Skip to main content

The Hypothalamic-Pituitary-Ovarian Axis

  • Chapter
  • First Online:
Amenorrhea

Part of the book series: Contemporary Endocrinology ((COE))

Abstarct

The hypothalamic-pituitary unit is the most evolutionarily conserved brain ­structure. It is responsible for integrating incoming information from the external (e.g., light, pain, temperature, smell) and internal environment (e.g., blood pressure, blood glucose, blood osmolality) and maintaining physiological homeostasis by coordinating endocrine, autonomic, and behavioral responses. In addition to preserving physiological homeostasis, the hypothalamic-pituitary axis synchronizes neuroendocrine physiology essential for ovarian physiology and reproduction. Key hormones responsible for hypothalamic-pituitary-gonadal (HPG) axis competency and reproductive success include gonadotropin releasing hormone (GnRH), follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol, progesterone, inhibin, activin, and follistatin. While the hypothalamic-pituitary axis is important for homeostasis, this chapter will primarily describe the role of HPG axis in the regulation of the menstrual cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kandel E, Schwartz J, Jessel T (eds) (2000) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  2. Soussi-Yanicostas N, Faivre-Sarrailh C, Hardelin JP, Levilliers J, Rougon G, Petit C (1998) Anosmin-1 underlying the X chromosome-linked Kallmann syndrome is an adhesion molecule that can modulate neurite growth in a cell-type specific manner. J Cell Sci 111(pt 19):2953–2965

    PubMed  CAS  Google Scholar 

  3. Tsai PS, Moenter SM, Postigo HR, El Majdoubi M, Pak TR, Gill JC, Paruthiyil S, Werner S, Weiner RI (2005) Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population. Mol Endocrinol 19:225–236

    Article  PubMed  CAS  Google Scholar 

  4. Clarke IJ (1993) Variable patterns of gonadotropin-releasing hormone secretion during the estrogen-induced luteinizing hormone surge in ovariectomized ewes. Endocrinology 133:1624–1632

    Article  PubMed  CAS  Google Scholar 

  5. Skynner MJ, Sim JA, Herbison AE (1999) Detection of estrogen receptor alpha and beta messenger ribonucleic acids in adult gonadotropin-releasing hormone neurons. Endocrinology 140:5195–5201

    Article  PubMed  CAS  Google Scholar 

  6. Ojeda SR, Ma YJ (1999) Glial-neuronal interactions in the neuroendocrine control of mammalian puberty: facilitatory effects of gonadal steroids. J Neurobiol 40:528–540

    Article  PubMed  CAS  Google Scholar 

  7. Morris BJ (1989) Neuronal localisation of neuropeptide Y gene expression in rat brain. J Comp Neurol 290:358–368

    Article  PubMed  CAS  Google Scholar 

  8. Coiro V, Chiodera P, Melani A, Manfredi G, Saccani Jotti G, Casti A (2006) Different plasma neuropeptide Y concentrations in women athletes with and without menstrual cyclicity. Fertil Steril 85:767–769

    Article  PubMed  CAS  Google Scholar 

  9. Haas DA, George SR (1989) Neuropeptide Y-induced effects on hypothalamic corticotropin-releasing factor content and release are dependent on noradrenergic/adrenergic neurotransmission. Brain Res 498:333–338

    Article  PubMed  CAS  Google Scholar 

  10. Hanson ES, Dallman MF (1995) Neuropeptide Y (NPY) may integrate responses of hypothalamic feeding systems and the hypothalamo-pituitary-adrenal axis. J Neuroendocrinol 7:273–279

    Article  PubMed  CAS  Google Scholar 

  11. Dhillon SS, Gingerich S, Belsham DD (2009) Neuropeptide Y induces gonadotropin-releasing hormone gene expression directly and through conditioned medium from mHypoE-38 NPY neurons. Regul Pept 156:96–103

    Article  PubMed  CAS  Google Scholar 

  12. Strauss JF, Barbieri RL (eds) (2004) Yen and Jaffe’s reproductive endocrinology, 5th edn. Elsevier, Philadelphia, PA

    Google Scholar 

  13. Neal-Perry G, Lebesgue D, Lederman M, Shu J, Zeevalk GD, Etgen AM (2009) The excitatory peptide kisspeptin restores the luteinizing hormone surge and modulates amino acid neurotransmission in the medial preoptic area of middle-aged rats. Endocrinology 150:3699–3708

    Article  PubMed  CAS  Google Scholar 

  14. Kaiser UB, Kuohung W (2005) KiSS-1 and GPR54 as new players in gonadotropin regulation and puberty. Endocrine 26:277–284

    Article  PubMed  CAS  Google Scholar 

  15. Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A, Nogueiras R, Vazquez MJ, Barreiro ML, Magni P, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2005) Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology 146:156–163

    Article  PubMed  CAS  Google Scholar 

  16. Dungan HM, Gottsch ML, Zeng H, Gragerov A, Bergmann JE, Vassilatis DK, Clifton DK, Steiner RA (2007) The role of kisspeptin-GPR54 signaling in the tonic regulation and surge release of gonadotropin-releasing hormone/luteinizing hormone. J Neurosci 27:12088–12095

    Article  PubMed  CAS  Google Scholar 

  17. Downs JL, Wise PM (2009) The role of the brain in female reproductive aging. Mol Cell Endocrinol 299:32–38

    Article  PubMed  CAS  Google Scholar 

  18. Jarry H, Leonhardt S, Schwarze T, Wuttke W (1995) Preoptic rather than mediobasal hypothalamic amino acid neurotransmitter release regulates GnRH secretion during the estrogen-induced LH surge in the ovariectomized rat. Neuroendocrinology 62:479–486

    Article  PubMed  CAS  Google Scholar 

  19. Jarry H, Leonhardt S, Wuttke W (1990) A norepinephrine-dependent mechanism in the preoptic/anterior hypothalamic area but not in the mediobasal hypothalamus is involved in the regulation of the gonadotropin-releasing hormone pulse generator in ovariectomized rats. Neuroendocrinology 51:337–344

    Article  PubMed  CAS  Google Scholar 

  20. Jennes L, Lin W, Lakhlani S (2002) Glutamatergic regulation of gonadotropin-releasing hormone neurons. Prog Brain Res 141:183–192

    Article  PubMed  CAS  Google Scholar 

  21. Neal-Perry GS, Zeevalk GD, Shu J, Etgen AM (2008) Restoration of the luteinizing hormone surge in middle-aged female rats by altering the balance of GABA and glutamate transmission in the medial preoptic area. Biol Reprod 79:878–888

    Article  PubMed  CAS  Google Scholar 

  22. Terasawa E, Luchansky LL, Kasuya E, Nyberg CL (1999) An increase in glutamate release follows a decrease in gamma aminobutyric acid and the pubertal increase in luteinizing hormone releasing hormone release in the female rhesus monkeys. J Neuroendocrinol 11:275–282

    Article  PubMed  CAS  Google Scholar 

  23. Mohankumar PS, Thyagarajan S, Quadri SK (1994) Correlations of catecholamine release in the medial preoptic area with proestrous surges of luteinizing hormone and prolactin: effects of aging. Endocrinology 135:119–126

    Article  PubMed  CAS  Google Scholar 

  24. Mohankumar PS, Thyagarajan S, Quadri SK (1995) Cyclic and age-related changes in norepinephrine concentrations in the medial preoptic area and arcuate nucleus. Brain Res Bull 38:561–564

    Article  PubMed  CAS  Google Scholar 

  25. Weiland NG, Wise PM (1986) Effects of age on beta 1- and beta 2-adrenergic receptors in the brain assessed by quantitative autoradiography. Brain Res 398:305–312

    Article  PubMed  CAS  Google Scholar 

  26. Wise PM (1982) Norepinephrine and dopamine activity in microdissected brain areas of the middle-aged and young rat on proestrus. Biol Reprod 27:562–574

    Article  PubMed  CAS  Google Scholar 

  27. Kelberman D, Dattani MT (2007) Hypothalamic and pituitary development: novel insights into the aetiology. Eur J Endocrinol 157(suppl 1):S3–S14

    Article  PubMed  CAS  Google Scholar 

  28. Kelberman D, Turton JP, Woods KS, Mehta A, Al-Khawari M, Greening J, Swift PG, Otonkoski T, Rhodes SJ, Dattani MT (2009) Molecular analysis of novel PROP1 mutations associated with combined pituitary hormone deficiency (CPHD). Clin Endocrinol (Oxf) 70:96–103

    Article  CAS  Google Scholar 

  29. Gage PJ, Suh H, Camper SA (1999) Dosage requirement of Pitx2 for development of multiple organs. Development 126:4643–4651

    PubMed  CAS  Google Scholar 

  30. Navratil AM, Knoll JG, Whitesell JD, Tobet SA, Clay CM (2007) Neuroendocrine plasticity in the anterior pituitary: gonadotropin-releasing hormone-mediated movement in vitro and in vivo. Endocrinology 148:1736–1744

    Article  PubMed  CAS  Google Scholar 

  31. Suganuma N, Furui K, Furuhashi M, Asada Y, Kikkawa F, Tomoda Y (1995) Screening of the mutations in luteinizing hormone beta-subunit in patients with menstrual disorders. Fertil Steril 63:989–995

    PubMed  CAS  Google Scholar 

  32. Meduri G, Touraine P, Beau I, Lahuna O, Desroches A, Vacher-Lavenu MC, Kuttenn F, Misrahi M (2003) Delayed puberty and primary amenorrhea associated with a novel mutation of the human follicle-stimulating hormone receptor: clinical, histological, and molecular studies. J Clin Endocrinol Metab 88:3491–3498

    Article  PubMed  CAS  Google Scholar 

  33. Burger HG, Yamada Y, Bangah ML, McCloud PI, Warne GL (1991) Serum gonadotropin, sex steroid, and immunoreactive inhibin levels in the first two years of life. J Clin Endocrinol Metab 72:682–686

    Article  PubMed  CAS  Google Scholar 

  34. Greaves RF, Hunt RW, Chiriano AS, Zacharin MR (2008) Luteinizing hormone and follicle-stimulating hormone levels in extreme prematurity: development of reference intervals. Pediatrics 121:e574–e580

    Article  PubMed  Google Scholar 

  35. Winter JS, Faiman C (1972) Serum gonadotropin in concentrations in agonadal children and adults. J Clin Endocrinol Metab 35:561–564

    Article  PubMed  CAS  Google Scholar 

  36. Ulloa-Aguirre A, Espinoza R, Damian-Matsumura P, Chappel S (1988) Immunological and biological potencies of the different molecular species of gonadotrophins. Hum Reprod 3:491–501

    PubMed  CAS  Google Scholar 

  37. Wide L, Eriksson K, Sluss PM, Hall JE (2009) Serum half-life of pituitary gonadotropins is decreased by sulfonation and increased by sialylation in women. J Clin Endocrinol Metab 94:958–964

    Article  PubMed  CAS  Google Scholar 

  38. Weiss J, Axelrod L, Whitcomb RW, Harris PE, Crowley WF, Jameson JL (1992) Hypogonadism caused by a single amino acid substitution in the beta subunit of luteinizing hormone. N Engl J Med 326:179–183

    Article  PubMed  CAS  Google Scholar 

  39. Abell AN, McCormick DJ, Segaloff DL (1998) Certain activating mutations within helix 6 of the human luteinizing hormone receptor may be explained by alterations that allow transmembrane regions to activate Gs. Mol Endocrinol 12:1857–1869

    Article  PubMed  CAS  Google Scholar 

  40. Beck-Peccoz P, Persani L, Romoli R, Asteria C, Borgato S (1998) Activating mutations of the gonadotrophin receptors. Arch Pediatr 5(suppl 4):380S–384S

    Article  PubMed  Google Scholar 

  41. Rajkhowa M, Talbot JA, Jones PW, Pettersson K, Haavisto AM, Huhtaniemi I, Clayton RN (1995) Prevalence of an immunological LH beta-subunit variant in a UK population of healthy women and women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 43:297–303

    Article  CAS  Google Scholar 

  42. Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, Smith F, Markoff E, Dorshkind K (1997) Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J 16:6926–6935

    Article  PubMed  CAS  Google Scholar 

  43. Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, Edery M, Brousse N, Babinet C, Binart N, Kelly PA (1997) Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 11:167–178

    Article  PubMed  CAS  Google Scholar 

  44. Milenkovic L, D’Angelo G, Kelly PA, Weiner RI (1994) Inhibition of gonadotropin hormone-releasing hormone release by prolactin from GT1 neuronal cell lines through prolactin receptors. Proc Natl Acad Sci U S A 91:1244–1247

    Article  PubMed  CAS  Google Scholar 

  45. Sauder SE, Frager M, Case GD, Kelch RP, Marshall JC (1984) Abnormal patterns of pulsatile luteinizing hormone secretion in women with hyperprolactinemia and amenorrhea: responses to bromocriptine. J Clin Endocrinol Metab 59:941–948

    Article  PubMed  CAS  Google Scholar 

  46. Klibanski A, Beitins IZ, Merriam GR, McArthur JW, Zervas NT, Ridgway EC (1984) Gonadotropin and prolactin pulsations in hyperprolactinemic women before and during bromocriptine therapy. J Clin Endocrinol Metab 58:1141–1147

    Article  PubMed  CAS  Google Scholar 

  47. Sartorio A, Pizzocaro A, Liberati D, De Nicolao G, Veldhuis JD, Faglia G (2000) Abnormal LH pulsatility in women with hyperprolactinaemic amenorrhoea normalizes after bromocriptine treatment: deconvolution-based assessment. Clin Endocrinol (Oxf) 52:703–712

    Article  CAS  Google Scholar 

  48. Cook CB, Nippoldt TB, Kletter GB, Kelch RP, Marshall JC (1991) Naloxone increases the frequency of pulsatile luteinizing hormone secretion in women with hyperprolactinemia. J Clin Endocrinol Metab 73:1099–1105

    Article  PubMed  CAS  Google Scholar 

  49. Matera C, Freda PU, Ferin M, Wardlaw SL (1995) Effect of chronic opioid antagonism on the hypothalamic-pituitary-ovarian axis in hyperprolactinemic women. J Clin Endocrinol Metab 80:540–545

    Article  PubMed  CAS  Google Scholar 

  50. Kuwana T, Fujimoto T (1983) Active locomotion of human primordial germ cells in vitro. Anat Rec 205:21–26

    Article  PubMed  CAS  Google Scholar 

  51. Baker TG (1963) A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B Biol Sci 158:417–433

    Article  PubMed  CAS  Google Scholar 

  52. Peters H (1976) Intrauterine gonadal development. Fertil Steril 27:493–500

    PubMed  CAS  Google Scholar 

  53. Abir R, Orvieto R, Dicker D, Zukerman Z, Barnett M, Fisch B (2002) Preliminary studies on apoptosis in human fetal ovaries. Fertil Steril 78:259–264

    Article  PubMed  Google Scholar 

  54. Zinn AR, Ross JL (2001) Molecular analysis of genes on Xp controlling Turner syndrome and premature ovarian failure (POF). Semin Reprod Med 19:141–146

    Article  PubMed  CAS  Google Scholar 

  55. Zinn AR, Tonk VS, Chen Z, Flejter WL, Gardner HA, Guerra R, Kushner H, Schwartz S, Sybert VP, Van Dyke DL, Ross JL (1998) Evidence for a Turner syndrome locus or loci at Xp11.2-p22.1. Am J Hum Genet 63:1757–1766

    Article  PubMed  CAS  Google Scholar 

  56. Fujimoto T, Miyayama Y, Fuyuta M (1977) The origin, migration and fine morphology of human primordial germ cells. Anat Rec 188:315–330

    Article  PubMed  CAS  Google Scholar 

  57. Pereda J, Zorn T, Soto-Suazo M (2006) Migration of human and mouse primordial germ cells and colonization of the developing ovary: an ultrastructural and cytochemical study. Microsc Res Tech 69:386–395

    Article  PubMed  Google Scholar 

  58. Fujimoto T, Yoshinaga K, Kono I (1985) Distribution of fibronectin on the migratory pathway of primordial germ cells in mice. Anat Rec 211:271–278

    Article  PubMed  CAS  Google Scholar 

  59. Speroff L, Fritz M (eds) (2005) Clinical gynecologic endocrinology and infertility, 7th edn. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  60. Greiner M, Paredes A, Rey-Ares V, Saller S, Mayerhofer A, Lara HE (2008) Catecholamine uptake, storage, and regulated release by ovarian granulosa cells. Endocrinology 149:4988–4996

    Article  PubMed  CAS  Google Scholar 

  61. Dyer CA, Erickson GF (1985) Norepinephrine amplifies human chorionic gonadotropin-stimulated androgen biosynthesis by ovarian theca-interstitial cells. Endocrinology 116:1645–1652

    Article  PubMed  CAS  Google Scholar 

  62. Ottesen B, Fahrenkrug J (1995) Vasoactive intestinal polypeptide and other preprovasoactive intestinal polypeptide-derived peptides in the female and male genital tract: localization, biosynthesis, and functional and clinical significance. Am J Obstet Gynecol 172:1615–1631

    Article  PubMed  CAS  Google Scholar 

  63. Flaws JA, DeSanti A, Tilly KI, Javid RO, Kugu K, Johnson AL, Hirshfield AN, Tilly JL (1995) Vasoactive intestinal peptide-mediated suppression of apoptosis in the ovary: potential mechanisms of action and evidence of a conserved antiatretogenic role through evolution. Endocrinology 136:4351–4359

    Article  PubMed  CAS  Google Scholar 

  64. Mayerhofer A, Dissen GA, Costa ME, Ojeda SR (1997) A role for neurotransmitters in early follicular development: induction of functional follicle-stimulating hormone receptors in newly formed follicles of the rat ovary. Endocrinology 138:3320–3329

    Article  PubMed  CAS  Google Scholar 

  65. Gougeon A (1986) Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod 1:81–87

    PubMed  CAS  Google Scholar 

  66. McGee EA, Hsueh AJ (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21:200–214

    Article  PubMed  CAS  Google Scholar 

  67. Da Silva-Buttkus P, Jayasooriya GS, Mora JM, Mobberley M, Ryder TA, Baithun M, Stark J, Franks S, Hardy K (2008) Effect of cell shape and packing density on granulosa cell proliferation and formation of multiple layers during early follicle development in the ovary. J Cell Sci 121:3890–3900

    Article  PubMed  Google Scholar 

  68. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531–535

    Article  PubMed  CAS  Google Scholar 

  69. Fortune JE, Cushman RA, Wahl CM, Kito S (2000) The primordial to primary follicle transition. Mol Cell Endocrinol 163:53–60

    Article  PubMed  CAS  Google Scholar 

  70. Meduri G, Bachelot A, Cocca MP, Vasseur C, Rodien P, Kuttenn F, Touraine P, Misrahi M (2008) Molecular pathology of the FSH receptor: new insights into FSH physiology. Mol Cell Endocrinol 282:130–142

    Article  PubMed  CAS  Google Scholar 

  71. Parrott JA, Skinner MK (1998) Thecal cell-granulosa cell interactions involve a positive feedback loop among keratinocyte growth factor, hepatocyte growth factor, and Kit ligand during ovarian follicular development. Endocrinology 139:2240–2245

    Article  PubMed  CAS  Google Scholar 

  72. McConnell NA, Yunus RS, Gross SA, Bost KL, Clemens MG, Hughes FM Jr (2002) Water permeability of an ovarian antral follicle is predominantly transcellular and mediated by aquaporins. Endocrinology 143:2905–2912

    Article  PubMed  CAS  Google Scholar 

  73. Rodgers RJ, Irving-Rodgers HF, Russell DL (2003) Extracellular matrix of the developing ovarian follicle. Reproduction 126:415–424

    Article  PubMed  CAS  Google Scholar 

  74. Chikazawa K, Araki S, Tamada T (1986) Morphological and endocrinological studies on follicular development during the human menstrual cycle. J Clin Endocrinol Metab 62:305–313

    Article  PubMed  CAS  Google Scholar 

  75. Peng XR, Hsueh AJ, LaPolt PS, Bjersing L, Ny T (1991) Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation. Endocrinology 129:3200–3207

    Article  PubMed  CAS  Google Scholar 

  76. Conti M, Hsieh M, Park JY, Su YQ (2006) Role of the epidermal growth factor network in ovarian follicles. Mol Endocrinol 20:715–723

    Article  PubMed  CAS  Google Scholar 

  77. Lim H, Paria BC, Das SK, Dinchuk JE, Langenbach R, Trzaskos JM, Dey SK (1997) Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell 91:197–208

    Article  PubMed  CAS  Google Scholar 

  78. Araki S, Chikazawa K, Motoyama M, Ijima K, Abe N, Tamada T (1985) Reduction in pituitary desensitization and prolongation of gonadotropin release by estrogen during continuous administration of gonadotropin-releasing hormone in women: its antagonism by progesterone. J Clin Endocrinol Metab 60:590–598

    Article  PubMed  CAS  Google Scholar 

  79. Wildt L, Hutchison JS, Marshall G, Pohl CR, Knobil E (1981) On the site of action of progesterone in the blockade of the estradiol-induced gonadotropin discharge in the rhesus monkey. Endocrinology 109:1293–1294

    Article  PubMed  CAS  Google Scholar 

  80. McCartney CR, Gingrich MB, Hu Y, Evans WS, Marshall JC (2002) Hypothalamic regulation of cyclic ovulation: evidence that the increase in gonadotropin-releasing hormone pulse frequency during the follicular phase reflects the gradual loss of the restraining effects of progesterone. J Clin Endocrinol Metab 87:2194–2200

    Article  PubMed  CAS  Google Scholar 

  81. Chaffin CL, Stouffer RL (2002) Local role of progesterone in the ovary during the periovulatory interval. Rev Endocr Metab Disord 3:65–72

    Article  PubMed  CAS  Google Scholar 

  82. Demura R, Suzuki T, Tajima S, Mitsuhashi S, Odagiri E, Demura H, Ling N (1993) Human plasma free activin and inhibin levels during the menstrual cycle. J Clin Endocrinol Metab 76:1080–1082

    Article  PubMed  CAS  Google Scholar 

  83. Risbridger GP, Schmitt JF, Robertson DM (2001) Activins and inhibins in endocrine and other tumors. Endocr Rev 22:836–858

    Article  PubMed  CAS  Google Scholar 

  84. Roberts VJ, Peto CA, Vale W, Sawchenko PE (1992) Inhibin/activin subunits are costored with FSH and LH in secretory granules of the rat anterior pituitary gland. Neuroendocrinology 56:214–224

    Article  PubMed  CAS  Google Scholar 

  85. Roberts V, Meunier H, Vaughan J, Rivier J, Rivier C, Vale W, Sawchenko P (1989) Production and regulation of inhibin subunits in pituitary gonadotropes. Endocrinology 124:552–554

    Article  PubMed  CAS  Google Scholar 

  86. Blumenfeld Z (2001) Response of human fetal pituitary cells to activin, inhibin, hypophysiotropic and neuroregulatory factors in vitro. Early Pregnancy 5:41–42

    PubMed  CAS  Google Scholar 

  87. Kogawa K, Ogawa K, Hayashi Y, Nakamura T, Titani K, Sugino H (1991) Immunohistochemical localization of follistatin in rat tissues. Endocrinol Jpn 38:383–391

    Article  PubMed  CAS  Google Scholar 

  88. Kogawa K, Nakamura T, Sugino K, Takio K, Titani K, Sugino H (1991) Activin-binding protein is present in pituitary. Endocrinology 128:1434–1440

    Article  PubMed  CAS  Google Scholar 

  89. Blount AL, Schmidt K, Justice NJ, Vale WW, Fischer WH, Bilezikjian LM (2009) FoxL2 and Smad3 coordinately regulate follistatin gene transcription. J Biol Chem 284:7631–7645

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genevieve Neal-Perry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this chapter

Cite this chapter

Dicken, C., Menke, M., Neal-Perry, G. (2010). The Hypothalamic-Pituitary-Ovarian Axis. In: Santoro, N., Neal-Perry, G. (eds) Amenorrhea. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-864-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-864-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-863-8

  • Online ISBN: 978-1-60327-864-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics