Skip to main content

Applications of Proteomics in Prostate Cancer

  • Chapter
  • First Online:
  • 1220 Accesses

Abstract

Prostate-specific antigen (PSA) is the most commonly used circulating protein biomarker, which guides the diagnosis and treatment of prostate cancer. However, limitations in sensitivity and specificity limit utility of PSA when used as a diagnostic marker in screening population or as a prognostic, theragnostic, or surrogate biomarker in patients with recurrent or advanced prostate cancer. Accordingly, there is a need to discover new biomarkers to improve diagnosis, risk stratification, and therapeutic monitoring in prostate cancer. Proteomics, as an emerging technology, offers great promise in providing the cancer research community with biomarkers to guide therapeutic decision-making. However, caution must be used as new biomarkers are discovered and subject to appropriate validation before they can be applied to mainstream clinical settings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69(3):89–95.

    Article  Google Scholar 

  2. Patlak M, Nass SJ, National Cancer Policy Forum (U.S.), United States. Department of Health and Human Services. Developing biomarker-based tools for cancer screening, diagnosis, and treatment: the state of the science, evaluation, implementation, and economics: workshop summary. Washington, D.C.: National Academies Press; 2006.

    Google Scholar 

  3. Sawyers CL. The cancer biomarker problem. Nature 2008;452(7187):548–52.

    Article  PubMed  CAS  Google Scholar 

  4. Yeon CH, Pegram MD. Anti-erbB-2 antibody trastuzumab in the treatment of HER2-amplified breast cancer. Invest New Drugs 2005;23(5):391–409.

    Article  PubMed  CAS  Google Scholar 

  5. Sawyers CL. Rational therapeutic intervention in cancer: kinases as drug targets. Curr Opin Genet Dev 2002;12(1):111–5.

    Article  PubMed  CAS  Google Scholar 

  6. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008;26(10):1626–34.

    Article  PubMed  CAS  Google Scholar 

  7. Sequist LV, Bell DW, Lynch TJ, Haber DA. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol 2007;25(5):587–95.

    Article  PubMed  CAS  Google Scholar 

  8. Morris SR, Carey LA. Gene expression profiling in breast cancer. Curr Opin Oncol 2007;19(6):547–51.

    Article  PubMed  CAS  Google Scholar 

  9. Epstein JI. Diagnosis and reporting of limited adenocarcinoma of the prostate on needle biopsy. Mod Pathol 2004;17(3):307–15.

    Article  PubMed  Google Scholar 

  10. Varadhachary GR, Abbruzzese JL, Lenzi R. Diagnostic strategies for unknown primary cancer. Cancer 2004;100(9):1776–85.

    Article  PubMed  CAS  Google Scholar 

  11. Bianco FJ Jr, Wood DP Jr, Cher ML, Powell IJ, Souza JW, Pontes JE. Ten-year survival after radical prostatectomy: specimen Gleason score is the predictor in organ-confined prostate cancer. Clin Prostate Cancer 2003;1(4):242–7.

    Article  PubMed  Google Scholar 

  12. Epstein JI, Allsbrook WC Jr, Amin MB, Egevad LL. Update on the Gleason grading system for prostate cancer: results of an international consensus conference of urologic pathologists. Adv Anat Pathol 2006;13(1):57–9.

    Article  PubMed  Google Scholar 

  13. Graefen M, Karakiewicz PI, Cagiannos I, et al. Validation study of the accuracy of a postoperative nomogram for recurrence after radical prostatectomy for localized prostate cancer. J Clin Oncol 2002;20(4):951–6.

    Article  PubMed  Google Scholar 

  14. Kattan MW, Zelefsky MJ, Kupelian PA, Scardino PT, Fuks Z, Leibel SA. Pretreatment nomogram for predicting the outcome of three-dimensional conformal radiotherapy in prostate cancer. J Clin Oncol 2000;18(19):3352–9.

    PubMed  CAS  Google Scholar 

  15. Stephenson AJ, Scardino PT, Eastham JA, et al. Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Natl Cancer Inst 2006;98(10):715–7.

    Article  PubMed  Google Scholar 

  16. Karakiewicz PI, Hutterer GC. Predictive models and prostate cancer. Nat Clin Pract 2008;5(2):82–92.

    Google Scholar 

  17. Lapointe J, Li C, Higgins JP, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A 2004;101(3):811–6.

    Article  PubMed  CAS  Google Scholar 

  18. True L, Coleman I, Hawley S, et al. A molecular correlate to the Gleason grading system for prostate adenocarcinoma. Proc Natl Acad Sci U S A 2006;103(29):10991–6.

    Article  PubMed  CAS  Google Scholar 

  19. Singh D, Febbo PG, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002;1(2):203–9.

    Article  PubMed  CAS  Google Scholar 

  20. Chin JL, Reiter RE. Molecular markers and prostate cancer prognosis. Clin Prostate Cancer 2004;3(3):157–64.

    Article  PubMed  CAS  Google Scholar 

  21. Freedland SJ, deGregorio F, Sacoolidge JC, et al. Preoperative p27 status is an independent predictor of prostate specific antigen failure following radical prostatectomy. J Urol 2003;169(4):1325–30.

    Article  PubMed  CAS  Google Scholar 

  22. Yang RM, Naitoh J, Murphy M, et al. Low p27 expression predicts poor disease-free survival in patients with prostate cancer. J Urol 1998;159(3):941–5.

    Article  PubMed  CAS  Google Scholar 

  23. Mouraviev V, Li L, Tahir SA, et al. The role of caveolin-1 in androgen insensitive prostate cancer. J Urol 2002;168(4 Pt 1):1589–96.

    PubMed  CAS  Google Scholar 

  24. Cordon-Cardo C, Kotsianti A, Verbel DA, et al. Improved prediction of prostate cancer recurrence through systems pathology. J Clin Invest 2007;117(7):1876–83.

    Article  PubMed  CAS  Google Scholar 

  25. Li R, Wheeler T, Dai H, Frolov A, Thompson T, Ayala G. High level of androgen receptor is associated with aggressive clinicopathologic features and decreased biochemical recurrence-free survival in prostate: cancer patients treated with radical prostatectomy. Am J Surg Pathol 2004;28(7):928–34.

    Article  PubMed  Google Scholar 

  26. Wako K, Kawasaki T, Yamana K, et al. Expression of androgen receptor through androgen-converting enzymes is associated with biological aggressiveness in prostate cancer. J Clin Pathol 2008;4:448–54.

    Article  Google Scholar 

  27. Torlakovic E, Lilleby W, Berner A, et al. Differential expression of steroid receptors in prostate tissues before and after radiation therapy for prostatic adenocarcinoma. Int J Cancer 2005;117(3):381–6.

    Article  PubMed  CAS  Google Scholar 

  28. Torlakovic E, Lilleby W, Torlakovic G, Fossa SD, Chibbar R. Prostate carcinoma expression of estrogen receptor-beta as detected by PPG5/10 antibody has positive association with primary Gleason grade and Gleason score. Hum Pathol 2002;33(6):646–51.

    Article  PubMed  CAS  Google Scholar 

  29. Bettencourt MC, Bauer JJ, Sesterhenn IA, Mostofi FK, McLeod DG, Moul JW. Ki-67 expression is a prognostic marker of prostate cancer recurrence after radical prostatectomy. J Urol 1996;156(3):1064–8.

    Article  PubMed  CAS  Google Scholar 

  30. Cowen D, Troncoso P, Khoo VS, et al. Ki-67 staining is an independent correlate of biochemical failure in prostate cancer treated with radiotherapy. Clin Cancer Res 2002;8(5):1148–54.

    PubMed  Google Scholar 

  31. Halvorsen OJ, Haukaas S, Hoisaeter PA, Akslen LA. Maximum Ki-67 staining in prostate cancer provides independent prognostic information after radical prostatectomy. Anticancer Res 2001;21(6A):4071–6.

    PubMed  CAS  Google Scholar 

  32. Bok RA, Small EJ. Bloodborne biomolecular markers in prostate cancer development and progression. Nat Rev Cancer 2002;2(12):918–26.

    Article  PubMed  CAS  Google Scholar 

  33. Leman ES, Cannon GW, Trock BJ, et al. EPCA-2: a highly specific serum marker for prostate cancer. Urology 2007;69(4):714–20.

    Article  PubMed  Google Scholar 

  34. Nam R, Diamandis E, Toi A, et al. Serum human glandular Kallikrein-2 protease levels predict the presence of prostate cancer among men with elevated prostate-specific antigen. J Clin Oncol 2000;18(5):1036.

    PubMed  CAS  Google Scholar 

  35. Berruti A, Dogliotti L, Mosca A, et al. Circulating neuroendocrine markers in patients with prostate carcinoma. Cancer 2000;88(11):2590–7.

    Article  PubMed  CAS  Google Scholar 

  36. Berruti A, Mosca A, Tucci M, et al. Independent prognostic role of circulating chromogranin A in prostate cancer patients with hormone-refractory disease. Endocrine Relat Cancer 2005;12(1):109–17

    Article  PubMed  CAS  Google Scholar 

  37. Culine S, El Demery M, Lamy PJ, Iborra F, Avances C, Pinguet F. Docetaxel and cisplatin in patients with metastatic androgen independent prostate cancer and circulating neuroendocrine markers. J Urol 2007;178(3 Pt 1):844–8; discussion 848.

    Article  PubMed  CAS  Google Scholar 

  38. Taplin ME, Bubley GJ, Ko YJ, et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 1999;59(11):2511–5.

    PubMed  CAS  Google Scholar 

  39. Jung K, Lein M, Stephan C, et al. Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. Int J Cancer 2004;111(5):783–91

    Article  PubMed  CAS  Google Scholar 

  40. Armstrong AJ, Garrett-Mayer E, Ou Yang YC, et al. Prostate-specific antigen and pain surrogacy analysis in metastatic hormone-refractory prostate cancer. J Clin Oncol 2007;25(25):3965–70.

    Article  PubMed  Google Scholar 

  41. Armstrong AJ, Garrett-Mayer ES, Yang YC, de Wit R, Tannock IF, Eisenberger M. A Contemporary Prognostic Nomogram for Men with Hormone-Refractory Metastatic Prostate Cancer: a TAX327 Study Analysis. Clin Cancer Res 2007;13(21):6396–403.

    Article  PubMed  CAS  Google Scholar 

  42. Halabi S, Small EJ, Kantoff PW, et al. Prognostic model for predicting survival in men with hormone-refractory metastatic prostate cancer. J Clin Oncol 2003;21(7):1232–7.

    Article  PubMed  Google Scholar 

  43. George DJ, Halabi S, Shepard TF, et al. Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res 2001;7(7):1932–6.

    PubMed  CAS  Google Scholar 

  44. Graff J, Lalani AS, Lee S, et al. C-reactive protein as a prognostic marker for men with androgen-independent prostate cancer (AIPC): results from the ASCENT trial. Proc Am Soc Clin Oncol 2007;25(18 S):abstract 5074.

    Google Scholar 

  45. Humphrey PA, Halabi S, Picus J, et al. Prognostic significance of plasma scatter factor/hepatocyte growth factor levels in patients with metastatic hormone-refractory prostate cancer: results from cancer and leukemia group B 150005/9480. Clin Genitourin Cancer 2006;4(4):269–74

    Article  PubMed  CAS  Google Scholar 

  46. Balk SP, Ko YJ, Bubley GJ. Biology of prostate-specific antigen. J Clin Oncol 2003;21(2):383–91.

    Article  PubMed  CAS  Google Scholar 

  47. Catalona WJ, Smith DS, Ratliff TL, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med 1991;324(17):1156–61.

    Article  PubMed  CAS  Google Scholar 

  48. Labrie F, Dupont A, Suburu R, et al. Serum prostate specific antigen as pre-screening test for prostate cancer. J Urol 1992;147(3 Pt 2):846–51; discussion 851–2.

    PubMed  CAS  Google Scholar 

  49. Brawer MK, Chetner MP, Beatie J, Buchner DM, Vessella RL, Lange PH. Screening for prostatic carcinoma with prostate specific antigen. J Urol 1992;147(3 Pt 2):841–5.

    PubMed  CAS  Google Scholar 

  50. Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med 2004;350(22):2239–46.

    Article  PubMed  CAS  Google Scholar 

  51. Mikolajczyk SD, Marker KM, Millar LS, et al. A truncated precursor form of prostate-specific antigen is a more specific serum marker of prostate cancer. Cancer Res 2001;61(18):6958–63.

    PubMed  CAS  Google Scholar 

  52. D’Amico AV, Moul JW, Carroll PR, et al. Intermediate end point for prostate cancer-specific mortality following salvage hormonal therapy for prostate-specific antigen failure. J Natl Cancer Inst 2004;96(7):509–15.

    Article  PubMed  Google Scholar 

  53. Kwak C, Jeong SJ, Park MS, Lee E, Lee SE. Prognostic significance of the nadir prostate specific antigen level after hormone therapy for prostate cancer. J Urol 2002;168(3):995–1000.

    Article  PubMed  Google Scholar 

  54. Slovin SF, Wilton AS, Heller G, Scher HI. Time to detectable metastatic disease in patients with rising prostate-specific antigen values following surgery or radiation therapy. Clin Cancer Res 2005;11(24 Pt 1):8669–73.

    Article  PubMed  CAS  Google Scholar 

  55. Bubley GJ, Carducci M, Dahut W, et al. Eligibility and response guidelines for phase II clinical trials in androgen-independent prostate cancer: recommendations from the Prostate-Specific Antigen Working Group. J Clin Oncol 1999;17(11):3461–7.

    PubMed  CAS  Google Scholar 

  56. Boyanton BL Jr, Blick KE. Stability studies of twenty-four analytes in human plasma and serum. Clin Chem 2002;48(12):2242–7.

    PubMed  CAS  Google Scholar 

  57. Evans MJ, Livesey JH, Ellis MJ, Yandle TG. Effect of anticoagulants and storage temperatures on stability of plasma and serum hormones. Clin Biochem 2001;34(2):107–12.

    Article  PubMed  CAS  Google Scholar 

  58. Banks RE, Stanley AJ, Cairns DA, et al. Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry. Clin Chem 2005;51(9):1637–49.

    Article  PubMed  CAS  Google Scholar 

  59. Hsieh SY, Chen RK, Pan YH, Lee HL. Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics 2006;6(10):3189–98.

    Article  PubMed  CAS  Google Scholar 

  60. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002;1(11):845–67.

    Article  PubMed  CAS  Google Scholar 

  61. Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2002;2(1):3–10.

    Article  PubMed  CAS  Google Scholar 

  62. McDonald WH, Yates JR III. Shotgun proteomics: integrating technologies to answer biological questions. Curr Opin Mol Ther 2003;5(3):302–9.

    PubMed  CAS  Google Scholar 

  63. Wu L, Han DK. Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics. Expert Rev Proteomics 2006;3(6):611–9.

    Article  PubMed  CAS  Google Scholar 

  64. Gong Y, Li X, Yang B, et al. Different immunoaffinity fractionation strategies to characterize the human plasma proteome. J Proteome Res 2006;5(6):1379–87.

    Article  PubMed  CAS  Google Scholar 

  65. Liu T, Qian WJ, Mottaz HM, et al. Evaluation of multiprotein immunoaffinity subtraction for plasma proteomics and candidate biomarker discovery using mass spectrometry. Mol Cell Proteomics 2006;5(11):2167–74.

    Article  PubMed  CAS  Google Scholar 

  66. Pieper R, Su Q, Gatlin CL, Huang ST, Anderson NL, Steiner S. Multi-component immunoaffinity subtraction chromatography: an innovative step towards a comprehensive survey of the human plasma proteome. Proteomics 2003;3(4):422–32.

    Article  PubMed  CAS  Google Scholar 

  67. Kalume DE, Molina H, Pandey A. Tackling the phosphoproteome: tools and strategies. Curr Opin Chem Biol 2003;7(1):64–9.

    Article  PubMed  CAS  Google Scholar 

  68. Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol 2003;21(3):255–61.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang H, Yi EC, Li XJ, et al. High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol Cell Proteomics 2004;4(2):144–55.

    Article  PubMed  Google Scholar 

  70. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989;246(4926):64–71.

    Article  PubMed  CAS  Google Scholar 

  71. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988;60(20):2299–301.

    Article  PubMed  CAS  Google Scholar 

  72. Katz JE, Mallick P, Agus DB. A perspective on protein profiling of blood. BJU Int 2005;96(4):477–82.

    Article  PubMed  CAS  Google Scholar 

  73. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003;422(6928):198–207.

    Article  PubMed  CAS  Google Scholar 

  74. Luethy R, Kessner DE, Katz JE, et al. Precursor-ion mass re-estimation improves peptide identification on hybrid instruments. J Proteome Res 2008;7(9):4031–9

    Article  PubMed  CAS  Google Scholar 

  75. Tao WA, Aebersold R. Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Current Opin Biotechnol 2003;14(1):110–8.

    Article  PubMed  CAS  Google Scholar 

  76. Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997;18(11):2071–7.

    Article  PubMed  CAS  Google Scholar 

  77. MacCoss MJ, Toth MJ, Matthews DE. Evaluation and optimization of ion-current ratio measurements by selected-ion-monitoring mass spectrometry. Anal Chem 2001;73(13):2976–84.

    Article  PubMed  CAS  Google Scholar 

  78. Keshishian H, Addona T, Burgess M, Kuhn E, Carr SA. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 2007;6(12):2212–29

    Article  PubMed  CAS  Google Scholar 

  79. Stahl-Zeng J, Lange V, Ossola R, et al. High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics 2007;6(10):1809–17.

    Article  PubMed  CAS  Google Scholar 

  80. Adam BL, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 2002;62(13):3609–14.

    PubMed  CAS  Google Scholar 

  81. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359(9306):572–7.

    Article  PubMed  CAS  Google Scholar 

  82. Petricoin EF III, Ornstein DK, Paweletz CP, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 2002;94(20):1576–8.

    Article  PubMed  CAS  Google Scholar 

  83. Semmes OJ, Feng Z, Adam BL, et al. Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I. Assessment of platform reproducibility. Clin Chem 2005;51(1):102–12.

    Article  PubMed  CAS  Google Scholar 

  84. Sorace JM, Zhan M. A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinformatics 2003;4(1):24.

    Article  PubMed  Google Scholar 

  85. Sardana G, Marshall J, Diamandis EP. Discovery of candidate tumor markers for prostate cancer via proteomic analysis of cell culture-conditioned medium. Clin Chem 2007;53(3):429–37.

    Article  PubMed  CAS  Google Scholar 

  86. Martin DB, Gifford DR, Wright ME, et al. Quantitative proteomic analysis of proteins released by neoplastic prostate epithelium. Cancer Res 2004;64(1):347–55.

    Article  PubMed  CAS  Google Scholar 

  87. Gross M, Top I, Laux I, et al. Beta-2-microglobulin is an androgen-regulated secreted protein elevated in serum of patients with advanced prostate cancer. Clin Cancer Res 2007;13(7):1979–86.

    Article  PubMed  CAS  Google Scholar 

  88. Bhat KM, Setaluri V. Microtubule-associated proteins as targets in cancer chemotherapy. Clin Cancer Res 2007;13(10):2849–54.

    Article  PubMed  CAS  Google Scholar 

  89. Jasavala R, Martinez H, Thumar J, et al. Identification of putative androgen receptor interaction protein modules: cytoskeleton and endosomes modulate androgen receptor signaling in prostate cancer cells. Mol Cell Proteomics 2007;6(2):252–71.

    PubMed  CAS  Google Scholar 

  90. Lin B, White JT, Lu W, et al. Evidence for the presence of disease-perturbed networks in prostate cancer cells by genomic and proteomic analyses: a systems approach to disease. Cancer Res 2005;65(8):3081–91.

    PubMed  CAS  Google Scholar 

  91. Tu LC, Yan X, Hood L, Lin B. Proteomics analysis of the interactome of N-myc downstream regulated gene 1 and its interactions with the androgen response program in prostate cancer cells. Mol Cell Proteomics 2007;6(4):575–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Agus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gross, M., Nepomuceno, E.M., Agus, D.B. (2010). Applications of Proteomics in Prostate Cancer. In: Figg, W., Chau, C., Small, E. (eds) Drug Management of Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-829-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-829-4_36

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60327-831-7

  • Online ISBN: 978-1-60327-829-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics