Skip to main content

Pharmacogenetics of the Androgen Metabolic Pathway

  • Chapter
  • First Online:
  • 1248 Accesses

Abstract

Androgens are steroid hormones responsible for the development, growth, and maintenance of masculine characteristics, including the prostate. It has been known for decades that they are very important in the development and progression of prostate cancer (CaP). The most common treatment for CaP is based on androgen deprivation therapy. There are preventive strategies that seem to act on the same pathway, such as finasteride, dutasteride, selenium, and vitamin E. Various genes in androgen synthesis and metabolism have been studied in relation to the predisposition and progression of CaP, such as several members of the steroid 5α-reductase (SRD5A), 3β-hydroxysteroid dehydrogenase (HSD3B), and 17β-hydroxysteroid dehydrogenase (HSD17B) families, androgen receptor (AR), cytochrome P450 17 (CYP17), and cytochrome P450 19A1 (CYP19A1). However, most of them have not been biochemically evaluated, or the studies are contradictory. For example, the expression reports about CYP19A1 indicate positive and negative results for both benign and carcinogen prostate. There is a need for extensive research in response to prostate carcinoma prevention as well as treatment. Studies have shown that other genes, such as the solute carrier organic anion transporter 1B3 (SLCO1B3), and gene fusions may be involved in CaP personalized medicine, but the results are inconclusive since the number of reports is small, and there is a lack of replication in larger samples. Pharmacogenetics is the key to future medicine, especially for cancer and personalized medicine. More investigations should be done to evaluate the role of these genes in prostate cancer biochemistry, prevention, progression, development, and treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balk SP, Knudsen KE. AR, the cell cycle, and prostate cancer. Nucl Recept Signal 2008;6:e001.

    PubMed  Google Scholar 

  2. Wright AS, Douglas RC, Thomas LN, Lazier CB, Rittmaster RS. Androgen-induced regrowth in the castrated rat ventral prostate: role of 5alpha-reductase. Endocrinology 1999;140:4509–15.

    Article  PubMed  CAS  Google Scholar 

  3. Luu-The V, Bélanger A, Labrie F. Androgen biosynthetic pathways in the human prostate. Best Pract Res Clin Endocrinol Metab 2008;22:207–21.

    Article  PubMed  CAS  Google Scholar 

  4. Australian Institute of Health and Welfare. Australia’s health 2008. Canberra: AIHW; 2008. Cat. no. AUS 99.

    Google Scholar 

  5. American Cancer Society. Cancer facts & figures 2008. Atlanta: American Cancer Society; 2008.

    Google Scholar 

  6. Wu CP, Gu FL. The prostate in eunuchs. Prog Clin Biol Res 1991;370:249–55.

    PubMed  CAS  Google Scholar 

  7. Eng MH, Charles LG, Ross BD, Chrisp CE, Pienta KJ, Greenberg NM, et al. Early castration reduces prostatic carcinogenesis in transgenic mice. Urology 1999;54:1112–9.

    Article  PubMed  CAS  Google Scholar 

  8. Lu S, Tsai SY, Tsai MJ. Regulation of androgen-dependent prostatic cancer cell growth: androgen regulation of CDK2, CDK4, and CKI p16 genes. Cancer Res 1997;57:4511–6.

    PubMed  CAS  Google Scholar 

  9. Loblaw DA, Virgo KS, Nam R, Somerfield MR, Ben-Josef E, Mendelson DS, et al. Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol 2007;25:1596–605.

    Article  PubMed  CAS  Google Scholar 

  10. Damber JE, Aus G. Prostate cancer. Lancet 2008;371:1710–21.

    Article  PubMed  Google Scholar 

  11. Huggins C. Effect of orchiectomy and irradiation on cancer of the prostate. Ann Surg 1942;115:1192–200.

    Article  PubMed  CAS  Google Scholar 

  12. Carlin JR, Höglund P, Eriksson LO, Christofalo P, Gregoire SL, Taylor AM, et al. Disposition and pharmacokinetics of [14C]finasteride after oral administration in humans. Drug Metab Dispos 1992;20:48–55.

    Google Scholar 

  13. Tian G, Mook Jr RA, Moss ML, Frye SV. Mechanism of time-dependent inhibition of 5 alpha-reductases by delta 1-4-azasteroids: toward perfection of rates of time-dependent inhibition by using ligand-binding energies. Biochemistry 1995;34:13453–9.

    Article  PubMed  CAS  Google Scholar 

  14. Thompson IM, Goodman PJ, Tangen CM, Lucia MS, Miller GJ, Ford LG, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med 2003;349:215–24.

    Article  PubMed  CAS  Google Scholar 

  15. Lucia MS, Epstein JI, Goodman PJ, Darke AK, Reuter VE, Civantos F, et al. Finasteride and high-grade prostate cancer in the Prostate Cancer Prevention Trial. J Natl Cancer Inst 2007;99:1375–83.

    Article  PubMed  CAS  Google Scholar 

  16. Thompson IM, Tangen CM, Goodman PJ, Lucia MS, Parnes HL, Lippman SM, et al. Finasteride improves the sensitivity of digital rectal examination for prostate cancer detection. J Urol 2007;177:1749–52.

    Article  PubMed  CAS  Google Scholar 

  17. Canby-Hagino E, Hernandez J, Brand TC, Thompson I. Looking back at PCPT: looking forward to new paradigms in prostate cancer screening and prevention. Eur Urol 2007;51:27–33.

    Article  PubMed  Google Scholar 

  18. Evans HC, Goa KL. Dutasteride. Drugs Aging 2003;20:905–16.

    Article  PubMed  CAS  Google Scholar 

  19. Clark RV, Hermann DJ, Cunningham GR, Wilson TH, Morrill BB, Hobbs S. Marked suppression of dihydrotestosterone in men with benign prostatic hyperplasia by dutasteride, a dual 5alpha-reductase inhibitor. J Clin Endocrinol Metab 2004;89:2179–84.

    Article  PubMed  CAS  Google Scholar 

  20. Lazier CB, Thomas LN, Douglas RC, Vessey JP, Rittmaster RS. Dutasteride, the dual 5alpha-reductase inhibitor, inhibits androgen action and promotes cell death in the LNCaP prostate cancer cell line. Prostate 2004;58:130–44.

    Article  PubMed  CAS  Google Scholar 

  21. Maria McCrohan A, Morrissey C, O’Keane C, Mulligan N, Watson C, Smith J, et al. Effects of the dual 5 alpha-reductase inhibitor dutasteride on apoptosis in primary cultures of prostate cancer epithelial cells and cell lines. Cancer 2006;106:2743–52.

    Article  PubMed  Google Scholar 

  22. Musquera M, Fleshner NE, Finelli A, Zlotta AR. The REDUCE trial: chemoprevention in prostate cancer using a dual 5alpha-reductase inhibitor, dutasteride. Expert Rev Anticancer Ther 2008;8:1073–9.

    Article  PubMed  CAS  Google Scholar 

  23. Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, Peehl DM, et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 2000;6:703–6.

    Article  PubMed  CAS  Google Scholar 

  24. Lee SO, Yeon Chun J, Nadiminty N, Trump DL, Ip C, Dong Y, et al. Monomethylated selenium inhibits growth of LNCaP human prostate cancer xenograft accompanied by a decrease in the expression of androgen receptor and prostate-specific antigen (PSA). Prostate 2006;66:1070–5.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Y, Ni J, Messing EM, Chang E, Yang CR, Yeh S. Vitamin E succinate inhibits the function of androgen receptor and the expression of prostate-specific antigen in prostate cancer cells. Proc Natl Acad Sci U S A 2002;99:7408–13.

    Article  PubMed  CAS  Google Scholar 

  26. Klein EA. Selenium and vitamin E cancer prevention trial. Ann N Y Acad Sci 2004;1031:234–41.

    Article  PubMed  CAS  Google Scholar 

  27. Gelmann EP. Molecular biology of the androgen receptor. J Clin Oncol 2002;20:3001–15.

    Article  PubMed  CAS  Google Scholar 

  28. Dehm SM, Tindall DJ. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol 2007;21:2855–63.

    Article  PubMed  CAS  Google Scholar 

  29. Sarvis JA, Thompson IM. Androgens and prevention of prostate cancer. Curr Opin Endocrinol Diabetes Obes 2008;15:271–7.

    Article  PubMed  CAS  Google Scholar 

  30. Wako K, Kawasaki T, Yamana K, Suzuki K, Jiang S, Umezu H, et al. Expression of androgen receptor through androgen-converting enzymes is associated with biological aggressiveness in prostate cancer. J Clin Pathol 2008;61:448–54.

    Article  PubMed  CAS  Google Scholar 

  31. Singh AS, Chau CH, Price DK, Figg WD. Mechanisms of disease: polymorphisms of androgen regulatory genes in the development of prostate cancer. Nat Clin Pract Urol 2005;2:101–7.

    Article  PubMed  CAS  Google Scholar 

  32. Zeegers MP, Kiemeney LA, Nieder AM, Ostrer H. How strong is the association between CAG and GGN repeat length polymorphisms in the androgen receptor gene and prostate cancer risk? Cancer Epidemiol Biomarkers Prev 2004;13:1765–71.

    PubMed  CAS  Google Scholar 

  33. D’Amico F, Biancolella M, Margiotti K, Reichardt JK, Novelli G. Genomic biomarkers, androgen pathway and prostate cancer. Pharmacogenomics 2007;8:645–61.

    Article  PubMed  Google Scholar 

  34. Normington K, Russell DW. Tissue distribution and kinetic characteristics of rat steroid 5 alpha-reductase isozymes. Evidence for distinct physiological functions. J Biol Chem 1992;267:19548–54.

    PubMed  CAS  Google Scholar 

  35. Thigpen AE, Silver RI, Guileyardo JM, Casey ML, McConnell JD, Russell DW. Tissue distribution and ontogeny of steroid 5 alpha-reductase isozyme expression. J Clin Invest 1993;92:903–10.

    Article  PubMed  CAS  Google Scholar 

  36. Uemura M, Tamura K, Chung S, Honma S, Okuyama A, Nakamura Y, et al. Novel 5 alpha-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer. Cancer Sci 2008;99:81–6.

    PubMed  CAS  Google Scholar 

  37. Thomas LN, Lazier CB, Gupta R, Norman RW, Troyer DA, O’Brien SP, et al. Differential alterations in 5alpha-reductase type 1 and type 2 levels during development and progression of prostate cancer. Prostate 2005;63:231–9.

    Article  PubMed  CAS  Google Scholar 

  38. Thomas LN, Douglas RC, Lazier CB, Gupta R, Norman RW, Murphy PR, et al. Levels of 5alpha-reductase type 1 and type 2 are increased in localized high grade compared to low grade prostate cancer. J Urol 2008;179:147–51.

    Article  PubMed  Google Scholar 

  39. Xu Y, Dalrymple SL, Becker RE, Denmeade SR, Isaacs JT. Pharmacologic basis for the enhanced efficacy of dutasteride against prostatic cancers. Clin Cancer Res 2006;12:4072–9.

    Article  PubMed  CAS  Google Scholar 

  40. Söderström T, Wadelius M, Andersson SO, Johansson JE, Johansson S, Granath F, et al. 5alpha-reductase 2 polymorphisms as risk factors in prostate cancer. Pharmacogenetics 2002;12:307–12.

    Article  PubMed  Google Scholar 

  41. Luo J, Dunn TA, Ewing CM, Walsh PC, Isaacs WB. Decreased gene expression of steroid 5 alpha-reductase 2 in human prostate cancer: implications for finasteride therapy of prostate carcinoma. Prostate 2003;57:134–9.

    Article  PubMed  CAS  Google Scholar 

  42. Titus MA, Gregory CW, Ford OH, Schell MJ, Maygarden SJ, Mohler JL. Steroid 5alpha-reductase isozymes I and II in recurrent prostate cancer. Clin Cancer Res 2005;11:4365–71.

    Article  PubMed  CAS  Google Scholar 

  43. Makridakis NM, Ross RK, Pike MC, Crocitto LE, Kolonel LN, Pearce CL, et al. Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet 1999;354:975–8.

    Article  PubMed  CAS  Google Scholar 

  44. Makridakis NM, di Salle E, Reichardt JK. Biochemical and pharmacogenetic dissection of human steroid 5 alpha-reductase type II. Pharmacogenetics 2000;10:407–13.

    Article  PubMed  CAS  Google Scholar 

  45. Ntais C, Polycarpou A, Ioannidis JP. SRD5A2 gene polymorphisms and the risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2003;12:618–24.

    PubMed  CAS  Google Scholar 

  46. Pearce CL, Van Den Berg DJ, Makridakis N, Reichardt JK, Ross RK, Pike MC, et al. No association between the SRD5A2 Gene A49T missense variant and prostate cancer risk: lessons learned. Hum Mol Genet 2008;17(16):2456–61.

    Article  PubMed  CAS  Google Scholar 

  47. Makridakis N, Ross RK, Pike MC, Chang L, Stanczyk FZ, Kolonel LN, et al. A prevalent missense substitution that modulates activity of prostatic steroid 5alpha-reductase. Cancer Res 1997;57:1020–2.

    PubMed  CAS  Google Scholar 

  48. Davis DL, Russell DW. Unusual length polymorphism in human steroid 5 alpha-reductase type 2 gene (SRD5A2). Hum Mol Genet 1993;2:820.

    Article  PubMed  CAS  Google Scholar 

  49. Cussenot O, Azzouzi AR, Nicolaiew N, Mangin P, Cormier L, Fournier G, et al. Low-activity V89L variant in SRD5A2 is associated with aggressive prostate cancer risk: an explanation for the adverse effects observed in chemoprevention trials using 5-alpha-reductase inhibitors. Eur Urol 2007;52:1082–7.

    Article  PubMed  Google Scholar 

  50. Prins GS, Korach KS. The role of estrogens and estrogen receptors in normal prostate growth and disease. Steroids 2008;73:233–44.

    Article  PubMed  CAS  Google Scholar 

  51. Ellem SJ, Schmitt JF, Pedersen JS, Frydenberg M, Risbridger GP. Local aromatase expression in human prostate is altered in malignancy. J Clin Endocrinol Metab 2004;89:2434–41.

    Article  PubMed  CAS  Google Scholar 

  52. Santen RJ, Petroni GR, Fisch MJ, Myers CE, Theodorescu D, Cohen RB. Use of the aromatase inhibitor anastrozole in the treatment of patients with advanced prostate carcinoma. Cancer 2001;92:2095–101.

    Article  PubMed  CAS  Google Scholar 

  53. Smith MR, Kaufman D, George D, Oh WK, Kazanis M, Manola J, et al. Selective aromatase inhibition for patients with androgen-independent prostate carcinoma. Cancer 2002;95:1864–8.

    Article  PubMed  CAS  Google Scholar 

  54. Harada N, Utsumi T, Takagi Y. Tissue-specific expression of the human aromatase cytochrome P-450 gene by alternative use of multiple exons 1 and promoters, and switching of tissue-specific exons 1 in carcinogenesis. Proc Natl Acad Sci U S A 1993;90:11312–6.

    Article  PubMed  CAS  Google Scholar 

  55. Hiramatsu M, Maehara I, Ozaki M, Harada N, Orikasa S, Sasano H. Aromatase in hyperplasia and carcinoma of the human prostate. Prostate 1997;31:118–24.

    Article  PubMed  CAS  Google Scholar 

  56. Negri-Cesi P, Poletti A, Colciago A, Magni P, Martini P, Motta M. Presence of 5alpha-reductase isozymes and aromatase in human prostate cancer cells and in benign prostate hyperplastic tissue. Prostate 1998;34:283–91.

    Article  PubMed  CAS  Google Scholar 

  57. Tsuchiya N, Wang L, Suzuki H, Segawa T, Fukuda H, Narita S, et al. Impact of IGF-I and CYP19 gene polymorphisms on the survival of patients with metastatic prostate cancer. J Clin Oncol 2006;24:1982–9.

    Article  PubMed  CAS  Google Scholar 

  58. Latil AG, Azzouzi R, Cancel GS, Guillaume EC, Cochan-Priollet B, Berthon PL, et al. Prostate carcinoma risk and allelic variants of genes involved in androgen biosynthesis and metabolism pathways. Cancer 2001;92:1130–7.

    Article  PubMed  CAS  Google Scholar 

  59. Cunningham JM, Hebbring SJ, McDonnell SK, Cicek MS, Christensen GB, Wang L, et al. Evaluation of genetic variations in the androgen and estrogen metabolic pathways as risk factors for sporadic and familial prostate cancer. Cancer Epidemiol Biomarkers Prev 2007;16:969–78.

    Article  PubMed  CAS  Google Scholar 

  60. Dos Santos RM, de Jesus CM, Filho JC, Trindade JC, de Camargo JL, Rainho CA, et al. PSA and androgen-related gene (AR, CYP17, and CYP19) polymorphisms and the risk of adenocarcinoma at prostate biopsy. DNA Cell Biol 2008;27(9):497–503.

    Article  PubMed  CAS  Google Scholar 

  61. Modugno F, Weissfeld JL, Trump DL, Zmuda JM, Shea P, Cauley JA, et al. Allelic variants of aromatase and the androgen and estrogen receptors: toward a multigenic model of prostate cancer risk. Clin Cancer Res 2001;7:3092–6.

    PubMed  CAS  Google Scholar 

  62. Onsory K, Sobti RC, Al-Badran AI, Watanabe M, Shiraishi T, Krishan A, et al. Hormone receptor-related gene polymorphisms and prostate cancer risk in North Indian population. Mol Cell Biochem 2008;314:25–35.

    Article  PubMed  CAS  Google Scholar 

  63. Sarma AV, Dunn RL, Lange LA, Ray A, Wang Y, Lange EM, et al. Genetic polymorphisms in CYP17, CYP3A4, CYP19A1, SRD5A2, IGF-1, and IGFBP-3 and prostate cancer risk in African-American men: the Flint Men’s Health Study. Prostate 2008;68:296–305.

    Article  PubMed  CAS  Google Scholar 

  64. Carey AH, Waterworth D, Patel K, White D, Little J, Novelli P, et al. Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolism gene CYP17. Hum Mol Genet 1994;3:1873–6.

    Article  PubMed  CAS  Google Scholar 

  65. Ntais C, Polycarpou A, Ioannidis JP. Association of the CYP17 gene polymorphism with the risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2003;12:120–6.

    PubMed  CAS  Google Scholar 

  66. Setiawan VW, Schumacher FR, Haiman CA, et al. CYP17 genetic variation and risk of breast and prostate cancer from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol Biomarkers Prev 2007;16:2237–46.

    Article  PubMed  CAS  Google Scholar 

  67. Severi G, Hayes VM, Tesoriero AA, Southey MC, Hoang HN, Padilla EJ, et al. The rs743572 common variant in the promoter of CYP17A1 is not associated with prostate cancer risk or circulating hormonal levels. BJU Int 2008;101:492–6.

    PubMed  CAS  Google Scholar 

  68. Nedelcheva Kristensen V, Haraldsen EK, Anderson KB, Lønning PE, Erikstein B, Kåresen R, et al. CYP17 and breast cancer risk: the polymorphism in the 5’ flanking area of the gene does not influence binding to Sp-1. Cancer Res 1999;59:2825–8.

    PubMed  CAS  Google Scholar 

  69. Wang JQ, Gu X, Chen JC, Sun XQ, Mu HT, Wei ZH, et al. Association between polymorphism of CYP17 gene and serum hormone concentrations in aged men. Zhonghua Nan Ke Xue 2005;11:442–4.

    PubMed  CAS  Google Scholar 

  70. Lin CJ, Martens JW, Miller WL. NF-1C, Sp1, and Sp3 are essential for transcription of the human gene for P450c17 (steroid 17alpha-hydroxylase/17,20 lyase) in human adrenal NCI-H295A cells. Mol Endocrinol 2001;15:1277–93.

    Article  PubMed  CAS  Google Scholar 

  71. Rhéaume E, Lachance Y, Zhao HF, Breton N, Dumont M, de Launoit Y, et al. Structure and expression of a new complementary DNA encoding the almost exclusive 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase in human adrenals and gonads. Mol Endocrinol 1991;5:1147–57.

    Article  PubMed  Google Scholar 

  72. Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 2006;66:2815–25.

    Article  PubMed  CAS  Google Scholar 

  73. Devgan SA, Henderson BE, Yu MC, Shi CY, Pike MC, Ross RK, et al. Genetic variation of 3 beta-hydroxysteroid dehydrogenase type II in three racial/ethnic groups: implications for prostate cancer risk. Prostate 1997;33:9–12.

    Article  PubMed  CAS  Google Scholar 

  74. Chang BL, Zheng SL, Hawkins GA, Isaacs SD, Wiley KE, Turner A, et al. Joint effect of HSD3B1 and HSD3B2 genes is associated with hereditary and sporadic prostate cancer susceptibility. Cancer Res 2002;62:1784–9.

    PubMed  CAS  Google Scholar 

  75. Kraft P, Pharoah P, Chanock SJ, et al. Genetic variation in the HSD17B1 gene and risk of prostate cancer. PLoS Genet 2005;1:68.

    Article  Google Scholar 

  76. True L, Coleman I, Hawley S, Huang CY, Gifford D, Coleman R, et al. A molecular correlate to the Gleason grading system for prostate adenocarcinoma. Proc Natl Acad Sci U S A 2006;103:10991–6.

    Article  PubMed  CAS  Google Scholar 

  77. Zha S, Ferdinandusse S, Hicks JL, Denis S, Dunn TA, Wanders RJ, et al. Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer. Prostate 2005;63:316–23.

    Article  PubMed  CAS  Google Scholar 

  78. Smith NF, Figg WD, Sparreboom A. Role of the liver-specific transporters OATP1B1 and OATP1B3 in governing drug elimination. Expert Opin Drug Metab Toxicol 2005;1:429–45.

    Article  PubMed  CAS  Google Scholar 

  79. Hamada A, Sissung T, Price DK, Danesi R, Chau CH, Sharifi N, et al. Effect of SLCO1B3 haplotype on testosterone transport and clinical outcome in Caucasian patients with androgen-independent prostatic cancer. Clin Cancer Res 2008;14:3312–8.

    Article  PubMed  CAS  Google Scholar 

  80. König J, Cui Y, Nies AT, Keppler D. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem 2000;275:23161–8.

    Article  PubMed  Google Scholar 

  81. Smith NF, Marsh S, Scott-Horton TJ, Hamada A, Mielke S, Mross K, et al. Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin Pharmacol Ther 2007;81:76–82.

    Article  PubMed  CAS  Google Scholar 

  82. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005;310:644–8.

    Article  PubMed  CAS  Google Scholar 

  83. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008;8:497–511.

    Article  PubMed  CAS  Google Scholar 

  84. Attard G, Ang JE, Olmos D, De-Bono JS. Dissecting prostate carcinogenesis through ETS gene rearrangement studies: implications for anticancer drug development. J Clin Pathol 2008;61:891–6.

    Article  PubMed  CAS  Google Scholar 

  85. Hermans KG, Bressers AA, van der Korput HA, Dits NF, Jenster G, Trapman J. Two unique novel prostate-specific and androgen-regulated fusion partners of ETV4 in prostate cancer. Cancer Res 2008;68:3094–8.

    Article  PubMed  CAS  Google Scholar 

  86. Riegman PH, Vlietstra RJ, van der Korput HA, Romijn JC, Trapman J. Identification and androgen-regulated expression of two major human glandular kallikrein-1 (hGK-1) mRNA species. Mol Cell Endocrinol 1991;76:181–90.

    Article  PubMed  CAS  Google Scholar 

  87. Makridakis N, Akalu A, Reichardt JK. Identification and characterization of somatic steroid 5alpha-reductase (SRD5A2) mutations in human prostate cancer tissue. Oncogene 2004;23:7399–405.

    Article  PubMed  CAS  Google Scholar 

  88. Makridakis N, Reichardt JK. Pharmacogenetic analysis of human steroid 5 alpha reductase type II: comparison of finasteride and dutasteride. J Mol Endocrinol 2005;34:617–23.

    Article  PubMed  CAS  Google Scholar 

  89. Biancolella M, Valentini A, Minella D, Vecchione L, D’Amico F, Chillemi G, et al. Effects of dutasteride on the expression of genes related to androgen metabolism and related pathway in human prostate cancer cell lines. Invest New Drugs 2007;25:491–7.

    Article  PubMed  CAS  Google Scholar 

  90. Schmidt LJ, Murillo H, Tindall DJ. Gene expression in prostate cancer cells treated with the dual 5 alpha-reductase inhibitor dutasteride. J Androl 2004;25:944–53.

    PubMed  CAS  Google Scholar 

  91. Zhao H, Whitfield ML, Xu T, Botstein D, Brooks JD. Diverse effects of methylseleninic acid on the transcriptional program of human prostate cancer cells. Mol Biol Cell 2004;15:506–19.

    Article  PubMed  CAS  Google Scholar 

  92. Dong Y, Zhang H, Gao AC, Marshall JR, Ip C. Androgen receptor signaling intensity is a key factor in determining the sensitivity of prostate cancer cells to selenium inhibition of growth and cancer-specific biomarkers. Mol Cancer Ther 2005;4:1047–55.

    Article  PubMed  CAS  Google Scholar 

  93. Lindström S, Adami HO, Bälter KA, Xu J, Zheng SL, Stattin P, et al. Inherited variation in hormone-regulating genes and prostate cancer survival. Clin Cancer Res 2007;13:5156–61.

    Article  PubMed  Google Scholar 

  94. Ross RW, Oh WK, Xie W, Pomerantz M, Nakabayashi M, Sartor O, et al. Inherited variation in the androgen pathway is associated with the efficacy of androgen-deprivation therapy in men with prostate cancer. J Clin Oncol 2008;26:842–7.

    Article  PubMed  Google Scholar 

  95. Sharifi N, Hamada A, Sissung T, Danesi R, Venzon D, Baum C, et al. A polymorphism in a transporter of testosterone is a determinant of androgen independence in prostate cancer. BJU Int 2008;102(5):617–21.

    Article  PubMed  CAS  Google Scholar 

  96. Hayes VM, Severi G, Eggleton SA, Padilla EJ, Southey MC, Sutherland RL, et al. The E211 G>A androgen receptor polymorphism is associated with a decreased risk of metastatic prostate cancer and androgenetic alopecia. Cancer Epidemiol Biomarkers Prev 2005;14:993–6.

    Article  PubMed  CAS  Google Scholar 

  97. Hsing AW, Chen C, Chokkalingam AP, Gao YT, Dightman DA, Nguyen HT, et al. Polymorphic markers in the SRD5A2 gene and prostate cancer risk: a population-based case-control study. Cancer Epidemiol Biomarkers Prev 2001;10:1077–82.

    PubMed  CAS  Google Scholar 

  98. Giwercman C, Giwercman A, Pedersen HS, Toft G, Lundin K, Bonde JP, et al. Polymorphisms in genes regulating androgen activity among prostate cancer low-risk Inuit men and high-risk Scandinavians. Int J Androl 2008;31:25–30.

    PubMed  CAS  Google Scholar 

  99. Margiotti K, Kim E, Pearce CL, Spera E, Novelli G, Reichardt JK. Association of the G289S single nucleotide polymorphism in the HSD17B3 gene with prostate cancer in Italian men. Prostate 2002;53:65–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

JKVR is a Medical Foundation Fellow at the University of Sydney. The work in his laboratory is also supported in part by NCI grant P01 CA108964 (project 1 to JKVR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen K. V. Reichardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marques, F.Z.C., Reichardt, J.K.V. (2010). Pharmacogenetics of the Androgen Metabolic Pathway. In: Figg, W., Chau, C., Small, E. (eds) Drug Management of Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-829-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-829-4_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60327-831-7

  • Online ISBN: 978-1-60327-829-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics