Skip to main content

Therapeutic Targets and Drugs I: Telomerase and Telomerase Inhibitors

  • Chapter
Telomeres and Telomerase in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1306 Accesses

Abstract

Telomerase activity has been found in 85–90% of human cancers; therefore, telomerase has been proposed as a potential anticancer therapeutic target. In this chapter, we discuss the various methods to target telomerase activity and agents shown to act as specific telomerase inhibitors. First, we will introduce the hypothesis of inhibiting telomerase as a mode of cancer therapy and the original findings supporting this hypothesis. Next, the known and most actively tested targets for telomerase inhibition, including telomerase-associated proteins and telomerase's accessibility to telomeres, will be discussed. Finally, we will discuss the current status of telomerase inhibitors in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR. Protein composition of catalytically active human telomerase from immortal cells. Science 2007;315:1850–3.

    CAS  PubMed  Google Scholar 

  2. Finkel T, Serrano M, Blasco MA. The common biology of cancer and ageing. Nature 2007;448:767–74.

    CAS  PubMed  Google Scholar 

  3. Shay JW, Zou Y, Hiyama E, et al. Telomerase and cancer. Hum Mol Genet 2001;10:677–85.

    CAS  PubMed  Google Scholar 

  4. Hahn W, Role of telomeres and telomerase in the pathogenesis of human cancer. J Clin Oncol 2003;21:2034–43.

    CAS  PubMed  Google Scholar 

  5. McEachern MJ, Krauskopf A, Blackburn EH. Telomeres and their control. Annu Rev Genet 2000;34:331–58.

    CAS  PubMed  Google Scholar 

  6. Feng J, Funk WD, Wang SS, et al. The RNA component of human telomerase. Science 1995;269:1236–41.

    CAS  PubMed  Google Scholar 

  7. Harrington L, Zhou W, McPhail T, et al. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev 1997;11:3109–15.

    CAS  PubMed  Google Scholar 

  8. Arai K, Masutomi K, Khurts S, Kaneko S, Kobayashi K, Murakami S. Two independent regions of human telomerase reverse transcriptase are important for its oligomerization and telomerase activity. J Biol Chem 2002;277:8538–44.

    CAS  PubMed  Google Scholar 

  9. Beattie TL, Zhou W, Robinson MO, Harrington L. Functional multimerization of the human telomerase reverse transcriptase. Mol Cell Biol 2001;21:6151–60.

    CAS  PubMed  Google Scholar 

  10. Wenz C, Enenkel B, Amacker M, Kelleher C, Damm K, Lingner J. Human telomerase contains two cooperating telomerase RNA molecules. EMBO J 2001;20:3526–34.

    CAS  PubMed  Google Scholar 

  11. Heiss NS, Knight SW, Vulliamy TJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 1998;19:32–8.

    CAS  PubMed  Google Scholar 

  12. Collins K. The biogenesis and regulation of telomerase holoenzymes. Nat Rev Mol Cell Biol 2006;7:484–94.

    CAS  PubMed  Google Scholar 

  13. Garcia CK, Wright WE, Shay JW. Human diseases of telomerase dysfunction: Insights into tissue aging. Nucleic Acids Res 2007;35:7406–7416.

    CAS  PubMed  Google Scholar 

  14. Vulliamy TJ, Dokal I. Dyskeratosis congenita: The diverse clinical presentation of mutations in the telomerase complex. Biochimie 2008;90:122–30.

    CAS  PubMed  Google Scholar 

  15. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 1996;18:173–9.

    CAS  PubMed  Google Scholar 

  16. Forsyth NR, Wright WE, Shay JW. Telomerase and differentiation in multicellular organisms: Turn it off, turn it on, and turn it off again. Differentiation 2002;69:188–97.

    CAS  PubMed  Google Scholar 

  17. Lansdorp PM. Role of telomerase in hematopoietic stem cells. Ann N Y Acad Sci 2005;1044:220–7.

    CAS  PubMed  Google Scholar 

  18. Shay JW, Wright WE. Telomerase therapeutics for cancer: Challenges and new directions. Nat Rev Drug Discov 2006;5:577–84.

    CAS  PubMed  Google Scholar 

  19. Shay JW, Wright WE. Hallmarks of telomeres in ageing research. J Pathol 2007;211:114–23.

    CAS  PubMed  Google Scholar 

  20. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.

    CAS  PubMed  Google Scholar 

  21. Kim S-H, Kaminker P, Campisi J. Telomeres, aging and cancer: In search of a happy ending. Oncogene 2002;21:503–11.

    CAS  Google Scholar 

  22. Cong YS, Wright W, Shay JW. Human telomerase and its regulation. Microbiol Mol Biol Rev 2002;66:407–25.

    CAS  PubMed  Google Scholar 

  23. Henson JD, Neumann AA, Yeager TR, Reddel RR. Alternative lengthening of telomeres in mammalian cells. Oncogene 2002;21:598–610.

    CAS  PubMed  Google Scholar 

  24. Smogorzewska A, de Lange T. Regulation of telomerase by telomeric proteins. Annu Rev Biochem 2004;73:177–208.

    CAS  PubMed  Google Scholar 

  25. Kelland LR. Overcoming the immortality of tumor cells by telomere and telomerase based cancer therapeutics — current status and future prospects. Eur J Cancer 2005;41:971–9.

    CAS  PubMed  Google Scholar 

  26. Counter CM, Meyerson M, Eaton EN, et al. Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene 1998;16:1217–22.

    CAS  PubMed  Google Scholar 

  27. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998;279:349–52.

    CAS  PubMed  Google Scholar 

  28. Hahn WC, Counter CM, Lundbert AS, et al. Creation of human tumor cells with defined genetic elements. Nature 1999;400:464–8.

    CAS  PubMed  Google Scholar 

  29. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994;266:2011–15.

    CAS  PubMed  Google Scholar 

  30. Keith WN, Thomson CM, Howcroft J, et al. Seeding drug discovery: Integrating telomerase cancer biology and cellular senescence to uncover new therapeutic opportunities in targeting cancer stem cells. Drug Discov Today 2007;12:611–21.

    CAS  PubMed  Google Scholar 

  31. Poremba C, Scheel C, Hero B, et al. Telomerase activity and telomerase subunits gene expression patterns in neuroblastoma: A molecular and immunohistochemical study establishing prognostic tools for fresh-frozen and paraffin-embedded tissues. J Clin Oncol 2000;18:2582–92.

    CAS  PubMed  Google Scholar 

  32. Gellert GC, Jackson SR, Dikmen ZG, et al. Telomerase as a therapeutic target in cancer. Drug Discov Today Dis Mech 2005;2:159–64.

    CAS  Google Scholar 

  33. Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol 2007;3:640–9.

    CAS  PubMed  Google Scholar 

  34. Meeker AK, Hicks JL, Gabrielson E, et al. Telomere shortening occurs in subsets of normal breast epithelium as well as in situ and invasive carcinoma. Am J Pathol 2004;164:925–35.

    PubMed  Google Scholar 

  35. Strahl C, EH Blackburn. The effects of nucleoside analogs on telomerase and telomeres in tetrahymena. Nucleic Acids Res 1994;22:893–900.

    CAS  PubMed  Google Scholar 

  36. Strahl C, EH Blackburn. Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines. Mol Cell Biol 1996;16:53–65.

    CAS  PubMed  Google Scholar 

  37. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997;91:25–34.

    CAS  PubMed  Google Scholar 

  38. Gonzalez-Suarez E, Samper E, Flores JM, Blasco MA. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 2000;26:114–17.

    CAS  PubMed  Google Scholar 

  39. Hahn WC, Stewart SA, Brooks MW, et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med 1999;5:1164–70.

    CAS  PubMed  Google Scholar 

  40. Zhang X, Mar V, Zhou W, Harrington L, Robinson MO. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 1999;13:2388–99.

    CAS  PubMed  Google Scholar 

  41. Herbert B, Pitts AE, Baker SI, et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc Natl Acad Sci USA 1999;96:14276–81.

    CAS  PubMed  Google Scholar 

  42. White LK, Wright WE, Shay JW. Telomerase inhibitors. Trends Biotechnol 2001;19: 114–20.

    CAS  PubMed  Google Scholar 

  43. Vonderheide RH, Hahn WC, Schultze JL, et al. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 1999;10:673–9.

    CAS  PubMed  Google Scholar 

  44. Nair SK, Heiser A, Boczkowski D, et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 2000;6:1011–17.

    CAS  PubMed  Google Scholar 

  45. Vonderheide RH. Telomerase as a universal tumor-associated antigen for cancer immuno-therapy. Oncogene 2002;21:674–9.

    CAS  PubMed  Google Scholar 

  46. Zimmerman S, UM Martens. Telomeres and telomerase as targets for cancer therapy. Cell Mol Life Sci 2007;64:906–21.

    Google Scholar 

  47. Shay JW. Meeting Report: The Role of Telomeres and Telomerase in Cancer. Cancer Research 2005;65:3513–17.

    CAS  PubMed  Google Scholar 

  48. Gu J, Kagawa S, Takakura M, et al. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Res 2000;60:5359–64.

    CAS  PubMed  Google Scholar 

  49. Koga S, Hirohata S, Kondo Y, et al. A novel telomerase-specific gene therapy: Gene transfer of caspase-8 utilizing the human telomerase catalytic subunit gene promoter. Hum Gene Ther 2000;11:1397–406.

    CAS  PubMed  Google Scholar 

  50. Saretzki G. Telomerase inhibition as cancer therapy. Cancer Lett 2003;194:209–19.

    CAS  PubMed  Google Scholar 

  51. Masutomi K, Yu EY, Khurts S, et al. Telomerase maintains telomere structure in normal human cells. Cell 2003;114:241–53.

    CAS  PubMed  Google Scholar 

  52. Masutomi K, Possemato R, Wong JM, et al. The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci USA 2005;102:8222–7.

    CAS  PubMed  Google Scholar 

  53. Nakamura M, Masutomi K, Kyo S, et al. Efficient inhibition of human telomerase reverse transcriptase expression by RNA interference sensitizes cancer cells to ionizing radiation and chemotherapy. Hum Gene Ther 2005;16:859–68.

    CAS  PubMed  Google Scholar 

  54. Yi X, White DM, Aisner DL, Baur JA, Wright WE, Shay JW. An alternate splicing variant of the human telomerase catalytic subunit inhibits telomerase activity. Neoplasia 2000;2:433– 40.

    CAS  PubMed  Google Scholar 

  55. De Cian A, Lacroix L, Douarre C, et al. Targeting telomeres and telomerase. Biochimie 2008;90:131–55.

    PubMed  Google Scholar 

  56. Melana SM, Holland JF, Pogo B. Inhibition of cell growth and telomerase activity of breast cancer cells in vitro by 3′-azido-3′-deoxythymidine. Clin Cancer Res 1998;4:693–6.

    CAS  PubMed  Google Scholar 

  57. Naasani I, Seimiya H, Tsuruo T. Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins. Biochem Biophys Res Commun 1998;249:391–6.

    CAS  PubMed  Google Scholar 

  58. Seimiya H, Oh-hara T, Suzuki T, et al. Telomere shortening and growth inhibition of human cancer cells by novel synthetic telomerase inhibitors MST-312, MST-295, and MST-1991. Mol Cancer Ther 2002;1:657–65.

    CAS  PubMed  Google Scholar 

  59. Berletch JB, Liu C, Love WK, Andrews LG, Katiyar SK, Tollefsbol TO. Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem 2008;103:509–19.

    CAS  PubMed  Google Scholar 

  60. Pascolo E, Wenz C, Lingner J, et al. Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem 2002;277:15566–72.

    CAS  PubMed  Google Scholar 

  61. Damm K, Hemmann U, Garin-Chesa P, et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J 2001;20:6958–68.

    CAS  PubMed  Google Scholar 

  62. Ward RJ, Autexier C. Pharmacological telomerase inhibition can sensitize drug-resistant and drug-sensitive cells to chemotherapeutic treatment. Mol Pharmacol 2005;68:779–86.

    CAS  PubMed  Google Scholar 

  63. Kim JH, Park SM, Kang MR, et al. Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes Dev 2005;19:776–81.

    CAS  PubMed  Google Scholar 

  64. Chang S, DePinho RA. Telomerase extracurricular activities. Proc Natl Acad Sci USA 2002;99:12520–2.

    CAS  PubMed  Google Scholar 

  65. Corey DR. Telomerase inhibition, oligonucleotides, and clinical trials. Oncogene 2002;21:631–7.

    CAS  PubMed  Google Scholar 

  66. Norton JC, Piatyszek MA, Wright WE, Shay JW, Corey DR. Inhibition of human telomerase activity by peptide nucleic acids. Nat Biotechnol 1996;14:615–19.

    CAS  PubMed  Google Scholar 

  67. Rusckowski M, Qu T, Chang F, Hnatowich DJ. Pretargeting using peptide nucleic acid. Cancer 1997;80:2699–705.

    CAS  PubMed  Google Scholar 

  68. Pitts AE, Corey DR. Inhibition of human telomerase by 2′ -O-methyl-RNA. Proc Natl Acad Sci USA 1998;95:11549–54.

    CAS  PubMed  Google Scholar 

  69. Elayadi AN, Demieville A, Wancewicz EV, Monia BP, Corey DR. Inhibition of telomerase by 2′-O-(2-methoxyethyl) RNA oligomers: Effect of length, phosphorothioate substitution and time inside cells. Nucleic Acids Res 2001;29:1683–9.

    CAS  PubMed  Google Scholar 

  70. Chen Z, Koeneman KS, Corey DR. Consequences of telomerase inhibition and combination treatments for the proliferation of cancer cells. Cancer Res 2003;63:5917–25.

    CAS  PubMed  Google Scholar 

  71. Kondo S, Kondo Y, Li G, Silverman RH, Cowell JK. Targeted therapy of human malignant glioma in a mouse model by 2–5A antisense directed against telomerase RNA. Oncogene 1998;16:3323–30.

    CAS  PubMed  Google Scholar 

  72. Mukai S, Kondo Y, Koga S, Komata T, Barna BP, Kondo S. 2–5A antisense telomerase RNA therapy for intracranial malignant gliomas. Cancer Res 2000;60:4461–7.

    CAS  PubMed  Google Scholar 

  73. Kushner DM, Paranjape JM, Bandyopadhyay B, et al. 2–5A antisense directed against telomerase RNA produces apoptosis in ovarian cancer cells. Gynecol Oncol 2000;76: 183–92.

    CAS  PubMed  Google Scholar 

  74. Koga S, Kondo Y, Komata T, Kondo S. Treatment of bladder cancer cells in vitro and in vivo with 2–5A antisense telomerase RNA. Gene Ther 2001;8:654–8.

    CAS  PubMed  Google Scholar 

  75. Yatabe N, Kyo S, Kondo S, et al. 2–5A antisense therapy directed against human telomerase RNA inhibits telomerase activity and induces apoptosis without telomere impairment in cervical cancer cells. Cancer Gene Ther 2002;9:624–30.

    CAS  PubMed  Google Scholar 

  76. Wong SC, Yu H, Moochhala SM, So JB. Antisense telomerase induced cell growth inhibition, cell cycle arrest and telomerase activity down-regulation in gastric and colon cancer cells. Anticancer Res 2003;23:465–9.

    CAS  PubMed  Google Scholar 

  77. Paranjape JM, Xu D, Kushner DM, et al. Human telomerase RNA degradation by 2′–5′-linked oligoadenylate antisense chimeras in a cell-free system, cultured tumor cells, and murine xenograft models. Oligonucleotides 2006;16:225–38.

    CAS  PubMed  Google Scholar 

  78. Adah SA, Bayly SF, Cramer H, Silverman RH, Torrence PF. Chemistry and biochemistry of 2′,5′-oligoadenylate-based antisense strategy. Curr Med Chem 2001;8:1189–212.

    CAS  PubMed  Google Scholar 

  79. Iwado E, Daido S, Kondo Y, Kondo S. Combined effect of 2–5A-linked antisense against telomerase RNA and conventional therapies on human malignant glioma cells in vitro and in vivo. Int J Oncol 2007;31:1087–95.

    CAS  PubMed  Google Scholar 

  80. Gryaznov S, Pongracz K, Matray T, Schultz R, Pruzan R, Aimi J, Chin A, Harley C, Shea-Herbert B, Shay J, Oshima Y, Asai A, Yamashita Y. Telomerase inhibitors — oligonucleotide phosphoramidates as potential therapeutic agents. Nucleosides Nucleotides Nucleic Acids 2001;20(4–7):401–10.

    CAS  PubMed  Google Scholar 

  81. Pruzan R, Pongracz K, Gietzen K, Wallweber G, Gryaznov S. Allosteric inhibitors of telomerase: Oligonucleotide N3′ P5′ phosphoramidates. Nucleic Acids Res 2002;30 (2):559–68.

    CAS  PubMed  Google Scholar 

  82. Herbert BS, Pongracz K, Shay JW, Gryaznov SM. Oligonucleotide N3′ P5′ phosphorami-dates as efficient telomerase inhibitors. Oncogene 2002;21:638–42.

    PubMed  Google Scholar 

  83. Gryaznov S, Asai A, Oshima Y, et al. Oligonucleotide N3′–P5′ thio-phosphoramidate telomerase template antagonists as potential anticancer agents. Nucleosides Nucleotides Nucleic Acids 2003;22:577–81.

    CAS  PubMed  Google Scholar 

  84. Asai A, Oshima Y, Yamamoto Y, et al. A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res 2003;63:3931–9.

    CAS  PubMed  Google Scholar 

  85. Akiyama M, Hideshima T, Shammas MA, et al. Effects of oligonucleotide N3′ P5′ thio-phosphoramidate (GRN163) targeting telomerase RNA in human multiple myeloma cells. Cancer Res 2003;63:6187–94.

    CAS  PubMed  Google Scholar 

  86. Ozawa T, Gryaznov SM, Hu LJ, et al. Antitumor effects of specific telomerase inhibitor GRN163 in human glioblastoma xenografts. Neuro Oncol 2004;6:218–226.

    CAS  PubMed  Google Scholar 

  87. Wang ES, Wu K, Chin AC, et al. Telomerase inhibition with an oligonucleotide telomerase template antagonist: In vitro and in vivo studies in multiple myeloma and lymphoma. Blood 2004;103:258–66.

    CAS  PubMed  Google Scholar 

  88. Herbert BS, Gellert GC, Hochreiter A, et al. Lipid modification of GRN163, an N3′ P5′ thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene 2005;24:5262–8.

    CAS  PubMed  Google Scholar 

  89. Djojosubroto MW, Chin AC, Go N, et al. Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology 2005;42:1127–36.

    CAS  PubMed  Google Scholar 

  90. Dikmen ZG, Gellert GC, Jackson S, et al. In vivo inhibition of lung cancer by GRN163L: A novel human telomerase inhibitor. Cancer Res 2005;65:7866–73.

    CAS  PubMed  Google Scholar 

  91. Hochreiter AE, Xiao H, Goldblatt EM, et al. The telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth and metastasis of breast cancer. Clin Cancer Res 2006;12:3184–92.

    CAS  PubMed  Google Scholar 

  92. Gellert GC, Dikmen ZG, Wright WE, et al. Effects of a novel telomerase inhibitor, GRN163L, in human breast cancer. Breast Cancer Res Treat 2006;96:73–81.

    CAS  PubMed  Google Scholar 

  93. Gomez-Millan J, Goldblatt EM, Gryaznov SM, et al. Specific telomere dysfunction induced by GRN163L increases radiation sensitivity in breast cancer cells. Int J Radiat Oncol Biol Phys 2007;67:897–905.

    CAS  PubMed  Google Scholar 

  94. Jackson SR, Zhu CH, Paulson V, et al. Antiadhesive effects of GRN163L — An oligonucleo-tide N3′ P5′ thio-phosphoramidate targeting telomerase. Cancer Res 2007;67:1121–9.

    CAS  PubMed  Google Scholar 

  95. Li S, Crothers J, Haqq CM, Blackburn EH. Cellular and gene expression responses involved in the rapid growth inhibition of human cancer cells by RNA interference-mediated depletion of telomerase RNA. J Biol Chem 2005;280:23709–17.

    CAS  PubMed  Google Scholar 

  96. Shammas MA, Koley H, Batchu RB, et al. Telomerase inhibition by siRNA causes senescence and apoptosis in Barrett's adenocarcinoma cells: Mechanism and therapeutic potential. Mol Cancer 2005;4:24.

    PubMed  Google Scholar 

  97. Gandellini P, Folini M, Bandiera R, et al. Down-regulation of human telomerase reverse transcriptase through specific activation of RNAi pathway quickly results in cancer cell growth impairment. Biochem Pharmacol 2007;73:1703–14.

    CAS  PubMed  Google Scholar 

  98. Marusic L, Anton M, Tidy A, Wang P, Villeponteau B, Bacchetti S. Reprogramming of telomerase by expression of mutant telomerase RNA template in human cells leads to altered telomeres that correlate with reduced cell viability. Mol Cell Biol 1997;17:6394–401.

    CAS  PubMed  Google Scholar 

  99. Guiducci C, Cerone MA, Bacchetti S. Expression of mutant telomerase in immortal telomerase-negative human cells results in cell cycle deregulation, nuclear and chromosomal abnormalities and rapid loss of viability. Oncogene 2001;20:714–25.

    CAS  PubMed  Google Scholar 

  100. Li S, Rosenberg JE, Donjacour AA, et al. Rapid inhibition of cancer cell growth induced by lentiviral delivery of mutant-template telomerase RNA and anti-telomerase short-interfering RNA. Cancer Res 2004;64:4833–40.

    CAS  PubMed  Google Scholar 

  101. Kim MM, Rivera MA, Botchkina IL, Shalaby R, Thor AD, Blackburn EH. A low threshold level of expression of mutant-template telomerase RNA inhibits human tumor cell proliferation. Proc Natl Acad Sci USA 2001;98:7982–7.

    CAS  PubMed  Google Scholar 

  102. Goldkorn A, Blackburn EH. Assembly of mutant-template telomerase RNA into catalytical-ly active telomerase ribonucleoprotein that can act on telomeres is required for apoptosis and cell cycle arrest in human cancer cells. Cancer Res 2006;66:5763–71.

    CAS  PubMed  Google Scholar 

  103. Cerone MA, Londono-Vallejo JA, Autexier C. Mutated telomeres sensitize tumor cells to anticancer drugs independently of telomere shortening and mechanisms of telomere maintenance. Oncogene 2006;25:7411–20.

    CAS  PubMed  Google Scholar 

  104. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997;277:955–9.

    CAS  PubMed  Google Scholar 

  105. Prescott J, Blackburn EH. Functionally interacting telomerase RNAs in the yeast telomerase complex. Genes Dev 1997;11:2790–800.

    CAS  PubMed  Google Scholar 

  106. Ghosh U, Bhattacharyya NP. Benzamide and 4-amino 1,8 naphthalimide treatment inhibit telomerase activity by down-regulating the expression of telomerase associated protein and inhibiting the poly(ADP-ribosyl)ation of telomerase reverse transcriptase in cultured cells. FEBS J 2005;272:4237–48.

    CAS  PubMed  Google Scholar 

  107. Ghosh U, Das N, Bhattacharyya NP. Inhibition of telomerase activity by reduction of poly (ADP-ribosyl)ation of TERT and TEP1/TP1 expression in HeLa cells with knocked down poly(ADP-ribose) polymerase-1 (PARP-1) gene. Mutat Res 2007;615:66–74.

    CAS  PubMed  Google Scholar 

  108. Burger AM. Highlights in experimental therapeutics. Cancer Lett 2007;245:11–21.

    CAS  PubMed  Google Scholar 

  109. Powers MV, Workman P. Targeting of multiple signaling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr Relat Cancer 2006;13 Suppl 1:S125–S135.

    CAS  PubMed  Google Scholar 

  110. Kamal A, Thao L, Sensintaffar J, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003;425:407–10.

    CAS  PubMed  Google Scholar 

  111. Holt SE, Aisner DL, Baur J, et al. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 1999;13:817–26.

    CAS  PubMed  Google Scholar 

  112. Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem 2001;276:15571–4.

    CAS  PubMed  Google Scholar 

  113. Keppler BR, Grady AT, Jarstfer MB. The biochemical role of the heat shock protein 90 chaperone complex in establishing human telomerase activity. J Biol Chem 2006;281:19840–8.

    CAS  PubMed  Google Scholar 

  114. Chang JT, Chen YL, Yang HT, Chen CY, Cheng AJ. Differential regulation of telomerase activity by six telomerase subunits. Eur J Biochem 2002;269:3442–50.

    CAS  PubMed  Google Scholar 

  115. Villa R, Folini M, Porta CD, Valentini A, Pennati M, Daidone MG, Zaffaroni N. Inhibition of telomerase activity by geldanamycin and 17-allylamino, 17-demethoxygeldanamycin in human melanoma cells. Carcinogenesis 2003;24:851–9.

    CAS  PubMed  Google Scholar 

  116. Harvey SA, Jensen KO, Elmore LW, Holt SE. Pharmacological approaches to defining the role of chaperones in aging and prostate cancer progression. Cell Stress Chaperones 2002;7:230–4.

    CAS  PubMed  Google Scholar 

  117. Compton SA, Elmore LW, Haydu K, Jackson-Cook CK, Holt SE. Induction of nitric oxide synthase-dependent telomere shortening after functional inhibition of Hsp90 in human tumor cells. Mol Cell Biol 2006;26:1452–62.

    CAS  PubMed  Google Scholar 

  118. Haendeler J, Hoffmann J, Rahman S, Zeiher AM, Dimmeler S. Regulation of telomerase activity and anti-apoptotic function by protein—protein interaction and phosphorylation. FEBS Lett 2003;536:180–6.

    CAS  PubMed  Google Scholar 

  119. van Steensel B, de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature 1997;385:740–3.

    PubMed  Google Scholar 

  120. Smith S, Giriat I, Schmitt A, de Lange T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 1998;282:1484–7.

    CAS  PubMed  Google Scholar 

  121. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999;283:1321–5.

    CAS  PubMed  Google Scholar 

  122. Xin H, Liu D, Wan M, et al. TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 2007;445:559–62.

    CAS  PubMed  Google Scholar 

  123. Wang F, Podell ER, Zaug AJ, et al. The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 2007;445:506–10.

    CAS  PubMed  Google Scholar 

  124. Liu Z, Lee A, Gilbert W. Gene Disruption of a G4-DNA-dependent nuclease in yeast leads to cellular senescence and telomere shortening. Proc Natl Acad Sci USA 1995;92:6002–6.

    CAS  PubMed  Google Scholar 

  125. Gowan SM, Heald H, Stevens MF, et al. Potent inhibition of telomerase by small-molecule pentacyclic acridines capable of interacting with G-quadruplexes. Mol Pharmacol 2001;60:981–8.

    CAS  PubMed  Google Scholar 

  126. Phatak P, Burger AM. Telomerase and its potential for therapeutic intervention. Br J Pharmacol 2007;152:1003–11.

    CAS  PubMed  Google Scholar 

  127. Zahler AM, Williamson JR, Cech TR, Prescott DM. Inhibition of telomerase by G-quartet DNA structures. Nature 1991;350: 718–20.

    CAS  PubMed  Google Scholar 

  128. Sun D, Thompson B, Cathers BE, et al. Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem 1997;40:2113–16.

    CAS  PubMed  Google Scholar 

  129. Mergny JL, Helene C. G-quadruplex DNA: A target for drug design. Nat Med 1998;4: 1366–7.

    CAS  PubMed  Google Scholar 

  130. Rezler EM, Bearss DJ, Hurley LH. Telomere inhibition and telomere disruption as processes for drug targeting. Annu Rev Pharmacol Toxicol 2003;43:359–79.

    CAS  PubMed  Google Scholar 

  131. Burger AM, Dai F, Schultes CM, et al. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res 2005;65:1489–96.

    CAS  PubMed  Google Scholar 

  132. Gomez D, Lemarteleur T, Lacroix L, Mailliet P, Mergny JL, Riou JF. Telomerase down-regulation induced by the G-quadruplex ligand 12459 in A549 cells is mediated by hTERT RNA alternative splicing. Nucleic Acids Res 2004;32:371–9.

    CAS  PubMed  Google Scholar 

  133. Gomez D, Paterski R, Lemarteleur T, Shin-Ya K, Mergny JL, Riou JF. Interaction of telomestatin with the telomeric single-strand overhang. J Biol Chem 2004;279:41487–94.

    CAS  PubMed  Google Scholar 

  134. Tauchi T, Shin-Ya K, Sashida G, et al. Activity of a novel G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095), against human leukemia cells: Involvement of ATM-dependent DNA damage response pathways. Oncogene 2003;22:5338–47.

    CAS  PubMed  Google Scholar 

  135. Phatak P, Cookson JC, Dai F, et al. Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism. Br J Cancer 2007;96:1223–33.

    CAS  PubMed  Google Scholar 

  136. Salvati E, Leonetti C, Rizzo A, et al. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J Clin Invest 2007;117:3236–47.

    CAS  PubMed  Google Scholar 

  137. Kelland L. Targeting the limitless replicative potential of cancer: The telomerase/telomere pathway. Clin Cancer Res 2007;13:4960–3.

    CAS  PubMed  Google Scholar 

  138. Gomez D, Aouali N, Londono-Vallejo A, et al. Resistance to the short term antiproliferative activity of the G-quadruplex ligand 12459 is associated with telomerase overexpression and telomere capping alteration. J Biol Chem 2003;278:50554–62.

    CAS  PubMed  Google Scholar 

  139. De Cian A, Cristofari G, Reichenbach P, et al. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proc Natl Acad Sci USA 2007;104:17347–52.

    PubMed  Google Scholar 

  140. Seimiya H. The telomeric PARP, tankyrases, as targets for cancer therapy. Br J Cancer 2006;94:341–5.

    CAS  PubMed  Google Scholar 

  141. Seimiya H, Muramatsu Y, Ohishi T, Tsuruo T. Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics. Cancer Cell 2005;7:25–37.

    CAS  PubMed  Google Scholar 

  142. Shay JW, Wright WE. Mechanism-based combination telomerase inhibition therapy. Cancer Cell 2005;7:1–2.

    CAS  PubMed  Google Scholar 

  143. Donawho CK, Luo Y, Penning TD, et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 2007;13:2728–37.

    CAS  PubMed  Google Scholar 

  144. Albert JM, Cao C, Kim KW, et al. Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res 2007;13:3033–42.

    CAS  PubMed  Google Scholar 

  145. Sumi, M, Tauchi T, Sashida G, et al. A G-quadruplex-interactive agent, telomestatin (SOT-095), induces telomere shortening with apoptosis and enhances chemosensitivity in acute myeloid leukemia. Int J Oncol 2004;24:1481–7.

    CAS  PubMed  Google Scholar 

  146. Cerone MA, Londono-Vallejo JA, Autexier C. Telomerase inhibition enhances the response to anticancer drug treatment in human breast cancer cells. Mol Cancer Ther 2006;5:1669–75.

    CAS  PubMed  Google Scholar 

  147. Gonzalez-Suarez E, Goytisolo FA, Flores JM, Blasco MA. Telomere dysfunction results in enhanced organismal sensitivity to the alkylating agent N-methyl-N-nitrosourea. Cancer Res 2003;63:7047–50.

    CAS  PubMed  Google Scholar 

  148. Vonderheide RH. Prospects and challenges of building a cancer vaccine targeting telomerase. Biochimie 2008;90:173–80.

    CAS  PubMed  Google Scholar 

  149. Brunsvig PF, Aamdal S, Gjertsen MK, et al. Telomerase peptide vaccination: A phase I/II study in patients with non-small cell lung cancer. Cancer Immunol Immunother 2006:5:1553–64.

    Google Scholar 

  150. Bernhardt SL, Gjertsen MK, Trachsel S, et al. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: A dose escalating phase I/II study. Br J Cancer 2006;95:1474–82.

    CAS  PubMed  Google Scholar 

  151. Su Z, Dannull J, Yang BK, et al. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol 2005;174:3798–807.

    CAS  PubMed  Google Scholar 

  152. Vonderheide RH, Domchek SM, Schultze JL, et al. Vaccination of cancer patients against telomerase induces functional antitumor CD8+ T lympocytes. Clin Cancer Res 2004;10:828–39.

    CAS  PubMed  Google Scholar 

  153. Domchek SM, Recio A, Mick R, et al. Telomerase-specific T-cell immunity in breast cancer: Effect of vaccination of tumor immunosurveillance. Cancer Res 2007;67:10546–55.

    CAS  PubMed  Google Scholar 

  154. Minev B, Hipp J, Firat H, et al. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc Natl Acad Sci USA 2000;97:4796–801.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to authors whose work could not be thoroughly described due to space limitations. The authors would like to acknowledge the Indiana University Melvin and Bren Simon Cancer Center and the Indiana Genomics Initiative (INGEN) for their support.ingEN of Indiana University is supported in part by Lilly Endowment, Inc.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Herbert, BS., Goldblatt, E.M. (2009). Therapeutic Targets and Drugs I: Telomerase and Telomerase Inhibitors. In: Hiyama, K. (eds) Telomeres and Telomerase in Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-879-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-879-9_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-306-0

  • Online ISBN: 978-1-60327-879-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics