Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech Dev 2002;113:29–39.

    Article  PubMed  CAS  Google Scholar 

  21. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 2004;101:16489–94.

    Article  PubMed  CAS  Google Scholar 

  22. Lee J, Kanatsu-Shinohara M, Inoue K, et al. Akt mediates self-renewal division of mouse spermatogonial stem cells. Development 2007;134:1853–9.

    Article  PubMed  CAS  Google Scholar 

  23. Oatley JM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem 2007;282:25842–51.

    Article  PubMed  CAS  Google Scholar 

  24. Goriely A, McVean GAT, van Pelt AMM, et al. Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. Proc Natl Acad Sci U S A 2005;102:6051–6.

    Article  PubMed  CAS  Google Scholar 

  25. Buaas FW, Kirsh AL, Sharma M, et al. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 2004;36:647–52.

    Article  PubMed  CAS  Google Scholar 

  26. Costoya JA, Hobbs RM, Barna M, et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 2004;36:653–9.

    Article  PubMed  CAS  Google Scholar 

  27. Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brinster RL. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci U S A 2006;103:9524–9.

    Article  PubMed  CAS  Google Scholar 

  28. Payne C, Braun RE. Glial cell line-derived neurotrophic factor maintains a POZ-itive influence on stem cells. Proc Natl Acad Sci U S A 2006;103:9751–2.

    Article  PubMed  CAS  Google Scholar 

  29. Filipponi D, Hobbs RM, Ottolenghi S, et al. Repression of kit expression by Plzf in germ cells. Mol Cell Biol 2007;27:6770–81.

    Article  PubMed  CAS  Google Scholar 

  30. Schrans-Stassen BHGJ, van de Kant HJG, de Rooij DG, van Pelt AMM. Differential expression of c-Kit in mouse undifferentiated and differentiating type A spermatogonia. Endocrinology 1999;140:5894–900.

    Article  PubMed  CAS  Google Scholar 

  31. Nagano M, Ryu BY, Brinster CJ, Avarbock MR, Brinster RL. Maintenance of mouse male germ line stem cells in vitro. Biol Reprod 2003;68:2207–14.

    Article  PubMed  CAS  Google Scholar 

  32. Morrow C, Hostetler C, Griswold M, et al. ETV5 is required for continuous spermatogenesis in adult mice and may mediate blood-testes barrier function and testicular immune privilege. Ann N Y Acad Sci 2007;1120:144–51.

    Article  PubMed  CAS  Google Scholar 

  33. Simon L, Ekman GC, Tyagi G, Hess RA, Murphy KM, Cooke PS. Common and distinct factors regulate expression of mRNA for ETV5 and GDNF, Sertoli cell proteins essential for spermatogonial stem cell maintenance. Exp Cell Res 2007;313:3090–9.

    Article  PubMed  CAS  Google Scholar 

  34. Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007;449:1003–7.

    Article  PubMed  CAS  Google Scholar 

  35. Chiarini-Garcia H, Hornick JR, Griswold MD, Russell LD. Distribution of type A spermatogonia in the mouse is not random. Biol Reprod 2001;65:1179–85.

    Article  PubMed  CAS  Google Scholar 

  36. Chiarini-Garcia H, Raymer AM, Russell LD. Non-random distribution of spermatogonia in rats: evidence of niches in the seminiferous tubules. Reproduction 2003;126:669–80.

    Article  PubMed  CAS  Google Scholar 

  37. Meistrich ML, Shetty G. Inhibition of spermatogonial differentiation by testosterone. J Androl 2003;24:135–48.

    PubMed  CAS  Google Scholar 

  38. Yoshida S, Sukeno M, Nabeshima Y. A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 2007;317:1722–6.

    Article  PubMed  CAS  Google Scholar 

  39. Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol 2005;21:605–31.

    Article  PubMed  CAS  Google Scholar 

  40. Tulina N, Matunis E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 2001;294:2546–9.

    Article  PubMed  CAS  Google Scholar 

  41. Shinohara T, Avarbock MR, Brinster RL. Beta(1)- and alpha(6)-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 1999;96:5504–9.

    Article  PubMed  CAS  Google Scholar 

  42. Kanatsu-Shinohara M, Toyokuni S, Shinohara T. CD9 Is a surface marker on mouse and rat male germline stem cells. Biol Reprod 2004;70:70–5.

    Article  PubMed  CAS  Google Scholar 

  43. Ryu BY, Orwig KE, Kubota H, Avarbock MR, Brinster RL. Phenotypic and functional characteristics of spermatogonial stem cells in rats. Dev Biol 2004;274:158–70.

    Article  PubMed  CAS  Google Scholar 

  44. Yoshida S, Takakura A, Ohbo K, et al. Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis. Dev Biol 2004;269:447–58.

    Article  PubMed  CAS  Google Scholar 

  45. Raverot G, Weiss J, Park SY, Hurley L, Jameson JL. Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev Biol 2005;283:215–25.

    Article  PubMed  CAS  Google Scholar 

  46. von Schönfeldt V, Wistuba J, Schlatt S. Notch-1, c-Kit and GFRalpha-1 are developmentally regulated markers for premeiotic germ cells. Cytogenet Genome Res 2004;105:235–9.

    Article  PubMed  Google Scholar 

  47. Hofmann MC, Braydich-Stolle L, Dym M. Isolation of male germ-line stem cells; influence of GDNF. Dev Biol 2005;279:114–24.

    Article  PubMed  CAS  Google Scholar 

  48. Hamra FK, Schultz N, Chapman KM, et al. Defining the spermatogonial stem cell. Dev Biol 2004;269:393–410.

    Article  PubMed  CAS  Google Scholar 

  49. Pesce M, Wang X, Wolgemuth DJ, Scholer H. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev 1998;71:89–98.

    Article  PubMed  CAS  Google Scholar 

  50. Oulad Abdelghani M, Bouillet P, Decimo D, et al. Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J Cell Biol 1996;135:469–77.

    Article  PubMed  CAS  Google Scholar 

  51. Giuili G, Tomljenovic A, Labrecque N, Oulad-Abdelghani M, Rassoulzadegan M, Cuzin F. Murine spermatogonial stem cells: targeted transgene expression and purification in an active state. EMBO Rep 2002;3:753–9.

    Article  PubMed  CAS  Google Scholar 

  52. Aponte PM, van Bragt MPA, de Rooij DG, van Pelt AMM. Spermatogonial stem cells: characteristics and experimental possibilities. APMIS 2005;113:727–42.

    Article  PubMed  Google Scholar 

  53. Miura T, Ando N, Miura C, Yamauchi K. Comparative studies between in vivo and in vitro spermatogenesis of Japanese eel (Anguilla japonica). Zool Sci 2002;19:321–9.

    Article  PubMed  Google Scholar 

  54. Lee JH, Gye MC, Choi KW, et al. In vitro differentiation of germ cells from nonobstructive azoospermic patients using three-dimensional culture in a collagen gel matrix. Fertil Steril 2007;87:824–33.

    Article  PubMed  CAS  Google Scholar 

  55. Lee JH, Kim HJ, Kim H, Lee SJ, Gye MC. In vitro spermatogenesis by three-dimensional culture of rat testicular cells in collagen gel matrix. Biomaterials 2006;27:2845–53.

    Article  PubMed  CAS  Google Scholar 

  56. Movahedin M, Ajeen A, Ghorbanzadeh N, Tiraihi T, Valojerdi MR, Kazemnejad A. In vitro maturation of fresh and frozen–thawed mouse round spermatids. Andrologia 2004;36:269–76.

    Article  PubMed  CAS  Google Scholar 

  57. Tesarik J, Mendoza C, Greco E. In-vitro maturation of immature human male germ cells. Mol Cell Endocrinol 2000;166:45–50.

    Article  PubMed  CAS  Google Scholar 

  58. Kanatsu-Shinohara M, Miki H, Inoue K, et al. Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod 2005;72:985–91.

    Article  PubMed  CAS  Google Scholar 

  59. Kanatsu-Shinohara M, Ogonuki N, Inoue K, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 2003;69:612–6.

    Article  PubMed  CAS  Google Scholar 

  60. Kubota H, Brinster RL. Technology insight: in vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nat Clin Pract Endocrinol Metab 2006;2:99–108.

    Article  PubMed  CAS  Google Scholar 

  61. Izadyar F, Den Ouden K, Creemers LB, Posthuma G, Parvinen M, De Rooij DG. Proliferation and differentiation of bovine type a spermatogonia during long-term culture. Biol Reprod 2003;68:272–81.

    Article  PubMed  CAS  Google Scholar 

  62. Nagano M, Avarbock MR, Leonida EB, Brinster CJ, Brinster RL. Culture of mouse spermatogonial stem cells. Tissue Cell 1998;30:389–97.

    Article  PubMed  CAS  Google Scholar 

  63. Kubota H, Avarbock MR, Brinster RL. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Reprod 2004;71:722–31.

    Article  PubMed  CAS  Google Scholar 

  64. Aponte PM, Soda T, van de Kant HJG, de Rooij DG. Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor. Theriogenology 2006;65:1828–47.

    Article  PubMed  CAS  Google Scholar 

  65. Kanatsu-Shinohara M, Inoue K, Lee J, et al. Anchorage-independent growth of mouse male germline stem cells in vitro. Biol Reprod 2006;74:522–9.

    Article  PubMed  CAS  Google Scholar 

  66. Kanatsu-Shinohara M, Ogonuki N, Iwano T, et al. Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development 2005;132:4155–63.

    Article  PubMed  CAS  Google Scholar 

  67. Hofmann MC, Narisawa S, Hess RA, Millan JL. Immortalization of germ cells and somatic testicular cells using the SV40 large T antigen. Exp Cell Res 1992;201:417–35.

    Article  PubMed  CAS  Google Scholar 

  68. Hofmann MC, Hess RA, Goldberg E, Millan JL. Immortalized germ cells undergo meiosis in vitro. Proc Natl Acad Sci U S A 1994;91:5533–7.

    Article  PubMed  CAS  Google Scholar 

  69. Tascou S, Nayernia K, Samani A, et al. Immortalization of murine male germ cells at a discrete stage of differentiation by a novel directed promoter-based selection strategy. Biol Reprod 2000;63:1555–61.

    Article  PubMed  CAS  Google Scholar 

  70. Feng LX, Chen Y, Dettin L, et al. Generation and in vitro differentiation of a spermatogonial cell line. Science 2002;297:392–5.

    Article  PubMed  CAS  Google Scholar 

  71. van Pelt AMM, Roepers-Gajadien HL, Gademan IS, Creemers LB, de Rooij DG, van Dissel-Emiliani FMF. Establishment of cell lines with rat spermatogonial stem cell characteristics. Endocrinology 2002;143:1845–50.

    Article  PubMed  CAS  Google Scholar 

  72. Kanatsu-Shinohara M, Inoue K, Lee J, et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 2004;119:1001–12.

    Article  PubMed  CAS  Google Scholar 

  73. Baba S, Heike T, Umeda K, et al. Generation of cardiac and endothelial cells from neonatal mouse testis-derived multipotent germline stem cells. Stem Cells 2007;25:1375–83.

    Article  PubMed  CAS  Google Scholar 

  74. Guan K, Nayernia K, Maier LS, et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006;440:1199–203.

    Article  PubMed  CAS  Google Scholar 

  75. Guan K, Wagner S, Unsold B, et al. Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circ Res 2007;100:1615–25.

    Article  PubMed  CAS  Google Scholar 

  76. Seandel M, James D, Shmelkov SV, et al. Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 2007;449:346–50.

    Article  PubMed  CAS  Google Scholar 

  77. Hu H-M, Xu F-C, Li W, Wu S-H. Biological characteristics of spermatogonial stem cells cultured in conditions for osteoblasts. J Clin Rehab Tissue Eng Res 2007;11:6611–4.

    CAS  Google Scholar 

  78. Boulanger CA, Mack DL, Booth BW, Smith GH. Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proc Natl Acad Sci U S A 2007;104:3871–6.

    Article  PubMed  CAS  Google Scholar 

  79. de Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. J Androl 2000;21:776–98.

    PubMed  CAS  Google Scholar 

  80. Clermont Y. The cycle of the seminiferous epithelium in man. Am J Anat 1963;112:35–51.

    Article  PubMed  CAS  Google Scholar 

  81. Clermont Y. Spermatogenesis in man. A study of the spermatogonial population. Fertil Steril 1966;17:705–21.

    PubMed  CAS  Google Scholar 

  82. Clermont Y. Renewal of spermatogonia in man. Am J Anat 1966;118:509–24.

    Article  PubMed  CAS  Google Scholar 

  83. van Alphen MMA, van de Kant HJG, de Rooij DG. Depletion of the spermatogonia from the seminiferous epithelium of the rhesus monkey after X irradiation. Radiat Res 1988;113:473–86.

    Article  PubMed  CAS  Google Scholar 

  84. van Alphen MMA, van de Kant HJG, de Rooij DG. Repopulation of the seminiferous epithelium of the rhesus monkey after X irradiation. Radiat Res 1988;113:487–500.

    Article  PubMed  CAS  Google Scholar 

  85. Ehmcke J, Schlatt S. A revised model for spermatogonial expansion in man: lessons from non-human primates. Reproduction 2006;132:673–80.

    Article  PubMed  CAS  Google Scholar 

  86. Ehmcke J, Luetjens CM, Schlatt S. Clonal organization of proliferating spermatogonial stem cells in adult males of two species of non-human primates, Macaca mulatta and Callithrix jacchus. Biol Reprod 2005;72:293–300.

    Article  PubMed  CAS  Google Scholar 

  87. Ehmcke J, Simorangkir DR, Schlatt S. Identification of the starting point for spermatogenesis and characterization of the testicular stem cell in adult male rhesus monkeys. Hum Reprod 2005;20:1185–93.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk G. de Rooij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

de Rooij, D.G. (2009). Spermatogonial Stem Cells. In: Baharvand, H. (eds) Trends in Stem Cell Biology and Technology. Humana Press. https://doi.org/10.1007/978-1-60327-905-5_10

Download citation

Publish with us

Policies and ethics