Skip to main content

Regulation of Telomerase Through Transcriptional and Posttranslational Mechanisms

  • Chapter
Telomeres and Telomerase in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1312 Accesses

Abstract

The enzyme telomerase is associated with nearly 90% of human cancers. To better understand telomerase at the molecular level, a number of proteins involved in its regulation, either directly or indirectly, have been identified. This chapter aims to give a broad overview of both transcriptional and posttranslational telomerase-regulating proteins. Telomeraseistranscriptionally repressed and activatedbyproteins acting on the promoter region, suchas the Mad/Max heterodimer, c-Myc, p53, and Rb. Various kinases and ubiquitin ligases interact with telomerase, suggesting that phos-phorylation and ubiquitination play important roles in inhibiting and activating the enzyme. Also includedinthis chapter are proteins that regulate localizationof hTERT, assemblyofhTERT, hTR regulators, and telomere-bindingproteins that associate with telomerase. By gaining a better understanding of how telomerase is regulated, we can identify ways to block the enzyme in cancer cells or to activate the enzyme in normal cells as a means of modifying the cellular aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shay JW and Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33:787–91.

    CAS  PubMed  Google Scholar 

  2. Wick M, Zubov D, and Hagen G. 1999. Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene 1999; 232:97–106.

    CAS  PubMed  Google Scholar 

  3. Horikawa I, Cable PL, Afshari C, and Barrett JC. Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res 1999; 59:826–30.

    CAS  PubMed  Google Scholar 

  4. Cong YS, Wen J, and Bacchetti S. The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Hum Mol Genet 1999; 8:137–42.

    CAS  PubMed  Google Scholar 

  5. Takakura M, Kyo S, Kanaya T, et al. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcription actication in immortalized and cancer cells. Cancer Res 1999; 248:551–7.

    Google Scholar 

  6. Feng J, Funk WD, Wang SS, et al. The RNA component of human telomerase. Science 1995; 269:1236–41.

    CAS  PubMed  Google Scholar 

  7. Avilion AA, Piatyszek MA, Gupta J, Shay JW, Bacchetti S, and Greider CW. Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues. Cancer Res 1996; 56:645–50.

    CAS  PubMed  Google Scholar 

  8. Kilian A, Bowtell DD, Abud HE, et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum Mol Genet 1997; 6:2011–9.

    CAS  PubMed  Google Scholar 

  9. Meyerson M, Counter CM, Eaton EN, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 1997; 90:785–95.

    CAS  PubMed  Google Scholar 

  10. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277:955–9.

    CAS  PubMed  Google Scholar 

  11. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279:349–52.

    CAS  PubMed  Google Scholar 

  12. Kyo S, Takakura M, Taira T, et al. Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res 2000; 28:669–77.

    CAS  PubMed  Google Scholar 

  13. Wang JL, Xie Y, Allan S, Beach D, and Hannon GJ. Myc activates telomerase. Genes Dev 1998; 12:1769–74.

    CAS  PubMed  Google Scholar 

  14. Sagawa Y, Nishi H, Isaka K, Fujito A, and Takayama M. The correlation of TERT expression with c-myc expression in cervical cancer. Cancer Lett 2001; 168:45–50.

    CAS  PubMed  Google Scholar 

  15. Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, and Dalla-Favera R. Direct activation of TERT transcription by c-MYC. Nat Genet 1999; 21:220–4.

    CAS  PubMed  Google Scholar 

  16. Greenberg RA, O'Hagan RC, Deng H, et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 1999; 18:1219–26.

    CAS  PubMed  Google Scholar 

  17. Gunes C, Lichtsteiner S, Vasserot AP, and Englert C. Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Mad1. Cancer Res 2000; 60:2116–21.

    CAS  PubMed  Google Scholar 

  18. Oh S, Song YH, Yim J, and Kim TK. Identification of Mad as a repressor of the human telomerase (hTERT ) gene. Oncogene 2000; 19:1485–90.

    CAS  PubMed  Google Scholar 

  19. Zou L, Zhang PH, Luo CL, and Tu ZG. Transcript regulation of human telomerase reverse transcriptase by c-myc and mad1. Acta Biochim Biophys Sin (Shanghai) 2005; 37:32–8.

    CAS  Google Scholar 

  20. Xu D, Popov N, Hou M, et al. Switch from Myc/Max to Mad1/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL60 cells. Proc Natl Acad Sci USA 2001; 98:3826–31.

    CAS  PubMed  Google Scholar 

  21. Sikand K, Kaul D, and Varma N. Receptor Ck-dependent signaling regulates hTERT gene transcription. BMC Cell Biol 2006; 7:2.

    PubMed  Google Scholar 

  22. Gabet AS, Mortreux F, Charneau P, et al. Inactivation of hTERT transcription by Tax. Oncogene 2003; 22:3734–41.

    CAS  PubMed  Google Scholar 

  23. Li H, Lee TH, and Avraham H. A novel tricomplex of BRCA1, Nmi, and c-Myc inhibits c-Myc-induced human telomerase reverse transcriptase gene (hTERT ) promoter activity in breast cancer. J Biol Chem 2002; 277:20965–73.

    CAS  PubMed  Google Scholar 

  24. Xiong J, Fan S, Meng Q, et al. BRCA1 inhibition of telomerase activity in cultured cells. Mol Cell Biol 2003; 23:8668–90.

    CAS  PubMed  Google Scholar 

  25. Kusumoto M, Ogawa T, Mizumoto K, et al. Adenovirus-mediated p53 gene transduction inhibits telomerase activity independent of its effects on cell cycle arrest and apoptosis in human pancreatic cancer cells. Clin Cancer Res 1999; 5:2140–7.

    CAS  PubMed  Google Scholar 

  26. Kanaya T, Kyo S, Hamada K, et al. Adenoviral expression of p53 represses telomerase activity through down-regulation of human telomerase reverse transcriptase transcription. Clin Cancer Res 2000; 6:1239–47.

    CAS  PubMed  Google Scholar 

  27. Xu D, Wang Q, Gruber A, et al. Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene 2000; 19:5123–33.

    CAS  PubMed  Google Scholar 

  28. Gollahon LS, Kraus E, Wu TA, et al. Telomerase activity during spontaneous immortalization of Li-Fraumeni syndrome skin fibroblasts. Oncogene 1998; 17:709–17.

    CAS  PubMed  Google Scholar 

  29. Maxwell SA, Capp D, and Acosta SA. Telomerase activity in immortalized endothelial cells undergoing p53-mediated apoptosis. Biochem Biophys Res Commun 1997; 241:642–5.

    CAS  PubMed  Google Scholar 

  30. Mukhopadhyay T, Multani AS, Roth JA, and Pathak S. Reduced telomeric signals and increased telomeric associations in human lung cancer cell lines undergoing p53-mediated apoptosis. Oncogene 1998; 17:901–6.

    CAS  PubMed  Google Scholar 

  31. Xu HJ, Zhou Y, Ji W, et al. Reexpression of the retinoblastoma protein in tumor cells induces senescence and telomerase inhibition. Oncogene 1997; 15:2589–96.

    CAS  PubMed  Google Scholar 

  32. Nguyen DC and Crowe DL. Intact functional domains of the retinoblastoma gene product (pRb) are required for downregulation of telomerase activity. Biochim Biophys Acta 1999; 1445:207–15.

    CAS  PubMed  Google Scholar 

  33. Crowe DL and Nguyen DC. Rb and E2F-1 regulate telomerase activity in human cancer cells. Biochim Biophys Acta 2001; 1518:1–6.

    CAS  PubMed  Google Scholar 

  34. Lee SH, Kim JW, Lee HW, et al. Interferon regulatory factor-1 (IRF-1) is a mediator for interferon-gamma induced attenuation of telomerase activity and human telomerase reverse transcriptase (hTERT) expression. Oncogene 2003; 22:381–91.

    CAS  PubMed  Google Scholar 

  35. Lee SH, Kim JW, Oh SH, et al. IFN-gamma/IRF-1-induced p27kip1 down-regulates telomerase activity and human telomerase reverse transcriptase expression in human cervical cancer. FEBS Lett 2005; 579:1027–33.

    CAS  PubMed  Google Scholar 

  36. Yang H, Kyo S, Takatura M, and Sun L. Autocrine transforming growth factor beta suppresses telomerase activity and transcription of human telomerase reverse transcriptase in human cancer cells. Cell Growth Differ 2001; 12:119–27.

    CAS  PubMed  Google Scholar 

  37. Lacerte A, Korah J, Roy M, Yang XJ, Lemay S, and Lebrun JJ. Transforming growth factor-beta inhibits telomerase through SMAD3 and E2F transcription factors. Cell Signal 2008; 20:50–9.

    CAS  PubMed  Google Scholar 

  38. Li H, Xu D, Li J, Berndt MC, and Liu JP. Transforming growth factor beta suppresses human telomerase reverse transcriptase (hTERT) by Smad3 interactions with c-Myc and the hTERT gene. J Biol Chem 2006; 281:25588–600.

    CAS  PubMed  Google Scholar 

  39. Lin SY and Elledge SJ. Multiple tumor suppressor pathways negatively regulate telomerase. Cell 2003; 113:881–9.

    CAS  PubMed  Google Scholar 

  40. Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001; 7:1267–78.

    CAS  PubMed  Google Scholar 

  41. Takakura M, Kyo S, Inoue M, Wright WE, and Shay JW. Function of AP-1 in transcription of the telomerase reverse transcriptase gene (TERT) in human and mouse cells. Mol Cell Biol 2005; 25:8037–43.

    CAS  PubMed  Google Scholar 

  42. Oh S, Song Y, Yim J, and Kim TK. The Wilms' tumor 1 tumor suppressor gene represses transcription of the human telomerase reverse transcriptase gene. J Biol Chem 1999; 274:37473–8.

    CAS  PubMed  Google Scholar 

  43. Fujimoto K, Kyo S, Takakura M, et al. Identification and characterization of negative regulatory elements of the human telomerase catalytic subunit (hTERT) gene promoter: possible role of MZF-2 in transcriptional repression of hTERT. Nucleic Acids Res 2000; 28:2557–62.

    CAS  PubMed  Google Scholar 

  44. Drissi, R, Zindy, F, Roussel, MF, and Cleveland, JL. c-Myc-mediated regulation of telomerase activity is disabled in immortalized cells. J Biol Chem 2001; 276:29994–30001.

    CAS  PubMed  Google Scholar 

  45. Endoh, T, Tsuji, N, Asanuma, K, Yagihashi A, and Watanabe, N. Survivin enhances telomerase activity via up-regulation of specificity protein 1- and c-Myc-mediated human telomerase reverse transcriptase gene transcription. Exp Cell Res 2005; 305:300–11.

    Google Scholar 

  46. Lv J, Liu H, Wang Q, Tang Z, Hou L, and Zhang B. Molecular cloning of a novel human gene encoding histone acetyltransferase-like protein involved in transcriptional activation of hTERT. Biochem Biophys Res Commun 2003; 311:506–13.

    PubMed  Google Scholar 

  47. Tang Z, Zhao Y, Mei F, et al. Molecular cloning and characterization of a human gene involved in transcriptional regulation of hTERT. Biochem Biophys Res Commun 2004; 324:1324–32.

    CAS  PubMed  Google Scholar 

  48. Alfonso-De Matte MY, Yang H, Evans MS, Cheng JQ, and Kruk PA. Telomerase is regulated by c-Jun NH2-terminal kinase in ovarian surface epithelial cells. Cancer Res 2002; 62:4575–8.

    CAS  PubMed  Google Scholar 

  49. Gewin L, Myers H, Kiyono T, and Galloway DA. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev 2004; 18:2269–82.

    CAS  PubMed  Google Scholar 

  50. Horikawa I and Barrett JC. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis 2003; 24:1167–76.

    CAS  PubMed  Google Scholar 

  51. McMurray HR and McCance DJ. Human papillomavirus type 16 E6 activates TERT gene transcription through induction of c-Myc and release of USF-mediated repression. J Virol 2003; 77:9852–61.

    CAS  PubMed  Google Scholar 

  52. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, and Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63:1129–36.

    CAS  PubMed  Google Scholar 

  53. Werness BA, Levine AJ, and Hawley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 1990; 248:76–9.

    CAS  PubMed  Google Scholar 

  54. Huibregtse JM, Scheffner M, and Howley PM. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 10:4129–35.

    Google Scholar 

  55. McMurray HR and McCance DJ. 2004. Degradation of p53, not telomerase activation, by E6 is required for bypass of crisis and immortalization by human papillomavirus type 16 E6/E7. J Virol 1991; 78:5698–706.

    Google Scholar 

  56. Katzenellenbogen RA, Egelkrout EM, Vliet-Gregg P, Gewin LC, Gafken PR, and Galloway DA. NFX1-123 and poly(A) binding proteins synergistically augment activation of telomerase in human papillomavirus type 16 E6-expressing cells. J Virol 2007; 81:3786–96.

    CAS  PubMed  Google Scholar 

  57. Bromberg JF and Darnell JE Jr. Potential roles of Stat1 and Stat3 in cellular transformation. Cold Spring Harb Symp Quant Biol 1999; 64:425–8.

    CAS  PubMed  Google Scholar 

  58. Konnikova L, Simeone MC, Kruger MM, Kotecki M, and Cochran BH. Signal transducer and activator of transcription 3 (STAT3) regulates human telomerase reverse transcriptase (hTERT) expression in human cancer and primary cells. Cancer Res 2005; 65:6516–20.

    CAS  PubMed  Google Scholar 

  59. Fuchs B, Inwards C, Scully SP, and Janknecht R. hTERT is highly expressed in Ewing's sarcoma and activated by EWS-ETS oncoproteins. Clin Orthop Relat Res 2004; 426:64–8.

    PubMed  Google Scholar 

  60. Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 1998; 8:588–94.

    CAS  PubMed  Google Scholar 

  61. Birner P, Schindl M, Obermair A, Breitenecker G, and Oberhuber G. Expression of hypoxia-inducible factor 1alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin Cancer Res 2001; 7:1661–8.

    CAS  PubMed  Google Scholar 

  62. Schindl M, Schoppmann SF, Samonigg H, et al. Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 2002; 8:1831–7.

    CAS  PubMed  Google Scholar 

  63. Sivridis E, Giatromanolaki A, Gatter KC, Harris AL, and Koukourakis MI. Association of hypoxia-inducible factors 1alpha and 2alpha with activated angiogenic pathways and prognosis in patients with endometrial carcinoma. Cancer 2002; 95:1055–63.

    CAS  PubMed  Google Scholar 

  64. Yatabe N, Kyo S, Maida Y, et al. HIF-1-mediated activation of telomerase in cervical cancer cells. Oncogene 2004; 23:3708–15.

    CAS  PubMed  Google Scholar 

  65. Nishi H, Nakada T, Kyo S, Inoue M, Shay JW, and Isaka K. Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Mol Cell Biol 2004; 24:6076–83.

    CAS  PubMed  Google Scholar 

  66. Won J, Yim J, and Kim TK. Opposing regulatory roles of E2F in human telomerase reverse transcriptase (hTERT) gene expression in human tumor and normal somatic cells. Faseb J 2002; 16:1943–5.

    CAS  PubMed  Google Scholar 

  67. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev 1998; 12:2245–62.

    CAS  PubMed  Google Scholar 

  68. Johnson DG. The paradox of E2F1: oncogene and tumor suppressor gene. Mol Carcinog 2000; 27:151–7.

    CAS  PubMed  Google Scholar 

  69. Verma SC, Borah S, and Robertson ES. Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus up-regulates transcription of human telomerase reverse transcriptase promoter through interaction with transcription factor Sp1. J Virol 2004; 78:10348–59.

    CAS  PubMed  Google Scholar 

  70. Won J, Yim J, and Kim TK. Sp1 and Sp3 recruit histone deacetylase to repress transcription of human telomerase reverse transcriptase (hTERT) promoter in normal human somatic cells. J Biol Chem 2002; 277:38230–8.

    CAS  PubMed  Google Scholar 

  71. Racek, T, Mise, N, Li, Z, Stoll, A, and Putzer, BM. C-terminal p73 isoforms repress transcriptional activity of the human telomerase reverse transcriptase (hTERT) promoter. J Biol Chem 2005; 280:40402–5.

    CAS  PubMed  Google Scholar 

  72. Beitzinger M, Oswald M, Beinoraviciute-Kellner R, and Stiewe T. Regulation of telomerase activity by the p53 family member p73. Oncogene 2006; 25:813–26.

    CAS  PubMed  Google Scholar 

  73. Goueli BS and Janknecht R. Regulation of telomerase reverse transcriptase gene activity by upstream stimulatory factor. Oncogene 2003; 22:8042–7.

    PubMed  Google Scholar 

  74. Chang JT, Yang HT, Wang TC and Cheng AJ. Upstream stimulatory factor (USF) as a transcriptional suppressor of human telomerase reverse transcriptase (hTERT) in oral cancer cells. Mol Carcinog 2005; 44:183–92.

    CAS  PubMed  Google Scholar 

  75. Toh WH, Kyo S, and Sabapathy K. Relief of p53-mediated telomerase suppression by p73. J Biol Chem 2005; 280:17329–38.

    CAS  PubMed  Google Scholar 

  76. Harrington L, McPhail T, Mar V, et al. A mammalian telomerase-associated protein. Science 1997; 275:973–7.

    CAS  PubMed  Google Scholar 

  77. Li H, Zhao LL, Funder JW, and Liu JP. Protein phosphatase 2A inhibits nuclear telomerase activity in human breast cancer cells. J Biol Chem 1997; 272:16729–32.

    CAS  PubMed  Google Scholar 

  78. Kang SS, Kwon T, Kwon DY, and Do SI. Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 1999; 274:13085–90.

    CAS  PubMed  Google Scholar 

  79. Igarashi H and Sakaguchi N. Telomerase activity is induced in human peripheral B lymphocytes by the stimulation to antigen receptor. Blood 1997; 89:1299–307.

    CAS  PubMed  Google Scholar 

  80. Breitschopf K, Zeiher AM, and Dimmeler S. Pro-atherogenic factors induce telomerase inactivation in endothelial cells through an Akt-dependent mechanism. FEBS Lett 2001; 493:21–5.

    CAS  PubMed  Google Scholar 

  81. Akiyama M, Hideshima T, Hayashi T, et al. Cytokines modulate telomerase activity in a human multiple myeloma cell line. Cancer Res 2002; 62:3876–82.

    CAS  PubMed  Google Scholar 

  82. Holt SE, Aisner DL, Baur J, et al. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 1999; 13:817–26.

    CAS  PubMed  Google Scholar 

  83. Haendeler J, Hoffmann J, Rahman S, Zeiher AM, and Dimmeler S. Regulation of telomerase activity and anti-apoptotic function by protein-protein interaction and phosphorylation. FEBS Lett 2003; 536:180–6.

    CAS  PubMed  Google Scholar 

  84. Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, and Pearl LH. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radici col and geldanamycin. J Med Chem 1999; 42:260–6.

    CAS  PubMed  Google Scholar 

  85. Ku WC, Cheng AJ, and Wang TC. Inhibition of telomerase activity by PKC inhibitors in human nasopharyngeal cancer cells in culture. Biochem Biophys Res Commun 1997; 241:730–6.

    CAS  PubMed  Google Scholar 

  86. Kim YW, Hur SY, Kim TE, Lee JM, Namkoong SE, Ki IK, and Kim JW. Protein kinase C modulates telomerase activity in human cervical cancer cells. Exp Mol Med 2001; 33:156–63.

    CAS  PubMed  Google Scholar 

  87. Yu CC, Lo SC, and Wang TC. Telomerase is regulated by protein kinase C-zeta in human nasopharyngeal cancer cells. Biochem J 2001; 355:459–64.

    CAS  PubMed  Google Scholar 

  88. Sheng WY, Chien YL, and Wang TC. The dual role of protein kinase C in the regulation of telomerase activity in human lymphocytes. FEBS Lett 2003; 540:91–5.

    CAS  PubMed  Google Scholar 

  89. Li H, Zhao L, Yang Z, Funder JW, and Liu JP. Telomerase is controlled by protein kinase C alpha in human breast cancer cells. J Biol Chem 1998; 273:33436–42.

    CAS  PubMed  Google Scholar 

  90. Sheng WY, Chen YR, and Wang TC. A major role of PKC theta and NFkappaB in the regulation of hTERT in human T lymphocytes. FEBS Lett 2006; 580:6819–24.

    CAS  PubMed  Google Scholar 

  91. Kharbanda S, Kumar V, Dhar S, et al. Regulation of the hTERT telomerase catalytic subunit by the c-Abl tyrosine kinase. Curr Biol 2000; 10:568–75.

    CAS  PubMed  Google Scholar 

  92. Wu X and Lieber MR. Interaction between DNA-dependent protein kinase and a novel protein, KIP. Mutat Res 1997; 385:13–20.

    CAS  PubMed  Google Scholar 

  93. Lee GE, Yu EY, Cho CH, Lee J, Muller MT, and Chung IK. DNA-protein kinase catalytic subunit-interacting protein KIP binds telomerase by interacting with human telomerase reverse transcriptase. J Biol Chem 2004; 279:34750–5.

    CAS  PubMed  Google Scholar 

  94. Seimiya H, Tanji M, Oh-hara T, Tomida A, Naasani I, and Tsuruo T. Hypoxia up-regulates telomerase activity via mitogen-activated protein kinase signaling in human solid tumor cells. Biochem Biophys Res Commun 1999; 260:365–70.

    CAS  PubMed  Google Scholar 

  95. Kim JH, Park SM, Kang MR, et al. Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes Dev 2005; 19:776–81

    CAS  PubMed  Google Scholar 

  96. Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci USA 2001; 98:974–9.

    CAS  PubMed  Google Scholar 

  97. Zhang H and Cohen SN. Smurf2 up-regulation activates telomere-dependent senescence. Genes Dev 2004; 18:3028–40.

    CAS  PubMed  Google Scholar 

  98. Liu X, Yuan H, Fu B, et al. The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J Biol Chem 2005; 280:10807–16.

    CAS  PubMed  Google Scholar 

  99. Smith S and de Lange T. Tankyrase promotes telomere elongation in human cells. Curr Biol 2000; 10:1299–302.

    CAS  PubMed  Google Scholar 

  100. Cook BD, Dynek JN, Chang W, Shostak G, and Smith S. Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol Cell Biol 2002; 22:332–42.

    CAS  PubMed  Google Scholar 

  101. Dantzer F, Giraud-Panis MJ, Jaco I, et al. Functional interaction between poly(ADP-Ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol Cell Biol 2004; 24:1595–607.

    CAS  PubMed  Google Scholar 

  102. Gomez M, Wu J, Schreiber V, et al. PARP1 is a TRF2-associated poly(ADP-ribose)poly-merase and protects eroded telomeres. Mol Biol Cell 2006; 17:1686–96.

    CAS  PubMed  Google Scholar 

  103. Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, and Reddel RR. Protein composition of catalytically active human telomerase from immortal cells. Science 2007; 315:1850–3.

    CAS  PubMed  Google Scholar 

  104. Forsythe HL, Jarvis JL, Turner JW, Elmore LW, and Holt SE. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem 2001; 276:15571–4.

    CAS  PubMed  Google Scholar 

  105. Compton SA, Elmore LW, Haydu K, Jackson-Cook CK, Holt SE. Induction of nitric oxide synthase-dependent telomere shortening after functional inhibition of Hsp90 in human tumor cells. Mol Cell Biol 2006; 26:1452–62.

    CAS  PubMed  Google Scholar 

  106. Pearl LH and Prodromou C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 2006; 75:271–94.

    CAS  PubMed  Google Scholar 

  107. Akalin A, Elmore LW, Forsythe HL, et al. A novel mechanism for chaperone-mediated telomerase regulation during prostate cancer progression. Cancer Res 2001; 61:4791–6.

    CAS  PubMed  Google Scholar 

  108. Sharp S. and Workman P. Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 2006; 95:323–48.

    CAS  PubMed  Google Scholar 

  109. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19:2100–10.

    PubMed  Google Scholar 

  110. Chai W, Ford LP, Lenertz L, Wright WE, and Shay JW. Human Ku70/80 associates physically with telomerase through interaction with hTERT. J Biol Chem 2002; 277:47242–7.

    CAS  PubMed  Google Scholar 

  111. Espejel S, Franco S, Rodríguez-Perales S, Bouffler SD, Cigudosa JC, and Blasco MA. Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J 2002; 21:2207–19.

    CAS  PubMed  Google Scholar 

  112. Jaco I, Muñoz P, and Blasco MA. Role of human Ku86 in telomere length maintenance and telomere capping. Cancer Res 2004; 64:7271–8.

    CAS  PubMed  Google Scholar 

  113. Ting NS, Yu Y, Pohorelic B, Lees-Miller SP, and Beattie TL. Human Ku70/80 interacts directly with hTR, the RNA component of human telomerase. Nucleic Acids Res 2005; 33:2090–8.

    CAS  PubMed  Google Scholar 

  114. van Steensel B and de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature 1997; 385:740–3.

    PubMed  Google Scholar 

  115. van Steensel B, Smogorzewska A, and de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell 1998; 92:401–13.

    PubMed  Google Scholar 

  116. Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell 1999; 97:503–14.

    CAS  PubMed  Google Scholar 

  117. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 2005; 6:611–22.

    CAS  PubMed  Google Scholar 

  118. Zhou XZ and Lu KP. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 2001; 107:347–9.

    CAS  PubMed  Google Scholar 

  119. Banik SS and Counter CM. Characterization of interactions between PinX1 and human telomerase subunits hTERT and hTR. J Biol Chem 2004; 279:51745–8.

    CAS  PubMed  Google Scholar 

  120. Sharma GG, Hwang KK, Pandita RK, et al. Human heterochromatin protein 1 isoforms HP1 (Hsalpha) and HP1(Hsbeta) interfere with hTERT-telomere interactions and correlate with changes in cell growth and response to ionizing radiation. Mol Cell Biol 2003; 23:8363–76.

    CAS  PubMed  Google Scholar 

  121. Wong JM, Kusdra L, and Collins K. Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nat Cell Biol 2002; 4:731–6.

    CAS  PubMed  Google Scholar 

  122. Etheridge KT, Banik SS, Armbruster BN, et al. The nucleolar localization domain of the catalytic subunit of human telomerase. J Biol Chem 2002; 277:24764–70.

    CAS  PubMed  Google Scholar 

  123. Yang Y, Chen Y, Zhang C, Huang H, and Weissman SM. Nucleolar localization of hTERT protein is associated with telomerase function. Exp Cell Res 2002; 277:201–9.

    CAS  PubMed  Google Scholar 

  124. Narayanan A, Lukowiak A, Jády BE, et al. Nucleolar localization signals of box H/ACA small nucleolar RNAs. EMBO J 1999; 18:5120–30.

    CAS  PubMed  Google Scholar 

  125. Mitchell JR, Cheng J, and Collins K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol Cell Biol 1999; 19:567–76.

    CAS  PubMed  Google Scholar 

  126. Lukowiak AA, Narayanan A, Li ZH, Terns RM, and Terns MP. The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus. RNA 2001; 7:1833–44.

    CAS  PubMed  Google Scholar 

  127. Khurts S, Masutomi K, Delgermaa L, et al. Nucleolin interacts with telomerase. J Biol Chem 2004; 279:51508–15.

    CAS  PubMed  Google Scholar 

  128. Akiyama M, Hideshima T, Hayashi T, et al. Nuclear factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res 2003; 63:18–21.

    CAS  PubMed  Google Scholar 

  129. Akiyama M, Yamada O, Hideshima T, et al. TNFalpha induces rapid activation and nuclear translocation of telomerase in human lymphocytes. Biochem Biophys Res Commun 2004; 316:528–32.

    CAS  PubMed  Google Scholar 

  130. Dellambra E, Golisano O, Bondanza S, et al. Downregulation of 14-3-3sigma prevents clonal evolution and leads to immortalization of primary human keratinocytes. J Cell Biol 2000; 149:1117–30.

    CAS  PubMed  Google Scholar 

  131. Seimiya H, Sawada H, Muramatsu Y, et al. Involvement of 14-3-3 proteins in nuclear localization of telomerase. EMBO J 2000; 19:2652–61.

    CAS  PubMed  Google Scholar 

  132. Lin J, Jin R, Zhang B, et al. Characterization of a novel effect of hPinX1 on hTERT nucleolar localization. Biochem Biophys Res Commun 2007; 353:946–52.

    CAS  PubMed  Google Scholar 

  133. Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, and Schiller JT. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 1989; 8:3905–10.

    CAS  PubMed  Google Scholar 

  134. Münger K, Werness BA, Dyson N, Phelps WC, Harlow E, and Howley PM. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J 1989; 8:4099–105.

    PubMed  Google Scholar 

  135. Veldman T, Horikawa I, Barrett JC, and Schlegel R. Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol 2001; 75:4467–72.

    CAS  PubMed  Google Scholar 

  136. Oh ST, Kyo S, and Laimins LA. Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J Virol 2001; 75:5559–66.

    CAS  PubMed  Google Scholar 

  137. Gewin L and Galloway DA. E box-dependent activation of telomerase by human papilloma-virus type 16 E6 does not require induction of c-myc. J Virol 2001; 75:7198–201.

    CAS  PubMed  Google Scholar 

  138. Veldman T, Liu X, Yuan H, and Schlegel R. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci USA 2003; 100:8211–6.

    CAS  PubMed  Google Scholar 

  139. Lee D, Kim HZ, Jeong KW, et al. Human papillomavirus E2 down-regulates the human telomerase reverse transcriptase promoter. J Biol Chem 2002; 277:27748–56.

    CAS  PubMed  Google Scholar 

  140. Portis T, Cooper L, Dennis P, Longnecker R. The LMP2A signalosome—a therapeutic target for Epstein-Barr virus latency and associated disease. Front Biosci 2002; 7:d414–26.

    CAS  PubMed  Google Scholar 

  141. Chen F, Liu C, Lindvall C, Xu D, and Ernberg I. Epstein-Barr virus latent membrane 2A (LMP2A) down-regulates telomerase reverse transcriptase (hTERT) in epithelial cell lines. Int J Cancer 2005; 113:284–9.

    CAS  PubMed  Google Scholar 

  142. Knight JS, Cotter MA II, and Robertson ES. The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus transactivates the telomerase reverse transcriptase promoter. J Biol Chem 2001; 276:22971–8.

    CAS  PubMed  Google Scholar 

  143. Glasspool RM, Burns S, Hoare SF, Svensson C, and Keith NW. The hTERT and hTERC telomerase gene promoters are activated by the second exon of the adenoviral protein, E1A, identifying the transcriptional corepressor CtBP as a potential repressor of both genes. Neoplasia 2005; 7:614–22.

    CAS  PubMed  Google Scholar 

  144. Kirch HC, Ruschen S, Brockmann D, et al. Tumor-specific activation of hTERT-derived promoters by tumor suppressive E1A-mutants involves recruitment of p300/CBP/HAT and suppression of HDAC-1 and defines a combined tumor targeting and suppression system. Oncogene 2002; 21:7991–8000.

    CAS  PubMed  Google Scholar 

  145. Horikawa I and Barrett JC. cis-Activation of the human telomerase gene (hTERT) by the hepatitis B virus genome. J Natl Cancer Inst 2001; 93: 1171–3.

    CAS  PubMed  Google Scholar 

  146. Paterlini-Bréchot P, Saigo K, Murakami Y, et al. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene 2003; 22:3911–6.

    PubMed  Google Scholar 

  147. Ferber MJ, Montoya DP, Yu C, et al. Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. Oncogene 2003; 22:3813–20.

    CAS  PubMed  Google Scholar 

  148. Zou SQ, Qu ZL, Li ZF, and Wang X. Hepatitis B virus X gene induces human telomerase reverse transcriptase mRNA expression in cultured normal human cholangiocytes. World J Gastroenterol 2004; 10:2259–62.

    CAS  PubMed  Google Scholar 

  149. Zhang X, Dong N, Zhang H, You J, Wang H, and Ye L. Effects of hepatitis B virus X protein on human telomerase reverse transcriptase expression and activity in hepatoma cells. J Lab Clin Med 2005; 145:98–104.

    CAS  PubMed  Google Scholar 

  150. Misiti S, Nanni S, Fontemaggi G, et al. Induction of hTERT expression and telomerase activity by estrogens in human ovary epithelium cells. Mol Cell Biol 2000; 20:3764–71.

    CAS  PubMed  Google Scholar 

  151. Kyo S, Takakura M, Kanaya T, et al. Estrogen activates telomerase. Cancer Res 1999; 59:5917–21.

    CAS  PubMed  Google Scholar 

  152. Kimura A, Ohmichi M, Kawagoe J, et al. Induction of hTERT expression and phosphoryla-tion by estrogen via Akt cascade in human ovarian cancer cell lines. Oncogene 2004; 23:4505–15.

    CAS  PubMed  Google Scholar 

  153. Wang Z, Kyo S, Takakura M, et al. Progesterone regulates human telomerase reverse transcriptase gene expression via activation of mitogen-activated protein kinase signaling pathway. Cancer Res 2000; 60:5376–81.

    CAS  PubMed  Google Scholar 

  154. Dai WS, Kuller LH, LaPorte RE, Gutai JP, Falvo-Gerard L, and Caggiula A. The epidemiology of plasma testosterone levels in middle-aged men. Am J Epidemiol 1981; 114:804–16.

    CAS  PubMed  Google Scholar 

  155. Moehren U, Papaioannou M, Reeb CA, et al. Wild-type but not mutant androgen receptor inhibits expression of the hTERT telomerase subunit: a novel role of AR mutation for prostate cancer development. FASEB J 2008; 22:1258–67.

    CAS  PubMed  Google Scholar 

  156. Zhao JQ, Glasspool RM, Hoare SF, Bilsland A, Szatmari I, and Keith WN. Activation of telomerase RNA gene promoter activity by NF-Y, Sp1, and the retinoblastoma protein and repression by Sp3. Neoplasia 2000; 2:531–539.

    CAS  PubMed  Google Scholar 

  157. Dragon F, Pogacić V, and Filipowicz W. In vitro assembly of human H/ACA small nucleolar RNPs reveals unique features of U17 and telomerase RNAs. Mol Cell Biol 2000; 20:3037–48.

    CAS  PubMed  Google Scholar 

  158. Dez C, Henras A, Faucon B, Lafontaine D, Caizergues-Ferrer M, and Henry Y. Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nucleolar RNP proteins Cbf5p, Nhp2p and Nop10p. Nucleic Acids Res 2001; 29:598–603.

    CAS  PubMed  Google Scholar 

  159. Zhao JQ, Hoare SF, McFarlane R, et al. Cloning and characterization of human and mouse telomerase RNA gene promoter sequences. Oncogene 1998; 16:1345–50.

    CAS  PubMed  Google Scholar 

  160. Zhao J, Bilsland A, Hoare SF, and Keith WN. Involvement of NF-Y and Sp1 binding sequences in basal transcription of the human telomerase RNA gene. FEBS Lett 2003; 536:111–9.

    CAS  PubMed  Google Scholar 

  161. Zhao J, Bilsland A, Jackson K, and Keith WN. MDM2 negatively regulates the human telomerase RNA gene promoter. BMC Cancer 2005; 5:6.

    PubMed  Google Scholar 

  162. Ford LP, Suh JM, Wright WE, and Shay JW. Heterogeneous nuclear ribonucleoproteins C1 and C2 associate with the RNA component of human telomerase. Mol Cell Biol 2000; 20:9084–91.

    CAS  PubMed  Google Scholar 

  163. Eversole A and Maizels N. In vitro properties of the conserved mammalian protein hnRNP D suggest a role in telomere maintenance. Mol Cell Biol 2000; 20:5425–32.

    CAS  PubMed  Google Scholar 

  164. Bandiera A, Tell G, Marsich E, et al. Cytosine-block telomeric type DNA-binding activity of hnRNP proteins from human cell lines. Arch Biochem Biophys 2003; 409:305–14.

    CAS  PubMed  Google Scholar 

  165. Ishikawa F, Matunis MJ, Dreyfuss G, and Cech TR. Nuclear proteins that bind the pre-mRNA 3′ splice site sequence r(UUAG/G) and the human telomeric DNA sequence d (TTAGGG)n. Mol Cell Biol 1993; 13:4301–10.

    CAS  PubMed  Google Scholar 

  166. Lacroix L, Liénard H, Labourier E, et al. Identification of two human nuclear proteins that recognise the cytosine-rich strand of human telomeres in vitro. Nucleic Acids Res 2000; 28:1564–75.

    CAS  PubMed  Google Scholar 

  167. Dallaire F, Dupuis S, Fiset S, and Chabot B. Heterogeneous nuclear ribonucleoprotein A1 and UP1 protect mammalian telomeric repeats and modulate telomere replication in vitro. J Biol Chem 2000; 275:14509–16.

    CAS  PubMed  Google Scholar 

  168. Ford LP, Wright WE, and Shay JW. A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation. Oncogene 2002; 21:580–3.

    CAS  PubMed  Google Scholar 

  169. Moran-Jones K, Wayman L, Kennedy DD, et al. hn RNP A2, a potential ssDNA/RNA molecular adapter at the telomere.. Nucleic Acids Res 2005; 33(2):486–96.

    CAS  PubMed  Google Scholar 

  170. Fiset S and Chabot B. hnRNP A1 may interact simultaneously with telomeric DNA and the human telomerase RNA in vitro. Nucleic Acids Res 2001; 29:2268–75.

    CAS  PubMed  Google Scholar 

  171. Zhang QS, Manche L, Xu RM, and Krainer AR. hnRNP A1 associates with telomere ends and stimulates telomerase activity. RNA 2006; 12:1116–28.

    CAS  PubMed  Google Scholar 

  172. Chong L, van Steensel B, Broccoli D, et al. A human telomeric protein. Science 1995; 270:1663–7.

    CAS  PubMed  Google Scholar 

  173. Smogorzewska A, van Steensel B, Bianchi A, et al. Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 2000; 20:1659–68.

    CAS  PubMed  Google Scholar 

  174. Iwano T, Tachibana M, Reth M, and Shinkai Y. Importance of TRF1 for functional telomere structure. J Biol Chem 2004; 279:1442–8.

    CAS  PubMed  Google Scholar 

  175. Loayza D and De Lange T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 2003; 423:1013–8.

    CAS  PubMed  Google Scholar 

  176. Lei M, Podell ER, and Cech TR. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol 2004; 11:1223–9.

    CAS  PubMed  Google Scholar 

  177. Li B and de Lange T. Rap1 affects the length and heterogeneity of human telomeres. Mol Biol Cell 2003; 14:5060–8.

    CAS  PubMed  Google Scholar 

  178. Ye JZ, Hockemeyer D, Krutchinsky AN, et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 2004; 18:1649–54.

    CAS  PubMed  Google Scholar 

  179. Liu D, Safari A, O'Connor MS, Chan DW, Laegeler A, Qin J, and Songyang Z. PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 2004; 6:673–80.

    CAS  PubMed  Google Scholar 

  180. O'Connor MS, Safari A, Xin H, Liu D, and Songyang Z. A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc Natl Acad Sci USA 2006;103:11874–9.

    PubMed  Google Scholar 

  181. Xin H, Liu D, Wan M, et al. TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 2007; 445:559–62.

    CAS  PubMed  Google Scholar 

  182. Kim SH, Beausejour C, Davalos AR, Kaminker P, Heo SJ, and Campisi J. TIN2 mediates functions of TRF2 at human telomeres. J Biol Chem 2004; 270:43799–804.

    Google Scholar 

  183. Chiang YJ, Kim SH, Tessarollo L, Campisi J, and Hodes RJ. Telomere-associated protein TIN2 is essential for early embryonic development through a telomerase independent pathway. Mol Cell Biol. 2004; 24:6631–4.

    CAS  PubMed  Google Scholar 

  184. Smith S, Giriat I, Schmitt A, and de Lange T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 1998; 282:1484–7.

    CAS  PubMed  Google Scholar 

  185. Chai W, Sfeir AJ, Hoshiyama H, Shay JW, and Wright WE. The involvement of the Mre11/ Rad50/Nbs1 complex in the generation of G-overhangs at human telomeres. EMBO Rep 2006; 7:225–30.

    PubMed  Google Scholar 

  186. Wu Y, Xiao S, and Zhu XD. MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control. Nat Struct Mol Biol 2007; 14:832–40.

    CAS  PubMed  Google Scholar 

  187. Bürkle A, Brabeck C, Diefenbach J, and Beneke S. The emerging role of poly(ADP-ribose) polymerase-1 in longevity. Int J Biochem Cell Biol 2005; 37:1043–53.

    PubMed  Google Scholar 

  188. Jaco I, Muñoz P, Goytisolo F, et al. Role of mammalian Rad54 in telomere length maintenance. Mol Cell Biol 2003; 23:5572–80.

    CAS  PubMed  Google Scholar 

  189. Tarsounas M, Muñoz P, Claas A, et al. Telomere maintenance requires the RAD51D recombination/repair protein. Cell 2004; 117:337–47.

    CAS  PubMed  Google Scholar 

  190. Chan SW and Blackburn EH. Telomerase and ATM/Tel1p protect telomeres from nonho-mologous end joining. Mol Cell 2003; 11:1379–87.

    CAS  PubMed  Google Scholar 

  191. Lin J and Blackburn EH. Nucleolar protein PinX1p regulates telomerase by sequestering its protein catalytic subunit in an inactive complex lacking telomerase RNA. Genes Dev 2004; 18: 387–96.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Depcrynski, A.N., Sachs, P.C., Elmore, L.W., Holt, S.E. (2009). Regulation of Telomerase Through Transcriptional and Posttranslational Mechanisms. In: Hiyama, K. (eds) Telomeres and Telomerase in Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-879-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-879-9_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-306-0

  • Online ISBN: 978-1-60327-879-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics