Skip to main content

Alternative Lengthening of Telomeres in Human Cells

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Telomere renewal is a prerequisite for cellular immortalisation. Some cells maintain their telomeres by a telomerase-independent alternative lengthening of telomeres (ALT) mechanism. Characteristic features of most ALT-positive human cells include highly heterogeneous telomere lengths, PML nuclear bodies containing telomeric DNA and telomere-binding proteins, a high frequency of telomeric exchange events, and the presence of extrachromosomal telomeric DNA circles. Numerous proteins involved in DNA recombination, repair and replication also associate with APBs, and proteins involved in homologous recombination are necessary for ALT. These and other data indicate that the mechanism of telomere lengthening in ALT-positive cells may involve recombination-mediated replication of telomeric sequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990;345:458–460.

    Article  CAS  PubMed  Google Scholar 

  2. Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR. Protein composition of catalytically active human telomerase from immortal cells. Science 2007;315:1850–1853.

    Article  CAS  PubMed  Google Scholar 

  3. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 1995;14:4240–4248.

    CAS  PubMed  Google Scholar 

  4. Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 1997;3:1271–1274.

    Article  CAS  PubMed  Google Scholar 

  5. Bryan TM, Reddel RR. Telomere dynamics and telomerase activity in in vitro immortalised human cells. Eur J Cancer 1997;33:767–773.

    Article  CAS  PubMed  Google Scholar 

  6. Rogan EM, Bryan TM, Hukku B, Maclean K, Chang ACM, Moy EL, et al. Alterations in p53 and p16INK4 expression and telomere length during spontaneous immortalization of Li-Fraumeni syndrome fibroblasts. Mol Cell Biol 1995;15:4745–4753.

    CAS  PubMed  Google Scholar 

  7. Henson JD, Hannay JA, McCarthy SW, Royds JA, Yeager TR, Robinson RA, et al. A robust assay for alternative lengthening of telomeres (ALT) in tumors demonstrates the significance of ALT in sarcomas and astrocytomas. Clin Cancer Res 2005;11:217–225.

    CAS  PubMed  Google Scholar 

  8. Allshire RC, Dempster M, Hastie ND. Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucleic Acids Res 1989;17:4611–4627.

    Article  CAS  PubMed  Google Scholar 

  9. de Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM, et al. Structure and variability of human chromosome ends. Mol Cell Biol 1990;10:518–527.

    PubMed  Google Scholar 

  10. Harley CB. Human ageing and telomeres. Ciba Found Symp 1997;211:129–144.

    CAS  PubMed  Google Scholar 

  11. Martens UM, Chavez EA, Poon SS, Schmoor C, Lansdorp PM. Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Exp Cell Res 2000;256:291–299.

    Article  CAS  PubMed  Google Scholar 

  12. Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev 1997;11:2801–2809.

    Article  CAS  PubMed  Google Scholar 

  13. Murnane JP, Sabatier L, Marder BA, Morgan WF. Telomere dynamics in an immortal human cell line. EMBO J 1994;13:4953–4962.

    CAS  PubMed  Google Scholar 

  14. Grobelny JV, Godwin AK, Broccoli D. ALT-associated PML bodies are present in viable cells and are enriched in cells in the G2/M phase of the cell cycle. J Cell Sci 2000;113:4577– 4585.

    CAS  PubMed  Google Scholar 

  15. Opitz OG, Suliman Y, Hahn WC, Harada H, Blum HE, Rustgi AK. Cyclin D1 overexpression and p53 inactivation immortalize primary oral keratinocytes by a telomerase-independent mechanism. J Clin Invest 2001;108:725–732.

    CAS  PubMed  Google Scholar 

  16. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Telomere reduction in human colorectal carcinoma and with ageing. Nature 1990;346:866–868.

    Article  CAS  PubMed  Google Scholar 

  17. Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 1992;11:1921–1929.

    CAS  PubMed  Google Scholar 

  18. Lansdorp PM, Poon S, Chavez E, Dragowska V, Zijlmans M, Bryan T, et al. Telomeres in the hematopoietic system. In: Chadwick DJ, Cardew G, editors. Telomeres and Telomerase. West Sussex: Wiley, 1997:209–218.

    Google Scholar 

  19. Perrem K, Colgin LM, Neumann AA, Yeager TR, Reddel RR. Coexistence of alternative lengthening of telomeres and telomerase in hTERT-transfected GM847 cells. Mol Cell Biol 2001;21:3862–3875.

    Article  CAS  PubMed  Google Scholar 

  20. Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 2007;8:1006–1016.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang WQ, Ringertz N. Altered distribution of the promyelocytic leukemia-associated protein is associated with cellular senescence. Cell Growth Differ 1997;8:513–522.

    CAS  PubMed  Google Scholar 

  22. Wang J, Shiels C, Sasieni P, Wu PJ, Islam SA, Freemont PS, et al. Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J Cell Biol 2004;164:515–526.

    Article  CAS  PubMed  Google Scholar 

  23. Eskiw CH, Dellaire G, Bazett-Jones DP. Chromatin contributes to structural integrity of PML bodies through a SUMO-1-independent mechanism. J Biol Chem 2004;279:9577– 9585.

    Article  CAS  PubMed  Google Scholar 

  24. Zhong S, Salomoni P, Pandolfi PP. The transcriptional role of PML and the nuclear body. Nat Cell Biol 2000;2:E85–E90.

    Article  CAS  PubMed  Google Scholar 

  25. Dellaire G, Bazett-Jones DP. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. BioEssays 2004;26:963–977.

    Article  CAS  PubMed  Google Scholar 

  26. Bernardi R, Pandolfi PP. Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene 2003;22:9048–9057.

    Article  CAS  PubMed  Google Scholar 

  27. Ferbeyre G. PML a target of translocations in APL is a regulator of cellular senescence. Leukemia 2002;16:1918–1926.

    Article  CAS  PubMed  Google Scholar 

  28. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003;113:703–716.

    Article  CAS  PubMed  Google Scholar 

  29. Bischof O, Kirsh O, Pearson M, Itahana K, Pelicci PG, Dejean A. Deconstructing PML-induced premature senescence. EMBO J 2002;21:3358–3369.

    Article  CAS  PubMed  Google Scholar 

  30. Dellaire G, Ching RW, Ahmed K, Jalali F, Tse KC, Bristow RG, et al. Promyelocytic leukemia nuclear bodies behave as DNA damage sensors whose response to DNA double-strand breaks is regulated by NBS1 and the kinases ATM, Chk2, and ATR. J Cell Biol 2006;175:55–66.

    Article  CAS  PubMed  Google Scholar 

  31. Kim JM, Nakao K, Nakamura K, Saito I, Katsuki M, Arai KI, et al. Inactivation of Cdc7 kinase in mouse ES cells results in S-phase arrest and p53-dependent cell death. EMBO J 2002;21:2168–2179.

    Article  CAS  PubMed  Google Scholar 

  32. Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 1999;59:4175–4179.

    CAS  PubMed  Google Scholar 

  33. Fasching CL, Neumann AA, Muntoni A, Yeager TR, Reddel RR. DNA damage induces alternative lengthening of telomeres (ALT) associated promyelocytic leukemia bodies that preferentially associate with linear telomeric DNA. Cancer Res 2007;67:7072–7077.

    Article  CAS  PubMed  Google Scholar 

  34. Tarsounas M, Munoz P, Claas A, Smiraldo PG, Pittman DL, Blasco MA, et al. Telomere maintenance requires the RAD51D recombination/repair protein. Cell 2004;117: 337–347.

    Article  CAS  PubMed  Google Scholar 

  35. Wu G, Lee WH, Chen PL. NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phrases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres. J Biol Chem 2000;275:30618–30622.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu XD, Kuster B, Mann M, Petrini JH, de Lange T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 2000;25:347–352.

    Article  CAS  PubMed  Google Scholar 

  37. Yankiwski V, Marciniak RA, Guarente L, Neff NF. Nuclear structure in normal and Bloom syndrome cells. Proc Natl Acad Sci USA 2000;97:5214–5219.

    Article  CAS  PubMed  Google Scholar 

  38. Stavropoulos DJ, Bradshaw PS, Li X, Pasic I, Truong K, Ikura M, et al. The Bloom syndrome helicase BLM interacts with TRF2 in ALT cells and promotes telomeric DNA synthesis. Hum Mol Genet 2002;11:3135–3144.

    Article  CAS  PubMed  Google Scholar 

  39. Johnson FB, Marciniak RA, McVey M, Stewart SA, Hahn WC, Guarente L. The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J 2001;20:905–913.

    Article  CAS  PubMed  Google Scholar 

  40. Wu G, Jiang X, Lee WH, Chen PL. Assembly of functional ALT-associated promyelocytic leukemia bodies requires Nijmegen breakage syndrome 1. Cancer Res 2003;63:2589–2595.

    CAS  PubMed  Google Scholar 

  41. Dantzer F, Giraud-Panis MJ, Jaco I, Ame JC, Schultz I, Blasco M, et al. Functional interaction between poly(ADP-Ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol Cell Biol 2004;24:1595–1607.

    Article  CAS  PubMed  Google Scholar 

  42. Nabetani A, Yokoyama O, Ishikawa F. Localization of hRad9, hHus1, hRad1 and hRad17, and caffeine-sensitive DNA replication at ALT (alternative lengthening of telomeres)-associated promyelocytic leukemia body. J Biol Chem 2004;279:25849–25857.

    Article  CAS  PubMed  Google Scholar 

  43. Silverman J, Takai H, Buonomo SB, Eisenhaber F, de Lange T. Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev 2004;18:2108–2119.

    Article  CAS  PubMed  Google Scholar 

  44. Fasching CL, Bower K, Reddel RR. Telomerase-independent telomere length maintenance in the absence of ALT-associated PML bodies. Cancer Res 2005;65:2722–2729.

    Article  CAS  PubMed  Google Scholar 

  45. Marciniak RA, Cavazos D, Montellano R, Chen Q, Guarente L, Johnson FB. A novel telomere structure in human alternative lengthening of telomeres cell line. Cancer Res 2005;65:2730–2737.

    Article  CAS  PubMed  Google Scholar 

  46. Johnson JE, Varkonyi RJ, Schwalm J, Cragle R, Klein-Szanto A, Patchefsky A, et al. Multiple mechanisms of telomere maintenance exist in liposarcomas. Clin Cancer Res 2005;11:5347–5355.

    Article  CAS  PubMed  Google Scholar 

  47. Costa A, Daidone MG, Daprai L, Villa R, Cantu S, Pilotti S, et al. Telomere maintenance mechanisms in liposarcomas: association with histologic subtypes and disease progression. Cancer Res 2006;66:8918–8924.

    Article  CAS  PubMed  Google Scholar 

  48. Tokutake Y, Matsumoto T, Watanabe T, Maeda S, Tahara H, Sakamoto S, et al. Extra-chromosome telomere repeat DNA in telomerase-negative immortalized cell lines. Biochem Biophys Res Commun 1998; 247:765–772.

    Article  CAS  PubMed  Google Scholar 

  49. Ogino H, Nakabayashi K, Suzuki M, Takahashi EI, Fujii M, Suzuki T, et al. Release of telomeric DNA from chromosomes in immortal human cells lacking telomerase activity. Biochem Biophys Res Commun 1998; 248: 223–227.

    Article  CAS  PubMed  Google Scholar 

  50. Cesare AJ, Griffith JD. Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous T-loops. Mol Cell Biol 2004; 24: 9948–9957.

    Article  CAS  PubMed  Google Scholar 

  51. Molenaar C, Wiesmeijer K, Verwoerd NP, Khazen S, Eils R, Tanke HJ, et al. Visualizing telomere dynamics in living mammalian cells using PNA probes. EMBO J 2003; 22: 6631– 6641.

    Article  CAS  PubMed  Google Scholar 

  52. Jiang WQ, Zhong ZH, Henson JD, Reddel RR. Identification of candidate alternative lengthening of telomeres genes by methionine restriction and RNA interference. Oncogene 2007; 26: 4635–4647.

    Article  CAS  PubMed  Google Scholar 

  53. Jiang WQ, Zhong ZH, Henson JD, Neumann AA, Chang AC, Reddel RR. Suppression of alternative lengthening of telomeres by Sp100-mediated sequestration of MRE11/RAD50/ NBS1 complex. Mol Cell Biol 2005; 25: 2708–2721.

    Article  PubMed  Google Scholar 

  54. Zhong ZH, Jiang WQ, Cesare AJ, Neumann AA, Wadhwa R, Reddel RR. Disruption of telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that use alternative lengthening of telomeres. J Biol Chem 2007; 282: 29314–29322.

    Article  CAS  PubMed  Google Scholar 

  55. Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT, et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 2006; 24: 341–354.

    Article  CAS  PubMed  Google Scholar 

  56. Potts PR, Yu H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol 2007; 14: 581–590.

    Article  CAS  PubMed  Google Scholar 

  57. Meyne J, Goodwin EH, Moyzis RK. Chromosome localization and orientation of the simple sequence repeat of human satellite I DNA. Chromosoma 1994;103:99–103.

    Article  CAS  PubMed  Google Scholar 

  58. Bailey SM, Goodwin EH, Cornforth MN. Strand-specific fluorescence in situ hybridization: the CO-FISH family. Cytogenet Genome Res 2004;107:14–17.

    Article  CAS  PubMed  Google Scholar 

  59. Londono-Vallejo JA, Der-Sarkissian H, Cazes L, Bacchetti S, Reddel RR. Alternative lengthening of telomeres is characterized by high rates of telomeric exchange. Cancer Res 2004;64:2324–2327.

    Article  CAS  PubMed  Google Scholar 

  60. Bechter OE, Zou Y, Shay JW, Wright WE. Homologous recombination in human telomerase-positive and ALT cells occurs with the same frequency. EMBO Rep 2003;4:1138–1143.

    Article  CAS  PubMed  Google Scholar 

  61. Dunham MA, Neumann AA, Fasching CL, Reddel RR. Telomere maintenance by recombination in human cells. Nat Genet 2000;26:447–450.

    Article  CAS  PubMed  Google Scholar 

  62. Varley H, Pickett HA, Foxon JL, Reddel RR, Royle NJ. Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells. Nat Genet 2002;30:301–305.

    Article  PubMed  Google Scholar 

  63. Lundblad V, Blackburn EH. An alternative pathway for yeast telomere maintenance rescues est1 senescence. Cell 1993;73:347–360.

    Article  CAS  PubMed  Google Scholar 

  64. Chen Q, Ijpma A, Greider CW. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol Cell Biol 2001;21:1819–1827.

    Article  CAS  PubMed  Google Scholar 

  65. Teng SC, Zakian VA. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 1999;19:8083–8093.

    CAS  PubMed  Google Scholar 

  66. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, et al. Mammalian telomeres end in a large duplex loop. Cell 1999;97:503–514.

    Article  CAS  PubMed  Google Scholar 

  67. Lustig AJ. Clues to catastrophic telomere loss in mammals from yeast telomere rapid deletion. Nat Rev Cancer 2003;4:916–923.

    CAS  Google Scholar 

  68. Wang RC, Smogorzewska A, de Lange T. Homologous recombination generates T-loopsized deletions at human telomeres. Cell 2004;119:355–368.

    Article  CAS  PubMed  Google Scholar 

  69. Stansel RM, de Lange T, Griffith JD. T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J 2001;20:5532–5540.

    Article  CAS  PubMed  Google Scholar 

  70. Henson JD, Neumann AA, Yeager TR, Reddel RR. Alternative lengthening of telomeres in mammalian cells. Oncogene 2002;21:598–610.

    Article  CAS  PubMed  Google Scholar 

  71. Compton SA, Choi JH, Cesare AJ, Ozgur S, Griffith JD. Xrcc3 and Nbs1 are required for the production of extrachromosomal telomeric circles in human alternative lengthening of telomere cells. Cancer Res 2007;67:1513–1519.

    Article  CAS  PubMed  Google Scholar 

  72. Natarajan S, Groff-Vindman C, McEachern MJ. Factors influencing the recombinational expansion and spread of telomeric tandem arrays in Kluyveromyces lactis. Eukaryot Cell 2003;2:1115–1127.

    Article  CAS  PubMed  Google Scholar 

  73. Natarajan S, McEachern MJ. Recombinational telomere elongation promoted by DNA circles. Mol Cell Biol 2002;22:4512–4521.

    Article  CAS  PubMed  Google Scholar 

  74. Jeyapalan JN, Varley H, Foxon JL, Pollock RE, Jeffreys AJ, Henson JD, et al. Activation of the ALT pathway for telomere maintenance can affect other sequences in the human genome. Hum Mol Genet 2005;14:1785–1794.

    Article  CAS  PubMed  Google Scholar 

  75. Smogorzewska A, de Lange T. Different telomere damage signaling pathways in human and mouse cells. EMBO J 2002;21:4338–4348.

    Article  CAS  PubMed  Google Scholar 

  76. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005;19:2100–2110.

    Article  PubMed  Google Scholar 

  77. Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 2007;448:1068–1071.

    Article  CAS  PubMed  Google Scholar 

  78. Hakin-Smith V, Jellinek DA, Levy D, Carroll T, Teo M, Timperley WR, et al. Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme. Lancet 2003;361:836–838.

    Article  CAS  PubMed  Google Scholar 

  79. Reddel RR. The role of senescence and immortalization in carcinogenesis. Carcinogenesis 2000;21:477–484.

    Article  CAS  PubMed  Google Scholar 

  80. Cerone MA, Autexier C, Londono-Vallejo JA, Bacchetti S. A human cell line that maintains telomeres in the absence of telomerase and of key markers of ALT. Oncogene 2005; 24: 7893–78901.

    Article  CAS  PubMed  Google Scholar 

  81. Collins K, Mitchell JR. Telomerase in the human organism. Oncogene 2002; 21: 564–579.

    Article  CAS  PubMed  Google Scholar 

  82. Marrone A, Stevens D, Vulliamy T, Dokal I, Mason PJ. Heterozygous telomerase RNA mutations found in dyskeratosis congenita and aplastic anemia reduce telomerase activity via haploinsufficiency. Blood 2004;104: 3936–3942.

    Article  CAS  PubMed  Google Scholar 

  83. Marrone A, Walne A, Tamary H, Masunari Y, Kirwan M, Beswick R, et al. Telomerase reverse transcriptase homozygous mutations in autosomal recessive dyskeratosis congenita and Hoyeraal—Hreidarsson syndrome. Blood 2007; 110: 4198–4205.

    Article  CAS  PubMed  Google Scholar 

  84. de Lange T. T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 2004; 5(4): 323–329.

    Article  PubMed  Google Scholar 

  85. Dessain SK, Yu H, Reddel RR, Beijersbergen RL, Weinberg RA. Methylation of the human telomerase gene CpG island. Cancer Res 2000; 60: 537–541.

    CAS  PubMed  Google Scholar 

  86. Hoare SF, Bryce LA, Wisman GB, Burns S, Going JJ, van der Zee AG, et al. Lack of telomerase RNA gene hTERC expression in alternative lengthening of telomeres cells is associated with methylation of the hTERC promoter. Cancer Res 2001; 61: 27–32.

    CAS  PubMed  Google Scholar 

  87. Atkinson SP, Hoare SF, Glasspool RM, Keith WN. Lack of telomerase gene expression in alternative lengthening of telomere cells is associated with chromatin remodeling of the hTR and hTERT gene promoters. Cancer Res 2005; 65: 7585–7590.

    CAS  PubMed  Google Scholar 

  88. Sanders SL, Portoso M, Mata J, Bahler J, Allshire RC, Kouzarides T. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 2004; 119: 603–614.

    Article  CAS  PubMed  Google Scholar 

  89. Wen J, Cong YS, Bacchetti S. Reconstitution of wild-type or mutant telomerase activity in telomerase negative immortal human cells. Hum Mol Genet 1998; 7: 1137–1141.

    Article  CAS  PubMed  Google Scholar 

  90. Cerone MA, Londono-Vallejo JA, Bacchetti S. Telomere maintenance by telomerase and by recombination can coexist in human cells. Hum Mol Genet 2001; 10: 1945–1952.

    Article  CAS  PubMed  Google Scholar 

  91. Ford LP, Zou Y, Pongracz K, Gryaznov SM, Shay JW, Wright WE. Telomerase can inhibit the recombination-based pathway of telomere maintenance in human cells. J Biol Chem 2001; 276: 32198–32203.

    Article  CAS  PubMed  Google Scholar 

  92. Grobelny JV, Kulp-McEliece M, Broccoli D. Effects of reconstitution of telomerase activity on telomere maintenance by the alternative lengthening of telomeres (ALT) pathway. Hum Mol Genet 2001; 10: 1953–1961.

    Article  CAS  PubMed  Google Scholar 

  93. Katoh M, Katoh M, Kameyama M, Kugoh H, Shimizu M, Oshimura M. A repressor function for telomerase activity in telomerase-negative immortal cells. Mol Carcinog 1998; 21: 17–25.

    Article  CAS  PubMed  Google Scholar 

  94. Perrem K, Bryan TM, Englezou A, Hackl T, Moy EL, Reddel RR. Repression of an alternative mechanism for lengthening of telomeres in somatic cell hybrids. Oncogene 1999; 18: 3383–3390.

    Article  CAS  PubMed  Google Scholar 

  95. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33: 787–791.

    Article  CAS  PubMed  Google Scholar 

  96. Ulaner GA, Huang HY, Otero J, Zhao Z, Ben-Porat L, Satagopan JM, et al. Absence of a telomere maintenance mechanism as a favorable prognostic factor in patients with osteosarcoma. Cancer Res 2003; 63: 1759–1763.

    CAS  PubMed  Google Scholar 

  97. Reddel RR. Alternative lengthening of telomeres, telomerase, and cancer. Cancer Lett 2003; 194: 155–162.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the authors' laboratory is supported by a Fellowship from Promina to HAP, a Fellowship from the National Health and Medical Research Council of Australia to RR, and a Program Grant from the Cancer Council New South Wales. The authors thank L. Colgin, A. Cesare, A. Neumann, J. Henson and E. Collins for their comments on the manuscript and assistance in its preparation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Pickett, H.A., Reddel, R.R. (2009). Alternative Lengthening of Telomeres in Human Cells. In: Hiyama, K. (eds) Telomeres and Telomerase in Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-879-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-879-9_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-306-0

  • Online ISBN: 978-1-60327-879-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics