Skip to main content

Clinical Pharmacology and Pharmacogenetics of Chemotherapy in Prostate Cancer

  • Chapter
  • First Online:
  • 1267 Accesses

Abstract

Cytotoxic chemotherapy using docetaxel, estramustine, and mitoxantrone is often employed to treat men with hormone-refractory prostate tumors. More recently, oral satraplatin has been studied as an alternative to docetaxel-based therapies. These cytotoxic agents have diverse mechanisms of action and disposition. Moreover, there is often wide interindividual variation in the pharmacokinetics, toxicity, and clinical outcome following administration of these agents in patients with prostate cancer. This chapter summarizes what is known about the basic clinical pharmacology of these agents and discusses the mechanisms and implications of interindividual variation in treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Petrylak DP, Tangen CM, Hussain MH, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004;351: 1513–20.

    PubMed  CAS  Google Scholar 

  2. Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004;351: 1502–12.

    PubMed  CAS  Google Scholar 

  3. Kraus LA, Samuel SK, Schmid SM, Dykes DJ, Waud WR, Bissery MC. The mechanism of action of docetaxel (Taxotere) in xenograft models is not limited to bcl-2 phosphorylation. Invest New Drugs 2003;21: 259–68.

    PubMed  CAS  Google Scholar 

  4. Pienta KJ. Preclinical mechanisms of action of docetaxel and docetaxel combinations in prostate cancer. Semin Oncol 2001;28: 3–7.

    PubMed  CAS  Google Scholar 

  5. Kuppens IE, van Maanen MJ, Rosing H, Schellens JH, Beijnen JH. Quantitative analysis of docetaxel in human plasma using liquid chromatography coupled with tandem mass spectrometry. Biomed Chromatogr 2005;19: 355–61.

    PubMed  CAS  Google Scholar 

  6. Parise RA, Ramanathan RK, Zamboni WC, Egorin MJ. Sensitive liquid chromatography-mass spectrometry assay for quantitation of docetaxel and paclitaxel in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2003;783: 231–6.

    PubMed  CAS  Google Scholar 

  7. Wang LZ, Goh BC, Grigg ME, Lee SC, Khoo YM, Lee HS. A rapid and sensitive liquid chromatography/tandem mass spectrometry method for determination of docetaxel in human plasma. Rapid Commun Mass Spectrom 2003;17: 1548–52.

    PubMed  CAS  Google Scholar 

  8. Mortier KA, Lambert WE. Determination of unbound docetaxel and paclitaxel in plasma by ultrafiltration and liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2006;1108: 195–201.

    CAS  Google Scholar 

  9. Sparreboom A, Zhao M, Brahmer JR, Verweij J, Baker SD. Determination of the docetaxel vehicle, polysorbate 80, in patient samples by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2002;773: 183–90.

    PubMed  CAS  Google Scholar 

  10. Loos WJ, Baker SD, Verweij J, Boonstra JG, Sparreboom A. Clinical pharmacokinetics of unbound docetaxel: role of polysorbate 80 and serum proteins. Clin Pharmacol Ther 2003;74: 364–71.

    PubMed  CAS  Google Scholar 

  11. Baker SD, Li J, ten Tije AJ, et al. Relationship of systemic exposure to unbound docetaxel and neutropenia. Clin Pharmacol Ther 2005;77: 43–53.

    PubMed  CAS  Google Scholar 

  12. Minami H, Kawada K, Sasaki Y, et al. Pharmacokinetics and pharmacodynamics of protein-unbound docetaxel in cancer patients. Cancer Sci 2006;97: 235–41.

    PubMed  CAS  Google Scholar 

  13. Guentert TW, Oie S, Paalzow L, et al. Interaction of mixed micelles formed from glycocholic acid and lecithin with the protein binding of various drugs. Br J Clin Pharmacol 1987;23: 569–77.

    PubMed  CAS  Google Scholar 

  14. Reynolds JA. The role of micelles in protein–detergent interactions. Methods Enzymol 1979;61: 58–62.

    PubMed  CAS  Google Scholar 

  15. Petitpas I, Grune T, Bhattacharya AA, Curry S. Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. J Mol Biol 2001;314: 955–60.

    PubMed  CAS  Google Scholar 

  16. Shou M, Martinet M, Korzekwa KR, Krausz KW, Gonzalez FJ, Gelboin HV. Role of human cytochrome P450 3A4 and 3A5 in the metabolism of taxotere and its derivatives: enzyme specificity, interindividual distribution and metabolic contribution in human liver. Pharmacogenetics 1998;8: 391–401.

    PubMed  CAS  Google Scholar 

  17. van Herwaarden AE, Wagenaar E, van der Kruijssen CM, et al. Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism. J Clin Invest 2007;117: 3583–92.

    PubMed  Google Scholar 

  18. Baker S, Verweij J, Cusatis G, et al. Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharmacol Ther 2008;85(2): 155–63.

    PubMed  Google Scholar 

  19. Tran A, Jullien V, Alexandre J, et al. Pharmacokinetics and toxicity of docetaxel: role of CYP3A, MDR1, and GST polymorphisms. Clin Pharmacol Ther 2006;79: 570–80.

    PubMed  CAS  Google Scholar 

  20. Bardelmeijer HA, Ouwehand M, Buckle T, et al. Low systemic exposure of oral docetaxel in mice resulting from extensive first-pass metabolism is boosted by ritonavir. Cancer Res 2002;62: 6158–64.

    PubMed  CAS  Google Scholar 

  21. Huisman MT, Chhatta AA, van Tellingen O, Beijnen JH, Schinkel AH. MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int J Cancer 2005;116: 824–9.

    PubMed  CAS  Google Scholar 

  22. Smith NF, Acharya MR, Desai N, Figg WD, Sparreboom A. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol Ther 2005;4: 815–8.

    PubMed  CAS  Google Scholar 

  23. van Zuylen L, Verweij J, Nooter K, Brouwer E, Stoter G, Sparreboom A. Role of intestinal P-glycoprotein in the plasma and fecal disposition of docetaxel in humans. Clin Cancer Res 2000;6: 2598–603.

    PubMed  Google Scholar 

  24. Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A 1989;86: 695–8.

    PubMed  CAS  Google Scholar 

  25. Saito T, Zhang ZJ, Ohtsubo T, et al. Homozygous disruption of the mdrla P-glycoprotein gene affects blood-nerve barrier function in mice administered with neurotoxic drugs. Acta Otolaryngol 2001;121: 735–42.

    PubMed  CAS  Google Scholar 

  26. Saito T, Zhang ZJ, Shibamori Y, et al. P-glycoprotein expression in capillary endothelial cells of the 7th and 8th nerves of guinea pig in relation to blood-nerve barrier sites. Neurosci Lett 1997;232: 41–4.

    PubMed  CAS  Google Scholar 

  27. Drach D, Zhao S, Drach J, et al. Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype. Blood 1992;80: 2729–34.

    PubMed  CAS  Google Scholar 

  28. Fruehauf S, Wermann K, Buss EC, et al. Protection of hematopoietic stem cells from chemotherapy-induced toxicity by multidrug-resistance 1 gene transfer. Recent Results Cancer Res 1998;144: 93–115.

    PubMed  CAS  Google Scholar 

  29. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002;2: 48–58.

    PubMed  CAS  Google Scholar 

  30. Ieiri I, Takane H, Otsubo K. The MDR1 (ABCB1) gene polymorphism and its clinical implications. Clin Pharmacokinet 2004;43: 553–76.

    PubMed  CAS  Google Scholar 

  31. Burk O, Koch I, Raucy J, et al. The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR). J Biol Chem 2004;279: 38379–85.

    PubMed  CAS  Google Scholar 

  32. Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 1998;102: 1016–23.

    PubMed  CAS  Google Scholar 

  33. Sissung TM, Danesi R, Price DK, et al. Association of the CYP1B1*3 allele with survival in patients with prostate cancer receiving docetaxel. Mol Cancer Ther 2008;7: 19–26.

    PubMed  CAS  Google Scholar 

  34. Sissung TM, Price DK, Sparreboom A, Figg WD. Pharmacogenetics and regulation of human cytochrome P450 1B1: implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol Cancer Res 2006;4: 135–50.

    PubMed  CAS  Google Scholar 

  35. Baker SD, Sparreboom A, Verweij J. Clinical pharmacokinetics of docetaxel : recent developments. Clin Pharmacokinet 2006;45: 235–52.

    PubMed  CAS  Google Scholar 

  36. Kloft C, Wallin J, Henningsson A, Chatelut E, Karlsson MO. Population pharmacokinetic-pharmacodynamic model for neutropenia with patient subgroup identification: comparison across anticancer drugs. Clin Cancer Res 2006;12: 5481–90.

    PubMed  CAS  Google Scholar 

  37. Rudek MA, Sparreboom A, Garrett-Mayer ES, et al. Factors affecting pharmacokinetic variability following doxorubicin and docetaxel-based therapy. Eur J Cancer 2004;40: 1170–8.

    PubMed  CAS  Google Scholar 

  38. Bruno R, Olivares R, Berille J, et al. Alpha-1-acid glycoprotein as an independent predictor for treatment effects and a prognostic factor of survival in patients with non-small cell lung cancer treated with docetaxel. Clin Cancer Res 2003;9: 1077–82.

    PubMed  CAS  Google Scholar 

  39. Bruno R, Hille D, Riva A, et al. Population pharmacokinetics/pharmacodynamics of docetaxel in phase II studies in patients with cancer. J Clin Oncol 1998;16: 187–96.

    PubMed  CAS  Google Scholar 

  40. Sissung TM, Baum CE, Deeken J, et al. ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin Cancer Res 2008;14: 4543–9.

    PubMed  CAS  Google Scholar 

  41. Veyrat-Follet C, Bruno R, Olivares R, Rhodes GR, Chaikin P. Clinical trial simulation of docetaxel in patients with cancer as a tool for dosage optimization. Clin Pharmacol Ther 2000;68: 677–87.

    PubMed  CAS  Google Scholar 

  42. Strother RM, Sweeney C. Lessons learned from development of docetaxel. Expert Opin Drug Metab Toxicol 2008;4: 1007–19.

    PubMed  CAS  Google Scholar 

  43. Clarke SJ, Rivory LP. Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet 1999;36: 99–114.

    PubMed  CAS  Google Scholar 

  44. Hooker AC, Ten Tije AJ, Carducci MA, et al. Population pharmacokinetic model for docetaxel in patients with varying degrees of liver function: incorporating cytochrome P4503A activity measurements. Clin Pharmacol Ther 2008;84: 111–8.

    PubMed  CAS  Google Scholar 

  45. Urien S, Barre J, Morin C, Paccaly A, Montay G, Tillement JP. Docetaxel serum protein binding with high affinity to alpha 1-acid glycoprotein. Invest New Drugs 1996;14: 147–51.

    PubMed  CAS  Google Scholar 

  46. Puisset F, Chatelut E, Sparreboom A, et al. Dexamethasone as a probe for CYP3A4 metabolism: evidence of gender effect. Cancer Chemother Pharmacol 2007;60: 305–8.

    PubMed  CAS  Google Scholar 

  47. De Marzo AM, Marchi VL, Epstein JI, Nelson WG. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 1999;155: 1985–92.

    PubMed  Google Scholar 

  48. Lucia MS, Torkko KC. Inflammation as a target for prostate cancer chemoprevention: pathological and laboratory rationale. J Urol 2004;171: S30–4; discussion S5.

    PubMed  Google Scholar 

  49. Kuvibidila S, Rayford W. Correlation between serum prostate-specific antigen and alpha-1-antitrypsin in men without and with prostate cancer. J Lab Clin Med 2006;147: 174–81.

    PubMed  CAS  Google Scholar 

  50. Ward AM, Cooper EH, Houghton AL. Acute phase reactant proteins in prostatic cancer. Br J Urol 1977;49: 411–8.

    PubMed  CAS  Google Scholar 

  51. Puisset F, Alexandre J, Treluyer JM, et al. Clinical pharmacodynamic factors in docetaxel toxicity. Br J Cancer 2007;97: 290–6.

    PubMed  CAS  Google Scholar 

  52. Baker SD, Scher HI, Li J, et al. Effect of androgen-ablation and hormonal cycling on docetaxel clearance in patients with metastatic prostate cancer. Proc ASCO (abst 4608) 2005.

    Google Scholar 

  53. Rathkopf D, Carducci MA, Morris MJ, et al. Phase II trial of docetaxel with rapid androgen cycling for progressive noncastrate prostate cancer. J Clin Oncol 2008;26: 2959–65.

    PubMed  CAS  Google Scholar 

  54. Sinibaldi VJ, Elza-Brown K, Schmidt J, et al. Phase II evaluation of docetaxel plus exisulind in patients with androgen independent prostate carcinoma. Am J Clin Oncol 2006;29: 395–8.

    PubMed  CAS  Google Scholar 

  55. Hochegger K, Lhotta K, Mayer G, Czejka M, Hilbe W. Pharmacokinetic analysis of docetaxel during haemodialysis in a patient with locally advanced non-small cell lung cancer. Nephrol Dial Transplant 2007;22: 289–90.

    PubMed  CAS  Google Scholar 

  56. ten Tije AJ, Verweij J, Carducci MA, et al. Prospective evaluation of the pharmacokinetics and toxicity profile of docetaxel in the elderly. J Clin Oncol 2005;23: 1070–7.

    PubMed  Google Scholar 

  57. Hurria A, Fleming MT, Baker SD, et al. Pharmacokinetics and toxicity of weekly docetaxel in older patients. Clin Cancer Res 2006;12: 6100–5.

    PubMed  CAS  Google Scholar 

  58. Bruno R, Vivier N, Veyrat-Follet C, Montay G, Rhodes GR. Population pharmacokinetics and pharmacokinetic-pharmacodynamic relationships for docetaxel. Invest New Drugs 2001;19: 163–9.

    PubMed  CAS  Google Scholar 

  59. Kaira K, Tsuchiya S, Sunaga N, et al. A phase I dose escalation study of weekly docetaxel and carboplatin in elderly patients with nonsmall cell lung cancer. Am J Clin Oncol 2007;30: 51–6.

    PubMed  Google Scholar 

  60. LeCaer H, Barlesi F, Robinet G, et al. An open multicenter phase II trial of weekly docetaxel for advanced-stage non-small-cell lung cancer in elderly patients with significant comorbidity and/or poor performance status: The GFPC 02-02b study. Lung Cancer 2007;57: 72–8.

    PubMed  Google Scholar 

  61. Takigawa N, Segawa Y, Kishino D, et al. Clinical and pharmacokinetic study of docetaxel in elderly non-small-cell lung cancer patients. Cancer Chemother Pharmacol 2004;54: 230–6.

    PubMed  CAS  Google Scholar 

  62. Bosch TM, Huitema AD, Doodeman VD, et al. Pharmacogenetic screening of CYP3A and ABCB1 in relation to population pharmacokinetics of docetaxel. Clin Cancer Res 2006;12: 5786–93.

    PubMed  CAS  Google Scholar 

  63. Engels FK, Loos WJ, Mathot RA, van Schaik RH, Verweij J. Influence of ketoconazole on the fecal and urinary disposition of docetaxel. Cancer Chemother Pharmacol 2007;60: 569–79.

    PubMed  CAS  Google Scholar 

  64. Goh BC, Lee SC, Wang LZ, et al. Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J Clin Oncol 2002;20: 3683–90.

    PubMed  CAS  Google Scholar 

  65. Hahn NM, Marsh S, Fisher W, et al. Hoosier Oncology Group randomized phase II study of docetaxel, vinorelbine, and estramustine in combination in hormone-refractory prostate cancer with pharmacogenetic survival analysis. Clin Cancer Res 2006;12: 6094–9.

    PubMed  CAS  Google Scholar 

  66. Hor SY, Lee SC, Wong CI, et al. PXR, CAR and HNF4alpha genotypes and their association with pharmacokinetics and pharmacodynamics of docetaxel and doxorubicin in Asian patients. Pharmacogenomics J 2008;8: 139–46.

    PubMed  CAS  Google Scholar 

  67. Kiyotani K, Mushiroda T, Kubo M, Zembutsu H, Sugiyama Y, Nakamura Y. Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leukopenia. Cancer Sci 2008;99: 967–72.

    PubMed  CAS  Google Scholar 

  68. Lewis LD, Miller AA, Rosner GL, et al. A comparison of the pharmacokinetics and pharmacodynamics of docetaxel between African-American and Caucasian cancer patients: CALGB 9871. Clin Cancer Res 2007;13: 3302–11.

    PubMed  CAS  Google Scholar 

  69. Daly AK. Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet 2006;45: 13–31.

    PubMed  CAS  Google Scholar 

  70. Hamada A, Sissung T, Price DK, et al. Effect of SLCO1B3 haplotype on testosterone transport and clinical outcome in caucasian patients with androgen-independent prostatic cancer. Clin Cancer Res 2008;14: 3312–8.

    PubMed  CAS  Google Scholar 

  71. Sharifi N, Hamada A, Sissung T, et al. A polymorphism in a transporter of testosterone is a determinant of androgen independence in prostate cancer. BJU Int 2008;102: 617–21.

    PubMed  CAS  Google Scholar 

  72. Bessho Y, Oguri T, Achiwa H, et al. Role of ABCG2 as a biomarker for predicting resistance to CPT-11/SN-38 in lung cancer. Cancer Sci 2006;97: 192–8.

    PubMed  CAS  Google Scholar 

  73. Mizuarai S, Aozasa N, Kotani H. Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer 2004;109: 238–46.

    PubMed  CAS  Google Scholar 

  74. Tham LS, Holford NH, Hor SY, et al. Lack of association of single-nucleotide polymorphisms in pregnane X receptor, hepatic nuclear factor 4alpha, and constitutive androstane receptor with docetaxel pharmacokinetics. Clin Cancer Res 2007;13: 7126–32.

    PubMed  CAS  Google Scholar 

  75. Rochat B, Morsman JM, Murray GI, Figg WD, McLeod HL. Human CYP1B1 and anticancer agent metabolism: mechanism for tumor-specific drug inactivation? J Pharmacol Exp Ther 2001;296: 537–41.

    PubMed  CAS  Google Scholar 

  76. Bournique B, Lemarie A. Docetaxel (Taxotere) is not metabolized by recombinant human CYP1B1 in vitro, but acts as an effector of this isozyme. Drug Metab Dispos 2002;30: 1149–52.

    PubMed  CAS  Google Scholar 

  77. Carnell DM, Smith RE, Daley FM, et al. Target validation of cytochrome P450 CYP1B1 in prostate carcinoma with protein expression in associated hyperplastic and premalignant tissue. Int J Radiat Oncol Biol Phys 2004;58: 500–9.

    PubMed  CAS  Google Scholar 

  78. Brandi G, de Rosa F, Danesi R, Montini GC, Biasco G. Durable complete response to frontline docetaxel in an advanced prostate cancer patient with favourable CYP1B1 isoforms: suggestion for changing paradigms? Eur Urol 2008;54(4):938–41.

    PubMed  CAS  Google Scholar 

  79. Figg WD, Li H, Sissung T, et al. Pre-clinical and clinical evaluation of estramustine, docetaxel and thalidomide combination in androgen-independent prostate cancer. BJU Int 2007;99: 1047–55.

    PubMed  CAS  Google Scholar 

  80. Markushin Y, Gaikwad N, Zhang H, et al. Potential biomarker for early risk assessment of prostate cancer. Prostate 2006;66: 1565–71.

    PubMed  CAS  Google Scholar 

  81. Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 1984;226: 466–8.

    PubMed  CAS  Google Scholar 

  82. Bachur NR, Yu F, Johnson R, Hickey R, Wu Y, Malkas L. Helicase inhibition by anthracycline anticancer agents. Mol Pharmacol 1992;41: 993–8.

    PubMed  CAS  Google Scholar 

  83. Myers CE, McGuire WP, Liss RH, Ifrim I, Grotzinger K, Young RC. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science 1977;197: 165–7.

    PubMed  CAS  Google Scholar 

  84. Hande KR. Clinical applications of anticancer drugs targeted to topoisomerase II. Biochim Biophys Acta 1998;1400: 173–84.

    PubMed  CAS  Google Scholar 

  85. Vibet S, Maheo K, Gore J, Dubois P, Bougnoux P, Chourpa I. Differential subcellular distribution of mitoxantrone in relation to chemosensitization in two human breast cancer cell lines. Drug Metab Dispos 2007;35: 822–8.

    PubMed  CAS  Google Scholar 

  86. Levine S, Gherson J. Morphologic effects of mitoxantrone and a related anthracenedione on lymphoid tissues. Int J Immunopharmacol 1986;8: 999–1007.

    PubMed  CAS  Google Scholar 

  87. Berry W, Dakhil S, Modiano M, Gregurich M, Asmar L. Phase III study of mitoxantrone plus low dose prednisone versus low dose prednisone alone in patients with asymptomatic hormone refractory prostate cancer. J Urol 2002;168: 2439–43.

    PubMed  CAS  Google Scholar 

  88. Kantoff PW, Halabi S, Conaway M, et al. Hydrocortisone with or without mitoxantrone in men with hormone-refractory prostate cancer: results of the cancer and leukemia group B 9182 study. J Clin Oncol 1999;17: 2506–13.

    PubMed  CAS  Google Scholar 

  89. Tannock IF, Osoba D, Stockler MR, et al. Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J Clin Oncol 1996;14: 1756–64.

    PubMed  CAS  Google Scholar 

  90. Schleyer E, Kamischke A, Kaufmann CC, Unterhalt M, Hiddemann W. New aspects on the pharmacokinetics of mitoxantrone and its two major metabolites. Leukemia 1994;8: 435–40.

    PubMed  CAS  Google Scholar 

  91. Launay MC, Iliadis A, Richard B. Population pharmacokinetics of mitoxantrone performed by a NONMEM method. J Pharm Sci 1989;78: 877–80.

    PubMed  CAS  Google Scholar 

  92. Schurr E, Raymond M, Bell JC, Gros P. Characterization of the multidrug resistance protein expressed in cell clones stably transfected with the mouse mdr1 cDNA. Cancer Res 1989;49: 2729–33.

    PubMed  CAS  Google Scholar 

  93. Morrow CS, Smitherman PK, Diah SK, Schneider E, Townsend AJ. Coordinated action of glutathione S-transferases (GSTs) and multidrug resistance protein 1 (MRP1) in antineoplastic drug detoxification. Mechanism of GST A1-1- and MRP1-associated resistance to chlorambucil in MCF7 breast carcinoma cells. J Biol Chem 1998;273: 20114–20.

    PubMed  CAS  Google Scholar 

  94. Schneider E, Horton JK, Yang CH, Nakagawa M, Cowan KH. Multidrug resistance-associated protein gene overexpression and reduced drug sensitivity of topoisomerase II in a human breast carcinoma MCF7 cell line selected for etoposide resistance. Cancer Res 1994;54: 152–8.

    PubMed  CAS  Google Scholar 

  95. Morrow CS, Peklak-Scott C, Bishwokarma B, Kute TE, Smitherman PK, Townsend AJ. Multidrug resistance protein 1 (MRP1, ABCC1) mediates resistance to mitoxantrone via glutathione-dependent drug efflux. Mol Pharmacol 2006;69: 1499–505.

    PubMed  CAS  Google Scholar 

  96. Hooijberg JH, Broxterman HJ, Kool M, et al. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res 1999;59: 2532–5.

    PubMed  CAS  Google Scholar 

  97. Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 1998;95: 15665–70.

    PubMed  CAS  Google Scholar 

  98. Miyake K, Mickley L, Litman T, et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res 1999;59: 8–13.

    PubMed  CAS  Google Scholar 

  99. Pan G, Elmquist WF. Mitoxantrone permeability in MDCKII cells is influenced by active influx transport. Mol Pharm 2007;4: 475–83.

    PubMed  CAS  Google Scholar 

  100. Bhangal G, Halford S, Wang J, Roylance R, Shah R, Waxman J. Expression of the multidrug resistance gene in human prostate cancer. Urol Oncol 2000;5: 118–21.

    PubMed  Google Scholar 

  101. Huss WJ, Gray DR, Greenberg NM, Mohler JL, Smith GJ. Breast cancer resistance protein-mediated efflux of androgen in putative benign and malignant prostate stem cells. Cancer Res 2005;65: 6640–50.

    PubMed  CAS  Google Scholar 

  102. Fedoruk MN, Gimenez-Bonafe P, Guns ES, Mayer LD, Nelson CC. P-glycoprotein increases the efflux of the androgen dihydrotestosterone and reduces androgen responsive gene activity in prostate tumor cells. Prostate 2004;59: 77–90.

    PubMed  CAS  Google Scholar 

  103. Allen JD, Schinkel AH. Multidrug resistance and pharmacological protection mediated by the breast cancer resistance protein (BCRP/ABCG2). Mol Cancer Ther 2002;1: 427–34.

    PubMed  CAS  Google Scholar 

  104. Hirschmann-Jax C, Foster AE, Wulf GG, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 2004;101: 14228–33.

    PubMed  CAS  Google Scholar 

  105. Feldman EJ, Seiter K, Damon L, et al. A randomized trial of high- vs standard-dose mitoxantrone with cytarabine in elderly patients with acute myeloid leukemia. Leukemia 1997;11: 485–9.

    PubMed  CAS  Google Scholar 

  106. Imai Y, Nakane M, Kage K, et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 2002;1: 611–6.

    PubMed  CAS  Google Scholar 

  107. Kobayashi D, Ieiri I, Hirota T, et al. Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos 2005;33: 94–101.

    PubMed  CAS  Google Scholar 

  108. Kolwankar D, Glover DD, Ware JA, Tracy TS. Expression and function of ABCB1 and ABCG2 in human placental tissue. Drug Metab Dispos 2005;33: 524–9.

    PubMed  CAS  Google Scholar 

  109. Kondo C, Suzuki H, Itoda M, et al. Functional analysis of SNPs variants of BCRP/ABCG2. Pharm Res 2004;21: 1895–903.

    PubMed  CAS  Google Scholar 

  110. Sparreboom A, Gelderblom H, Marsh S, et al. Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype. Clin Pharmacol Ther 2004;76: 38–44.

    PubMed  CAS  Google Scholar 

  111. Morisaki K, Robey RW, Ozvegy-Laczka C, et al. Single nucleotide polymorphisms modify the transporter activity of ABCG2. Cancer Chemother Pharmacol 2005;56: 161–72.

    PubMed  CAS  Google Scholar 

  112. Tamura A, Wakabayashi K, Onishi Y, et al. Re-evaluation and functional classification of non-synonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2. Cancer Sci 2007;98: 231–9.

    PubMed  CAS  Google Scholar 

  113. Sugimoto Y, Tsukahara S, Ishikawa E, Mitsuhashi J. Breast cancer resistance protein: molecular target for anticancer drug resistance and pharmacokinetics/pharmacodynamics. Cancer Sci 2005;96: 457–65.

    PubMed  CAS  Google Scholar 

  114. Honjo Y, Hrycyna CA, Yan QW, et al. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res 2001;61: 6635–9.

    PubMed  CAS  Google Scholar 

  115. Polgar O, Deeken JF, Ediriwickrema LS, et al. The 315-316 deletion determines the BXP-21 antibody epitope but has no effect on the function of wild type ABCG2 or the Q141K variant. Mol Cell Biochem 2008;322(1–2): 63–71.

    PubMed  Google Scholar 

  116. Sissung TM, Gardner ER, Gao R, Figg WD. Pharmacogenetics of membrane transporters: a review of current approaches. Methods Mol Biol 2008;448: 41–62.

    PubMed  CAS  Google Scholar 

  117. Benderra Z, Faussat AM, Sayada L, et al. Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias. Clin Cancer Res 2004;10: 7896–902.

    PubMed  CAS  Google Scholar 

  118. Sandberg AA. Metabolic aspects and actions unique to Estracyt. Semin Oncol 1983;10: 3–15.

    PubMed  CAS  Google Scholar 

  119. Muechler EK, Kohler D. Interaction of the cytotoxic agent estramustine phosphate (Estracyt) with the estrogen receptor of the human uterus. Gynecol Oncol 1979;8: 330–8.

    PubMed  CAS  Google Scholar 

  120. Ho SM. Estrogens and anti-estrogens: key mediators of prostate carcinogenesis and new therapeutic candidates. J Cell Biochem 2004;91: 491–503.

    PubMed  CAS  Google Scholar 

  121. Bergenheim AT, Henriksson R. Pharmacokinetics and pharmacodynamics of estramustine phosphate. Clin Pharmacokinet 1998;34: 163–72.

    PubMed  CAS  Google Scholar 

  122. Hartley-Asp B, Kruse E. Nuclear protein matrix as a target for estramustine-induced cell death. Prostate 1986;9: 387–95.

    PubMed  CAS  Google Scholar 

  123. Pienta KJ, Lehr JE. Inhibition of prostate cancer growth by estramustine and etoposide: evidence for interaction at the nuclear matrix. J Urol 1993;149: 1622–5.

    PubMed  CAS  Google Scholar 

  124. Tritsch GL, Shukla SK, Mittelman A, Murphy GP. Estracyt (NSC 89199) as a substrate for phosphatases in human serum. Invest Urol 1974;12: 38–9.

    PubMed  CAS  Google Scholar 

  125. Kreis W, Budman DR, Calabro A. Unique synergism or antagonism of combinations of chemotherapeutic and hormonal agents in human prostate cancer cell lines. Br J Urol 1997;79: 196–202.

    PubMed  CAS  Google Scholar 

  126. Forsgren B, Bjork P, Carlstrom K, Gustafsson JA, Pousette A, Hogberg B. Purification and distribution of a major protein in rat prostate that binds estramustine, a nitrogen mustard derivative of estradiol-17 beta. Proc Natl Acad Sci U S A 1979;76: 3149–53.

    PubMed  CAS  Google Scholar 

  127. Gunnarsson PO, Forshell GP. Clinical pharmacokinetics of estramustine phosphate. Urology 1984;23: 22–7.

    PubMed  CAS  Google Scholar 

  128. Suzuki M, Mamun MR, Hara K, et al. The Val158Met polymorphism of the catechol-O-methyltransferase gene is associated with the PSA-progression-free survival in prostate cancer patients treated with estramustine phosphate. Eur Urol 2005;48: 752–9.

    PubMed  CAS  Google Scholar 

  129. Lu F, Zahid M, Saeed M, Cavalieri EL, Rogan EG. Estrogen metabolism and formation of estrogen-DNA adducts in estradiol-treated MCF-10F cells. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin induction and catechol-O-methyltransferase inhibition. J Steroid Biochem Mol Biol 2007;105: 150–8.

    PubMed  CAS  Google Scholar 

  130. Zahid M, Saeed M, Lu F, Gaikwad N, Rogan E, Cavalieri E. Inhibition of catechol-O-methyltransferase increases estrogen-DNA adduct formation. Free Radic Biol Med 2007;43: 1534–40.

    PubMed  CAS  Google Scholar 

  131. Suzuki M, Muto S, Hara K, et al. Single-nucleotide polymorphisms in the 17beta-hydroxysteroid dehydrogenase genes might predict the risk of side-effects of estramustine phosphate sodium in prostate cancer patients. Int J Urol 2005;12: 166–72.

    PubMed  Google Scholar 

  132. Boulikas T, Vougiouka M. Cisplatin and platinum drugs at the molecular level. (Review). Oncol Rep 2003;10: 1663–82.

    PubMed  CAS  Google Scholar 

  133. Mellish KJ, Barnard CF, Murrer BA, Kelland LR. DNA-binding properties of novel cis- and trans platinum-based anticancer agents in 2 human ovarian carcinoma cell lines. Int J Cancer 1995;62: 717–23.

    PubMed  CAS  Google Scholar 

  134. O’Neill CF, Koberle B, Masters JR, Kelland LR. Gene-specific repair of Pt/DNA lesions and induction of apoptosis by the oral platinum drug JM216 in three human ovarian carcinoma cell lines sensitive and resistant to cisplatin. Br J Cancer 1999;81: 1294–303.

    PubMed  Google Scholar 

  135. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003;22: 7265–79.

    PubMed  CAS  Google Scholar 

  136. Benedetti M, Malina J, Kasparkova J, Brabec V, Natile G. Chiral discrimination in platinum anticancer drugs. Environ Health Perspect 2002;110 Suppl 5: 779–82.

    PubMed  CAS  Google Scholar 

  137. Fink D, Nebel S, Aebi S, et al. The role of DNA mismatch repair in platinum drug resistance. Cancer Res 1996;56: 4881–6.

    PubMed  CAS  Google Scholar 

  138. Silverman AP, Bu W, Cohen SM, Lippard SJ. 2.4-A crystal structure of the asymmetric platinum complex [Pt(ammine)(cyclohexylamine)]2+ bound to a dodecamer DNA duplex. J Biol Chem 2002;277: 49743–9.

    PubMed  CAS  Google Scholar 

  139. Reardon JT, Vaisman A, Chaney SG, Sancar A. Efficient nucleotide excision repair of cisplatin, oxaliplatin, and Bis-aceto-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216) platinum intrastrand DNA diadducts. Cancer Res 1999;59: 3968–71.

    PubMed  CAS  Google Scholar 

  140. Raynaud FI, Mistry P, Donaghue A, et al. Biotransformation of the platinum drug JM216 following oral administration to cancer patients. Cancer Chemother Pharmacol 1996;38: 155–62.

    PubMed  CAS  Google Scholar 

  141. Carr JL, Tingle MD, McKeage MJ. Rapid biotransformation of satraplatin by human red blood cells in vitro. Cancer Chemother Pharmacol 2002;50: 9–15.

    PubMed  CAS  Google Scholar 

  142. Kelland L. Broadening the clinical use of platinum drug-based chemotherapy with new analogues. Satraplatin and picoplatin. Expert Opin Investig Drugs 2007;16: 1009–21.

    PubMed  CAS  Google Scholar 

  143. Samimi G, Howell SB. Modulation of the cellular pharmacology of JM118, the major metabolite of satraplatin, by copper influx and efflux transporters. Cancer Chemother Pharmacol 2006;57: 781–8.

    PubMed  CAS  Google Scholar 

  144. Kelland LR, Abel G, McKeage MJ, et al. Preclinical antitumor evaluation of bis-acetato-ammine-dichloro-cyclohexylamine platinum(IV): an orally active platinum drug. Cancer Res 1993;53: 2581–6.

    PubMed  CAS  Google Scholar 

  145. Samimi G, Kishimoto S, Manorek G, Breaux JK, Howell SB. Novel mechanisms of platinum drug resistance identified in cells selected for resistance to JM118 the active metabolite of satraplatin. Cancer Chemother Pharmacol 2007;59: 301–12.

    PubMed  CAS  Google Scholar 

  146. Wosikowski K, Lamphere L, Unteregger G, et al. Preclinical antitumor activity of the oral platinum analog satraplatin. Cancer Chemother Pharmacol 2007;60: 589–600.

    PubMed  CAS  Google Scholar 

  147. Yagoda A, Petrylak D. Cytotoxic chemotherapy for advanced hormone-resistant prostate cancer. Cancer 1993;71: 1098–109.

    PubMed  CAS  Google Scholar 

  148. Lamphere L, Wang S, Casazza AM. Synergistic antitumor activity of the combination of satraplatin (S) and docetaxel (D) in H460 human non-small cell lung carcinoma (NSCLC) xenografted in nude mice. Proc Am Assoc Cancer Res 2006;47: Abstract no. 563.

    Google Scholar 

  149. Ando Y, Shimizu T, Nakamura K, et al. Potent and non-specific inhibition of cytochrome P450 by JM216, a new oral platinum agent. Br J Cancer 1998;78: 1170–4.

    PubMed  CAS  Google Scholar 

  150. Sternberg CN, Petrylak DP, Sartor O, et al. Multinational, double-blind, phase III study of prednisone and either satraplatin or placebo in patients with castrate-refractory prostate cancer progressing after prior chemotherapy: the SPARC trial. J Clin Oncol 2009;27: 5431–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Figg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sissung, T.M., Figg, W.D. (2010). Clinical Pharmacology and Pharmacogenetics of Chemotherapy in Prostate Cancer. In: Figg, W., Chau, C., Small, E. (eds) Drug Management of Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-829-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-829-4_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60327-831-7

  • Online ISBN: 978-1-60327-829-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics