Skip to main content

Cell Biology of Prostate Cancer and Molecular Targets

  • Chapter
  • First Online:
Drug Management of Prostate Cancer

Abstract

While not appreciated at the time, the Nobel Prize-winning work of Huggins and Hodges in the 1940s illustrated the androgen dependence of prostate cancer and credentialized the first “targeted” (in this case, the androgen receptor) anticancer therapy. Androgen deprivation therapy induces long-term remission in most patients, but development of castration-resistant prostate cancer (CRPC) is inevitable. Most treatments for CRPC have been approved for symptomatic benefit, with only docetaxel shown to improve overall survival. Mechanisms underlying shift to castrate resistance have been attributed to a complex interplay of clonal selection, reactivation of AR axis despite castrate levels of serum T, adaptive upregulation of antiapoptotic and survival gene networks, stress-induced cytoprotective chaperones, and alternative growth factor pathways. CRPC tumors develop compensatory mechanisms during androgen deprivation, tailored to the synthesis of intratumoral androgens, which along with ligand-independent mechanisms involving cofactors or growth factor pathways, cooperatively trigger AR activation and thus disease progression. Over the last few years, numerous gene targets involved with CRPC that regulate apoptosis, proliferation, angiogenesis, cell signaling, and tumor-bone stromal interactions have been identified, and many novel compounds have entered clinical trials either as single agents or in combination with cytotoxic chemotherapy. In this review, several genes and pathways involved in CRPC progression will be reviewed, with particular emphasis on preclinically credentialized genes and pathways that are currently the targets of novel inhibitors in later stages of clinical development. These include the AR axis, molecular chaperones, tumor vasculature, bone stroma, and signal transduction pathways such as those triggered by IGF-1 and IL-6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huggins C, Hodges CV. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1941;1:293–7.

    CAS  Google Scholar 

  2. Eisenberger MA, Blumenstein BA, Crawford ED, Miller G, McLeod DG, Loehrer PJ, Wilding G, Sears K, Culkin DJ, Thompson IM Jr, Bueschen AJ, Lowe BA. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med. 1998;339(15):1036–42.

    PubMed  CAS  Google Scholar 

  3. Hussain M, Tangen CM, Higano C, Schelhammer PF, Faulkner J, Crawford ED, Wilding G, Akdas A, Small EJ, Donnelly B, MacVicar G, Raghavan D; Southwest Oncology Group Trial 9346 (INT-0162). Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group Trial 9346 (INT-0162). J Clin Oncol. 2006;24(24):3984–90.

    PubMed  Google Scholar 

  4. Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol. 2008;26(2):242–5.

    PubMed  CAS  Google Scholar 

  5. Isaacs, J.T., Wake, N., Coffey, D.S. and Sandberg, A.A. Genetic instability coupled to clonal selection as a mechanism for progression in prostatic cancer. Cancer Res. 1982; 42: 2353–71.

    PubMed  CAS  Google Scholar 

  6. Feldman BJ and Feldman D. The development of androgen-independent prostate cancer. Nature Rev 2001;1:34–45.

    CAS  Google Scholar 

  7. Bruchovsky, N., Rennie, P.S., Coldman, A.J., Goldenberg, S.L., and Lawson, D.: Effects of androgen withdrawal on the stem cell composition of the Shionogi carcinoma. Cancer Res. 1990;50:2275–82.

    PubMed  CAS  Google Scholar 

  8. Miyake H, Tolcher A, Gleave ME. Antisense Bcl-2 oligodeoxynucleotides delay progression to androgen-independence after castration in the androgen dependent Shionogi tumor model. Cancer Res 1999;59:4030–4.

    PubMed  CAS  Google Scholar 

  9. Miyake H, Rennie P, Nelson C, Gleave ME. Testosterone-Repressed Prostate Message-2 (TRPM-2) is an Antiapoptotic Gene that confers resistance to androgen ablation in Prostate Cancer Xenograft Models. Cancer Res 2000;60:170–6.

    PubMed  CAS  Google Scholar 

  10. Rocchi P, So A, Kojima S, Signaevsky M, Beraldi E, Fazli L, Hurtado-Coll A, Yamanka K and Gleave ME. heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone refractory prostate cancer. Cancer Res 2004;64(18):6595–602 IF 7.672.

    PubMed  CAS  Google Scholar 

  11. Rocchi P, Beraldi E, Ettinger S, Fazli L, Vessella RL, Nelson C, M Gleave. Increased Hsp27 after androgen ablation facilitates androgen independent progression in prostate cancer via stat3-mediated suppression of apoptosis. Cancer Res 2005;65(23):11083–93.

    PubMed  CAS  Google Scholar 

  12. Ettinger SL, Sobel R, Whitmore T, Akbari M, Bradley DR, Gleave ME and Nelson CC. Dysregulation of sterol response element binding proteins and downstream effectors in prostate cancer during progression to androgen-independence. Cancer Res 2004;64(6):2212–21. IF 7.672.

    PubMed  CAS  Google Scholar 

  13. Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA, Ettinger SL, Gleave ME, Nelson CC. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res 2008;68(15):6407–15. IF 7.672.

    PubMed  CAS  Google Scholar 

  14. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10(1):33–9.

    PubMed  Google Scholar 

  15. Craft N, Shostak Y, Carey M, and Sawyers C. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 1999;5:280–5.

    PubMed  CAS  Google Scholar 

  16. Nickerson T, Miyake H, Gleave M, Pollak M. Castration-Induced Apoptosis of Androgen-Dependent Shionogi Carcinoma is Associated With Increased Expression of Genes Encoding Insulin-Like Growth Factor Binding Proteins Cancer Res 1999;59:3392–5.

    PubMed  CAS  Google Scholar 

  17. Nickerson T, Chang F, Lorimer D, Smeekens SP, Sawyers CL, Pollak M. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Res. 2001;61(16):6276–80.

    PubMed  CAS  Google Scholar 

  18. Miyake H, Nelson C, Rennie P, Gleave ME. Overexpression of insulin-like growth factor binding protein-5 helps accelerate progression to androgen-independence in the human prostate LNCaP tumor model through activation of phosphatidylinositol 3’-kinase pathway. Endocrinology 2000;141:2257–65.

    PubMed  CAS  Google Scholar 

  19. Kiyama S, Morrison K, Zellweger T, et al. Castration-induced increases in insulin-like growth factor-binding protein 2 promotes proliferation of androgen-independent human prostate LNCaP tumors. Cancer Res 2003;63:3575–84.

    PubMed  CAS  Google Scholar 

  20. Krueckl SL, Sikes RA, Edlund NM, Bell RH, Hurtado-Coll A, Fazli L, Gleave ME, Cox ME. Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model. Cancer Res. 2004;64(23):8620–9.

    PubMed  CAS  Google Scholar 

  21. Simental JA, Sar M, Lane MV, French FS, Wilson EM. Transcriptional activation and nuclear targeting signals of the human androgen receptor. J Biol Chem 1991;266: 510–8.

    PubMed  CAS  Google Scholar 

  22. Tsai MJ, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann Rev Biochem 1994;63:451–86.

    PubMed  CAS  Google Scholar 

  23. Rennie PS, Bruchovsky N, Leco KJ, Sheppard PC, McQueen SA, Cheng H, Snoek R, Hamel, A, Bock, ME, MacDonald, BS, Nickel, BE, Chang, C, Liao, S, Cattini, PA & Matusik, RJ Characterization of two cis-acting DNA elements involved in the androgen regulation of the probasin gene. Mol Endocrinol 1993;7:23–36.

    PubMed  CAS  Google Scholar 

  24. Sun M, Yang L, Feldman RI, et al. Activation of phosphatidylinositol 3-kinase/Akt pathway by androgen through interaction of p85a, androgen receptor, and Src. J Biol Chem 2003;278:42992–3000.

    PubMed  CAS  Google Scholar 

  25. Heinlein CA, Chang C. The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 2002;16:2181–7.

    PubMed  CAS  Google Scholar 

  26. Kousteni S, Bellido T, Plotkin LI, et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 2001;104:719–30.

    PubMed  CAS  Google Scholar 

  27. Zhu ML and Kyprianou N. Androgen receptor and growth factor signaling cross-talk in prostate cancer cells. Endocr Relat Cancer 2008;15:841–49.

    PubMed  CAS  Google Scholar 

  28. Fan W, Yanase T, Morinaga H, Okabe T, Nomura M, Daitoku H, Fukamizu A, Kato S, Takayanagi R and Nawata H. Insulin-like growth factor 1/insulin signaling activates androgen signaling through direct interactions of Foxo1 with androgen receptor. J Biol Chem 2007;282:7329–38.

    PubMed  CAS  Google Scholar 

  29. Hobisch A, Eder IE, Putz T, Horninger W, Bartsch G, Klocker H and Culig Z. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 1998;58:4640–5.

    PubMed  CAS  Google Scholar 

  30. Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A, Bartsch G and Klocker H. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 1994;54:5474–8.

    PubMed  CAS  Google Scholar 

  31. Mostaghel EA, Page ST, Lin DW, Fazli L, Coleman IM, True LD, Knudsen B, Hess DL, Nelson CC, Matsumoto AM, Bremner WJ, Gleave ME and Nelson PS. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 2007;67:5033–41.

    PubMed  CAS  Google Scholar 

  32. Gregory CW, Johnson RT,Jr, Mohler JL, French FS and Wilson EM. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res. 2001;61:2892–8.

    PubMed  CAS  Google Scholar 

  33. Mohler JL, Gregory CW, Ford OH III, Kim D, Weaver CM, Petrusz P, Wilson EM and French FS. The androgen axis in recurrent prostate cancer. Clin Cancer Res 2004;10:440–8.

    PubMed  CAS  Google Scholar 

  34. Titus MA, Schell MJ, Lih FB, Tomer KB and Mohler JL. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 2005;11:4653–7.

    PubMed  CAS  Google Scholar 

  35. Labrie F. Adrenal androgens and intracrinology. Semin Reprod Med 2004;22:299–309.

    PubMed  CAS  Google Scholar 

  36. Snoek R, Cheng H, Margiotti K, Wafa LA, Wong CA, Wong EC, Fazli L, Nelson CC, Gleave ME, Rennie PS. In vivo knockdown of the androgen receptor results in growth inhibition and regression of well-established, castration-resistant prostate tumors. Clin Cancer Res 2009;15(1):39–47.

    PubMed  CAS  Google Scholar 

  37. Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, Febbo PG and Balk SP. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 2006;66:2815–25.

    PubMed  CAS  Google Scholar 

  38. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C, Palotie A, Tammela T, Isola J and Kallioniemi O. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995;9:401–6.

    PubMed  CAS  Google Scholar 

  39. Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, Trapman J, Cleutjens K, Noordzij A, Visakorpi T, Kallioniemi OP. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 1997;57:314–9.

    PubMed  CAS  Google Scholar 

  40. Culig Z, Hobisch A, Cronauer MV, Cato AC, Hittmair A, Radmayr C, Eberle J, Bartsch G, Klocker H. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 1993;7:1541–50.

    PubMed  CAS  Google Scholar 

  41. Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, Keer HN, Balk SP. Mutation of the androgen-receptor gene in metastatic androgen- independent prostate cancer. N Engl J Med 1995;332:1393–8.

    PubMed  CAS  Google Scholar 

  42. Taplin ME, Bubley GJ, Ko YJ, Small EJ, Upton M, Rajeshkumar B, Balk SP. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 1999;59:2511–5.

    PubMed  CAS  Google Scholar 

  43. Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, Peehl DM, Feldman D. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 2000;6:703–6.

    PubMed  CAS  Google Scholar 

  44. Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, Han M, Partin AW, Vessella RL, Isaacs WB, Bova GS, Luo J. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009;69(1):16–22.

    PubMed  CAS  Google Scholar 

  45. Steinkamp MP, O’Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S, Hofer MD, Kuefer R, Chinnaiyan A, Rubin MA, Pienta KJ, Robins DM. Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res 2009;69(10):4434–42.

    PubMed  CAS  Google Scholar 

  46. Gregory CW, He B, Johnson RT, Ford OH, Mohler JL, French FS, Wilson EM. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 2001;61:4315–9.

    PubMed  CAS  Google Scholar 

  47. Tillman JE, Yuan J, Gu G, Fazli L, Ghosh R, Flynt AS, Gleave M, Rennie PS, Kasper S. DJ-1 binds androgen receptor directly and mediates its activity in hormonally treated prostate cancer cells. Cancer Res 2007;67(10):4630–7.

    PubMed  CAS  Google Scholar 

  48. Zoubeidi A, Zardan A, Beraldi E, Fazli L, Sowery R, Rennie P, Nelson C, Gleave M: Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 2007;67(21):10455–65.

    PubMed  CAS  Google Scholar 

  49. Nazareth LV, Weigel NL. Activation of the human androgen receptor through a protein kinase A signaling pathway. J Biol Chem 1996;271:19900–7.

    PubMed  CAS  Google Scholar 

  50. Sadar MD. Androgen-independent induction of prostate-specific antigen gene expression via cross-talk between the androgen receptor and protein kinase A signal transduction pathways. J Biol Chem 1999;274:7777–83.

    PubMed  CAS  Google Scholar 

  51. Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci USA 1999;96:5458–63.

    PubMed  CAS  Google Scholar 

  52. Chen S, Xu Y, Yuan X, Bubley GJ, Balk SP. Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci USA 2006;103:15969–74.

    PubMed  CAS  Google Scholar 

  53. Mellinghoff IK, Vivanco I, Kwon A, Tran C, Wongvipat J, Sawyers CL. HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell 2004;6:517–27.

    PubMed  CAS  Google Scholar 

  54. Signoretti S, Montironi R, Manola J, Altimari A, Tam C, Bubley G, Balk S, Thomas G, Kaplan I, Hlatky L, Hahnfeldt P, Kantoff P, Loda M. Her-2-neu expression and progression toward androgen independence in human prostate cancer. J Natl Cancer Inst 2000;92:1918–25.

    PubMed  CAS  Google Scholar 

  55. Kuiper GG, Brinkmann AO. Phosphotryptic peptide analysis of the human androgen receptor: detection of a hormone-induced phosphopeptide. Biochemistry 1995;34:1851–7.

    PubMed  CAS  Google Scholar 

  56. Zhou ZX, Kemppainen JA, Wilson EM. Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol Endocrinol 1995;9:605–15.

    PubMed  CAS  Google Scholar 

  57. Gioeli D, Ficarro SB, Kwiek JJ, Aaronson D, Hancock M, Catling AD, White FM, Christian RE, Settlage RE, Shabanowitz J, Hunt DF, Weber MJ. Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites. J Biol Chem 2002;277:29304–14.

    CAS  Google Scholar 

  58. Guo Z, Dai B, Jiang T, Xu K, Xie Y, Kim O, Nesheiwat I, Kong X, Melamed J, Handratta VD, Njar VC, Brodie AM, Yu LR, Veenstra TD, Chen H, Qiu Y. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell 2006;10:309–19.

    PubMed  CAS  Google Scholar 

  59. Kraus S, Gioeli D, Vomastek T, Gordon V, Weber MJ. Receptor for activated C kinase 1 (RACK1) and Src regulate the tyrosine phosphorylation and function of the androgen receptor. Cancer Res 2006;66:11047–54.

    PubMed  CAS  Google Scholar 

  60. Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL, Earp HS, Whang YE. Activated Cdc42- associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA 2007;104:8438–43.

    PubMed  CAS  Google Scholar 

  61. Geller J, Albert JD, Nachtsheim DA, Loza D. Comparison of prostatic cancer tissue dihydrotestosterone levels at the time of relapse following orchiectomy or estrogen therapy. J Urol 1984;132:693–6.

    PubMed  CAS  Google Scholar 

  62. Page ST, Lin DW, Mostaghel EA, Hess DL, True LD, Amory JK, Nelson PS, Matsumoto AM, Bremner WJ. Persistent intraprostatic androgen concentrations after medical castration in healthy men. J Clin Endocrinol Metab 2006;91:3850–6.

    PubMed  CAS  Google Scholar 

  63. Auchus RJ. The backdoor pathway to dihydrotestosterone. Trends Endocrinol Metab 2004;15(9):432–8.

    PubMed  CAS  Google Scholar 

  64. Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, Wongvipat J, Smith-Jones PM, Yoo D, Kwon A, Wasielewska T, Welsbie D, Chen CD, Higano CS, Beer TM, Hung DT, Scher HI, Jung ME, Sawyers CL. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science. 2009;324(5928):787–90.

    PubMed  CAS  Google Scholar 

  65. Small EJ, Ryan CJ. The case for secondary hormonal therapies in the chemotherapy age. J Urol 2006;176(6 Pt 2): S66–71.

    PubMed  CAS  Google Scholar 

  66. Attard G, Reid AH, Yap TA, Raynaud F, Dowsett M, Settatree S, Barrett M, Parker C, Martins V, Folkerd E, Clark J, Cooper CS, Kaye SB, Dearnaley D, Lee G, de Bono JS. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol 2008;26(28):4563–71.

    PubMed  CAS  Google Scholar 

  67. Attard G, Reid AH, A’hern R, Parker C, Oommen NB, Folkerd E, Messiou C, Molife LR, Maier G, Thompson E, Olmos D, Sinha R, Lee G, Dowsett M, Kaye SB, Dearnaley D, Kheoh T, Molina A, de Bono JS. Selective Inhibition of CYP17 With Abiraterone Acetate Is Highly Active in the Treatment of Castration-Resistant Prostate. Cancer J Clin Oncol 2009;27(23);3742–8.

    CAS  Google Scholar 

  68. Attard G, Reid AH, Olmos D, de Bono JS. Antitumor activity with CYP17 blockade indicates that castration-resistant prostate cancer frequently remains hormone driven. Cancer Res 2009;69(12):4937–40.

    PubMed  CAS  Google Scholar 

  69. Georget V, Térouanne B, Nicolas JC, Sultan C. Mechanism of antiandrogen action: key role of hsp90 in conformational change and transcriptional activity of the androgen receptor.Biochemistry. 2002;41(39):11824–31.

    PubMed  CAS  Google Scholar 

  70. Buchanan G, Ricciardelli C, Harris JM, Prescott J, Yu ZC, Jia L, Butler LM, Marshall VR, Scher HI, Gerald WL, Coetzee GA, Tilley WD. Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein alpha. Cancer Res 2007;67(20):10087–9.

    PubMed  CAS  Google Scholar 

  71. Solit DB, Zheng FF, Drobnjak M, Münster PN, Higgins B, Verbel D, Heller G, Tong W, Cordon-Cardo C, Agus DB, Scher HI, Rosen N. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res. 2002;8(5):986–93.

    PubMed  CAS  Google Scholar 

  72. Shatkina L, Mink S, Rogatsch H, et al. The cochaperone Bag-1 L enhances androgen receptor action via interaction with the NH2-terminal region of the receptor. Mol Cell Biol 2003;23:7189–97.

    PubMed  CAS  Google Scholar 

  73. Cheung-Flynn J, Prapapanich V, Cox MB, Riggs DL Suarez-Quian C, Smith DF. Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol Endocrinol 2005;19:1654–66.

    PubMed  CAS  Google Scholar 

  74. Yang Z, Wolf IM, Chen H, et al. FK506-binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor A isoform. Mol Endocrinol 2006;20:2682–94.

    PubMed  CAS  Google Scholar 

  75. Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S, Arrigo AP. Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 2002;22:816–34.

    PubMed  CAS  Google Scholar 

  76. Concannon CG, Orrenius S, Samali A. Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr 2001;9:195–201.

    PubMed  CAS  Google Scholar 

  77. Parcellier A, Schmitt E, Gurbuxani S, et al. HSP27 is a ubiquitin-binding protein involved in I-nBa proteasomal degradation. Mol Cell Biol 2003;23:5790–802.

    PubMed  CAS  Google Scholar 

  78. Chauhan D, Li G, Podar K, et al. The bortezomib/ proteasome inhibitor PS-341 and triterpenoid CDDO-Im induce synergistic anti-multiple myeloma (MM) activity and overcome bortezomib resistance. Blood 2004;103:3158–66.

    PubMed  CAS  Google Scholar 

  79. McCollum AK, Teneyck CJ, Sauer BM, Toft DO, Erlichman C. Up-regulation of heat shock protein 27 induces resistance to 17-allylamino-demethoxygeldanamycin through a glutathione-mediated mechanism. Cancer Res 2006;66(22):10967–75.

    PubMed  CAS  Google Scholar 

  80. Hotte SJ, Yu EY, Hirte HW, Higano CS, Gleave M, Chi KN. OGX-427, a 2’methoxyethyl antisense oligonucleotide (ASO), against HSP27: Results of a first-in-human trial. J Clin Oncol 2009;27:15s, (suppl. abstr 3506).

    Google Scholar 

  81. Jin Z, El-Deiry WS.Overview of cell death signaling pathways. Cancer Biol Ther 2005;4(2):139–63.

    PubMed  CAS  Google Scholar 

  82. Russo A, Terrasi M, Agnese V, Santini D, Bazan V. Apoptosis: a relevant tool for anticancer therapy. Ann Oncol 2006; Suppl. 7:vii115–23. Review.

    Google Scholar 

  83. Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer 2008;8(2):121–32.

    PubMed  CAS  Google Scholar 

  84. Danson S, Dean E, Dive C, Ranson M. IAPs as a target for anticancer therapy. Curr Cancer Drug Targets 2007;7(8):785–94.

    PubMed  CAS  Google Scholar 

  85. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis. 2000;21(3):485–95.

    PubMed  CAS  Google Scholar 

  86. Wajant H. The Fas signaling pathway: more than a paradigm. Science 2002;296(5573):1635–6.

    PubMed  CAS  Google Scholar 

  87. Tsujimoto Y & Croce CM. Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA 1986;83:5214–8.

    PubMed  CAS  Google Scholar 

  88. Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol 124, 1-6 (1994).

    PubMed  CAS  Google Scholar 

  89. Miyashita T & Reed JC. Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 1993;81:151–7.

    PubMed  CAS  Google Scholar 

  90. McDonnell TJ et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 1992;52:6940–4.

    PubMed  CAS  Google Scholar 

  91. Kyprianou N, King ED, Bradbury D & Rhee JG. bcl-2 over-expression delays radiation-induced apoptosis without affecting the clonogenic survival of human prostate cancer cells. Int J Cancer 1997;70:341–8.

    PubMed  CAS  Google Scholar 

  92. Raffo AJ et al. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 1995;55:4438–45.

    PubMed  CAS  Google Scholar 

  93. Gleave M et al. Progression to androgen independence is delayed by adjuvant treatment with antisense Bcl-2 oligodeoxynucleotides after castration in the LNCaP prostate tumor model. Clin Cancer Res 1999;5:2891–8.

    PubMed  CAS  Google Scholar 

  94. Zangemeister-Wittke U et al. A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and bcl-xL expression efficiently induces apoptosis in tumor cells. Clin Cancer Res 2000;6:2547–55.

    PubMed  CAS  Google Scholar 

  95. Jansen B et al. bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med 1998;4:232–4.

    PubMed  CAS  Google Scholar 

  96. Jansen B et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 2000;356:1728–33.

    PubMed  CAS  Google Scholar 

  97. Rai KR & Moore JO. Phase 3 randomized trial of fludarabine/cyclophosphamide chemotherapy with or without oblimersen sodium (Bcl-2 antisense; genasense; G3139) for patients with relapsed or refractory chronic lymphocytic leukemia (CLL). Blood 2004;104:100a.

    Google Scholar 

  98. Chanan-Khan A et al. Randomized Multicenter Phase 3 Trial of High-Dose Dexamethasone (dex) with or without Oblimersen Sodium (G3139; Bcl-2 antisense; Genasense) for Patients with Advanced Multiple Myeloma (MM). Blood 2004;104:413a.

    Google Scholar 

  99. Chi KN et al. A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin Cancer Res 2001;7:3920–7.

    PubMed  CAS  Google Scholar 

  100. Tolcher AW, Chi K, Kuhn J, Gleave M, Patnaik A, Takimoto C, Schwartz G, Thompson I, Berg K, D’Aloisio S, Murray N, Frankel SR, Izbicka E, Rowinsky E. A phase II, pharmacokinetic, and biological correlative study of oblimersen sodium and docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res 2005;11(10):3854–61.

    PubMed  CAS  Google Scholar 

  101. Sternberg CN, Dumez H, Van Poppel H, Skoneczna I, Sella A, Daugaard G, Gil T, Graham J, Carpentier P, Calabro F, Collette L, Lacombe D; for the EORTC Genitourinary Tract Cancer Group. Docetaxel plus oblimersen sodium (Bcl-2 antisense oligonucleotide): an EORTC multicenter, randomized phase II study in patients with castration-resistant prostate cancer. Ann Oncol. 2009 Mar 17.

    Google Scholar 

  102. Bedikian AY, Millward M, Pehamberger H, Conry R, Gore M, Trefzer U, Pavlick AC, DeConti R, Hersh EM, Hersey P, Kirkwood JM, Haluska FG; Oblimersen Melanoma Study Group. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol 2006;24(29):4738–45.

    Google Scholar 

  103. Chanan-Khan AA, Niesvizky R, Hohl RJ, Zimmerman TM, Christiansen NP, Schiller GJ, Callander N, Lister J, Oken M, Jagannath S. Phase III randomised study of dexamethasone with or without oblimersen sodium for patients with advanced multiple myeloma. Leuk Lymphoma 2009;50(4):559–65.

    PubMed  CAS  Google Scholar 

  104. Han Z et al. Isolation and characterization of an apoptosis-resistant variant of human leukemia HL-60 cells that has switched expression from Bcl-2 to Bcl-xL. Cancer Res 1996;56:1621–8.

    PubMed  CAS  Google Scholar 

  105. Leech, S.H. et al. Induction of apoptosis in lung-cancer cells following bcl-xL anti-sense treatment. Int J Cancer 2000;86:570–6.

    PubMed  CAS  Google Scholar 

  106. Simoes-Wust, AP et al. Bcl-xl antisense treatment induces apoptosis in breast carcinoma cells. Int J Cancer 2000;87:582–90.

    PubMed  CAS  Google Scholar 

  107. Lebedeva I, Rando R, Ojwang J, Cossum P & Stein CA. Bcl-xL in prostate cancer cells: effects of overexpression and down-regulation on chemosensitivity. Cancer Res 2000;60:6052–60.

    PubMed  CAS  Google Scholar 

  108. Leung S, Miyake H, Zellweger T, Tolcher A & Gleave ME. Synergistic chemosensitization and inhibition of progression to androgen independence by antisense Bcl-2 oligodeoxynucleotide and paclitaxel in the LNCaP prostate tumor model. Int J Cancer 2001;91:846–50.

    PubMed  CAS  Google Scholar 

  109. Miyake H, Monia BP & Gleave ME. Inhibition of progression to androgen-independence by combined adjuvant treatment with antisense BCL-XL and antisense Bcl-2 oligonucleotides plus taxol after castration in the Shionogi tumor model. Int J Cancer 2000;86:855–62.

    PubMed  CAS  Google Scholar 

  110. Cragg MS, Harris C, Strasser A, Scott CL. Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics. Nat Rev Cancer 2009;9(5):321–6.

    PubMed  CAS  Google Scholar 

  111. Labi V, Grespi F, Baumgartner F, Villunger A.Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy? Cell Death Differ 2008;15(6):977–87.

    PubMed  CAS  Google Scholar 

  112. Jones SE, Jomary C. Clusterin. Int J Biochem Cell Biol 2002;34:427–31.

    PubMed  CAS  Google Scholar 

  113. Trougakos IP, Gonos ES. Clusterin/apolipoprotein J in human aging and cancer. Int J Biochem Cell Biol 2002;34:1430–48.

    PubMed  CAS  Google Scholar 

  114. Shannan B, Seifert M, Leskov K, Willis J, Boothman D, Tilgen W, Reichrath J. Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ 2006;13(1):12–9.

    PubMed  CAS  Google Scholar 

  115. Yang CR, Leskov K, Hosley-Eberlein K, Criswell T, Pink JJ, Kinsella TJ, Boothman DA. Nuclear clusterin/XIP8, an x-ray-induced Ku70-binding protein that signals cell death. Proc Natl Acad Sci USA 2000;97:5907–12.

    PubMed  CAS  Google Scholar 

  116. Zhang Q, Zhou W, Kundu S, et al. The leader sequence triggers and enhances several functions of clusterin and is instrumental in the progression of human prostate cancer in vivo and in vitro. BJU Int 2006;98:452–60.

    PubMed  CAS  Google Scholar 

  117. Leskov KS, Klokov DY, Li J, et al. Synthesis and functional analyses of nuclear clusterin, a cell death protein. J Biol Chem 2003;278:11590–600.

    PubMed  CAS  Google Scholar 

  118. Carver JA, Rekas A, Thorn DC, Wilson MR. Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function? IUBMB Life 2003;55:661–8.

    PubMed  CAS  Google Scholar 

  119. Zhang H, Kim JK, Edwards CA, et al. Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 2005;7:909–15.

    PubMed  CAS  Google Scholar 

  120. Trougakos IP, Lourda M, Antonelou MH, Kletsas D, Gorgoulis VG, Papassideri IS, Zou Y, Margaritis LH, Boothman DA, Gonos ES. Intracellular clusterin inhibits mitochondrial apoptosis by suppressing p53-activating stress signals and stabilizing the cytosolic Ku70-Bax protein complex. Clin Cancer Res 2009;15(1):48–59.

    PubMed  CAS  Google Scholar 

  121. Nakanishi C, Toi M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 2005;5:297–309.

    PubMed  CAS  Google Scholar 

  122. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996;274:782–4.

    PubMed  CAS  Google Scholar 

  123. Jin RJ, Lho Y, Connelly L, et al. The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res 2008;68:6762–9.

    PubMed  CAS  Google Scholar 

  124. Dai C, Whitesell L, Rogers AB, Lindquist S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 2007;130(6):1005–1.

    PubMed  CAS  Google Scholar 

  125. Whitesell L, Lindquist S. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets 2009;13(4):469–78.

    PubMed  CAS  Google Scholar 

  126. Bayon Y, Ortiz MA, Lopez-Hernandez FJ, Howe PH, Piedrafita FJ. The retinoid antagonist MX781 induces clusterin expression in prostate cancer cells via heat shock factor-1 and activator protein-1 transcription factors. Cancer Res 2004;64:5905–12.

    PubMed  CAS  Google Scholar 

  127. Loison F, Debure L, Nizard P, le Goff P, Michel D, le Drean Y. Up-regulation of the clusterin gene after proteotoxic stress: implication of HSF1-HSF2 heterocomplexes. Biochem J 2006;395:223–31.

    PubMed  CAS  Google Scholar 

  128. Criswell T, Beman M, Araki S, Leskov K, Cataldo E, Mayo LD, Boothman DA. Delayed activation of insulin-like growth factor-1 receptor/Src/MAPK/Egr-1 signaling regulates clusterin expression, a pro-survival factor. J Biol Chem 2005;280(14):14212–21.

    PubMed  CAS  Google Scholar 

  129. Cochrane DR, Wang Z, Muramaki M, Gleave ME, Nelson CC: Differential regulation of clusterin and its isoforms by androgens in prostate cells. J Biol Chem 2007;282(4):2278–87.

    PubMed  CAS  Google Scholar 

  130. Sensibar JA, Sutkowski DM, Raffo A, et al. Prevention of cell death induced by tumor necrosis factor alpha in LNCaP cells by overexpression of sulfated glycoprotein-2 (clusterin). Cancer Res 1995;55:2431–7.

    PubMed  CAS  Google Scholar 

  131. Zellweger T, Chi K, Miyake H, et al. Enhanced radiation sensitivity in prostate cancer by inhibition of the cell survival protein clusterin. Clin Cancer Res 2002;8:3276–84.

    PubMed  CAS  Google Scholar 

  132. Miyake H, Chi KN, Gleave ME. Antisense TRPM-2 oligodeoxynucleotides chemosensitize human androgen-independent PC-3 prostate cancer cells both in vitro and in vivo. Clin Cancer Res 2000;6:1655–63.

    PubMed  CAS  Google Scholar 

  133. Redondo M, Villar E, Torres-Munoz J, et al. Overexpression of clusterin in human breast carcinoma. Am J Path 2000;157:393–9.

    PubMed  CAS  Google Scholar 

  134. Miyake H, Gleave M, Kamidono S, et al. Overexpression of clusterin in transitional cell carcinoma of the bladder is related to disease progression and recurrence. Urology 2002;59:150–4.

    PubMed  Google Scholar 

  135. July LV, Beraldi E, So A, et al. Nucleotide-based therapies targeting clusterin chemosensitize human lung adenocarcinoma cells both in vitro and in vivo. Mol Cancer Ther 2004;3:223–32.

    CAS  Google Scholar 

  136. Miyake H, Hara S, Arakawa S, et al. Over expression of clusterin is an independent prognostic factor for nonpapillary renal cell carcinoma. J Urol 2002;167:703–6.

    PubMed  CAS  Google Scholar 

  137. Chen X, Halberg RB, Ehrhardt WM, et al. Clusterin as a biomarker in murine and human intestinal neoplasia. Proc Natl Acad Sci USA 2003;100:9530–5.

    PubMed  CAS  Google Scholar 

  138. Steinberg J, Oyasu R, Lang S, et al. Intracellular levels of SGP-2 (Clusterin) correlate with tumor grade in prostate cancer. Clin Cancer Res 1997;3:1707–11.

    PubMed  CAS  Google Scholar 

  139. Cao C, Shinohara ET, Li H, et al. Clusterin as a therapeutic target for radiation sensitization in a lung cancer model. Int J Radiat Oncol Biol Phys 2005;63:1228–36.

    PubMed  CAS  Google Scholar 

  140. Gleave M, Jansen B. Clusterin and IGFBPs as antisense targets in prostate cancer. Ann N Y Acad Sci 2003;1002:95–104.

    PubMed  CAS  Google Scholar 

  141. Chi KN, Zoubeidi A, Gleave ME. Custirsen (OGX-011): a second-generation antisense inhibitor of clusterin for the treatment of cancer. Expert Opin Investig Drugs. 2008;17(12):1955–62.

    PubMed  CAS  Google Scholar 

  142. Zellweger T, Miyake H, Cooper S, et al. Antitumor activity of antisense clusterin oligonucleotides is improved in vitro and in vivo by incorporation of 2’-O-(2-methoxy)ethyl chemistry. J Pharmacol Exp Ther 2001;298:934–40.

    PubMed  CAS  Google Scholar 

  143. Chi KN, Eisenhauer E, Fazli L, Jones EC, Goldenberg SL, Powers J, Tu D, Gleave ME. A phase I pharmacokinetic and pharmacodynamic study of OGX-011, a 2’-methoxyethyl antisense oligonucleotide to clusterin, in patients with localized prostate cancer. J Natl Cancer Inst. 2005;97(17):1287–96.

    PubMed  CAS  Google Scholar 

  144. Chi KN, Hotte SJ, Yu E, Tu D, Eigl B, Tannock I, Saad F, North S, Powers J, Eisenhauer E. Mature results of a randomized phase II study of OGX-011 in combination with docetaxel/prednisone versus docetaxel/prednisone in patients with metastatic castration-resistant prostate cancer. J Clin Oncol 2009;27:15s (Suppl; abstr 5012).

    Google Scholar 

  145. Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, and Kroemer G. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 2006;5:2592–601.

    PubMed  CAS  Google Scholar 

  146. Wu R, Kausar H, Johnson P, Montoya-Durango DE, Merchant M, and Rane MJ. Hsp27 regulates Akt activation and polymorphonuclear leukocyte apoptosis by scaffolding MK2 to Akt signal complex. J Biol Chem 2007;282:21598–608.

    PubMed  CAS  Google Scholar 

  147. Pandey P, Farber R, Nakazawa A, Kumar S, Bharti A, Nalin C, Weichselbaum R, Kufe D, and Kharbanda S. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 2000;19:1975–81.

    PubMed  CAS  Google Scholar 

  148. Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N, Catley L, Tai YT, Hayashi T, Shringarpure R, Burger R, Munshi N, Ohtake Y, Saxena S, and Anderson KC. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood 2003;102:3379–86.

    PubMed  CAS  Google Scholar 

  149. Charette SJ, Lavoie JN, Lambert H, and Landry J. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol. 2000;20:7602–12.

    PubMed  CAS  Google Scholar 

  150. Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, and Landry J. 1997. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997;110 ( Pt 3):357–68.

    PubMed  CAS  Google Scholar 

  151. Arrigo, AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, and Diaz-Latoud C. Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal. 2005;7:414–22.

    PubMed  CAS  Google Scholar 

  152. Parcellier A, Schmitt E, Gurbuxani S, Seigneurin-Berny D, Pance A, Chantome A, Plenchette S, Khochbin S, Solary E, and Garrido C. HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol 2003;23:5790–802.

    PubMed  CAS  Google Scholar 

  153. Park KJ, Gaynor RB, and Kwak YT. Heat shock protein 27 association with the I kappa B kinase complex regulates tumor necrosis factor alpha-induced NF-kappa B activation. J Biol Chem 2003;278:35272–8.

    PubMed  CAS  Google Scholar 

  154. Konishi H, Matsuzaki H, Tanaka M, Takemura Y, Kuroda S, Ono Y, and Kikkawa U. Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Lett 1997;410:493–8.

    PubMed  CAS  Google Scholar 

  155. Rane, MJ, Pan Y, Singh S, Powell DW, Wu R, Cummins T, Chen Q, McLeish KR, and Klein JB. Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 2003;278:27828–35.

    PubMed  CAS  Google Scholar 

  156. Manning BD, and Cantley LC. AKT/PKB signaling: navigating downstream. Cell 2007;129:1261–74.

    PubMed  CAS  Google Scholar 

  157. Ciocca DR, and Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10:86–103.

    PubMed  CAS  Google Scholar 

  158. Garrido C, Fromentin A, Bonnotte B, Favre N, Moutet M, Arrigo AP, Mehlen P, and Solary E. 1998. Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res 1998;58:5495–9.

    PubMed  CAS  Google Scholar 

  159. Kamada M, So A, Muramaki M, Rocchi P, Beraldi E, Gleave M. Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol Cancer Ther 2007;1:299–308.

    Google Scholar 

  160. Shin KD, Yoon YJ, Kang YR, Son KH, Kim HM, Kwon BM, Han DC. KRIBB3, a novel microtubule inhibitor, induces mitotic arrest and apoptosis in human cancer cells. Biochem Pharmacol 2008;75(2):383–94.

    PubMed  CAS  Google Scholar 

  161. Kostenko S, Johannessen M, Moens U.PKA-induced F-actin rearrangement requires phosphorylation of Hsp27 by the MAPKAP kinase MK5. Cell Signal 2009;21(5):712–8.

    PubMed  CAS  Google Scholar 

  162. Schlapbach A, Feifel R, Hawtin S, Heng R, Koch G, Moebitz H, Revesz L, Scheufler C, Velcicky J, Waelchli R, Huppertz C. Pyrrolo-pyrimidones: a novel class of MK2 inhibitors with potent cellular activity. Bioorg Med Chem Lett 2008;18(23):6142–6.

    PubMed  CAS  Google Scholar 

  163. Xu L, Bergan RC. Genistein inhibits matrix metalloproteinase type 2 activation and prostate cancer cell invasion by blocking the transforming growth factor beta-mediated activation of mitogen-activated protein kinase-activated protein kinase 2-27-kDa heat shock protein pathway. Mol Pharmacol 2006;70(3):869–77.

    PubMed  CAS  Google Scholar 

  164. LeRoith D, Roberts CT, Jr. The insulin-like growth factor system and cancer. Cancer Lett 2003;195:127–37.

    PubMed  CAS  Google Scholar 

  165. Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology. Int J Cancer 2003;107:873–7.

    PubMed  CAS  Google Scholar 

  166. Papatsoris AG, Karamouzis MV, Papavassiliou AG. Novel insights into the implication of the IGF-1 network in prostate cancer. Trends Mol Med 2005;11:52–5.

    PubMed  CAS  Google Scholar 

  167. Ryan CJ, Haqq CM, Simko J, et al. Expression of insulin-like growth factor-1 receptor in local and metastatic prostate cancer. Urol Oncol 2007;25:134–40.

    PubMed  CAS  Google Scholar 

  168. Baserga R. The IGF-I receptor in cancer research. Exp Cell Res 1999;253:1–6.

    PubMed  CAS  Google Scholar 

  169. Lopez-Bermejo A, Buckway CK, Devi GR, et al. Characterization of insulin-like growth factor-binding protein-related proteins (IGFBP-rPs) 1, 2, and 3 in human prostate epithelial cells: potential roles for IGFBP-rP1 and 2 in senescence of the prostatic epithelium. Endocrinology 2000;141:4072–80.

    PubMed  CAS  Google Scholar 

  170. Rosenzweig SA. What’s new in the IGF-binding proteins? Growth Horm IGF Res 2004;14:329–36.

    PubMed  CAS  Google Scholar 

  171. Butler AA, Yakar S, Gewolb IH, Karas M, Okubo Y, LeRoith D. Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol 1998;121:19–26.

    PubMed  CAS  Google Scholar 

  172. Scott CD, Martin JL, Baxter RC. Rat hepatocyte insulin-like growth factor I and binding protein: effect of growth hormone in vitro and in vivo. Endocrinology 1985;116:1102–7.

    PubMed  CAS  Google Scholar 

  173. Pollak M. Insulin-like growth factor physiology and cancer risk. Eur J Cancer 2000;36:1224–8.

    PubMed  CAS  Google Scholar 

  174. DiGiovanni J, Kiguchi K, Frijhoff A, et al. Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice. Proc Natl Acad Sci USA 2000;97:3455–60.

    PubMed  CAS  Google Scholar 

  175. Chan JM, Stampfer MJ, Ma J, et al. Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J Natl Cancer Inst 2002;94:1099–106.

    PubMed  CAS  Google Scholar 

  176. Grimberg A. Mechanisms by which IGF-I may promote cancer. Cancer Biol Ther 2003;2:630–5.

    PubMed  CAS  Google Scholar 

  177. Hellawell GO, Turner GD, Davies DR, Poulsom R, Brewster SF, Macaulay VM. Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res 2002;62:2942–50.

    PubMed  CAS  Google Scholar 

  178. Scorilas A, Plebani M, Mazza S, et al. Serum human glandular kallikrein (hK2) and insulin-like growth factor 1 (IGF-1) improve the discrimination between prostate cancer and benign prostatic hyperplasia in combination with total and %free PSA. Prostate 2003;54:220–9.

    PubMed  CAS  Google Scholar 

  179. Oliver SE, Barrass B, Gunnell DJ, et al. Serum insulin-like growth factor-I is positively associated with serum prostate-specific antigen in middle-aged men without evidence of prostate cancer. Cancer Epidemiol Biomarkers Prev 2004;13:163–5.

    PubMed  CAS  Google Scholar 

  180. Frasca F, Pandini G, Sciacca L, et al. The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem 2008;114:23–37.

    PubMed  CAS  Google Scholar 

  181. Hellawell GO, Ferguson DJ, Brewster SF, Macaulay VM. Chemosensitization of human prostate cancer using antisense agents targeting the type 1 insulin-like growth factor receptor. BJU Int 2003;91:271–7.

    PubMed  CAS  Google Scholar 

  182. Huynh H, Seyam RM, Brock GB. Reduction of ventral prostate weight by finasteride is associated with suppression of insulin-like growth factor I (IGF-I) and IGF-I receptor genes and with an increase in IGF binding protein 3. Cancer Res 1998;58:215–8.

    PubMed  CAS  Google Scholar 

  183. Pandini G, Mineo R, Frasca F, et al. Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells. Cancer Res 2005;65:1849–57.

    PubMed  CAS  Google Scholar 

  184. Yonou H, Aoyagi Y, Kanomata N, et al. Prostate-specific antigen induces osteoplastic changes by an autonomous mechanism. Biochem Biophys Res Commun 2001;289:1082–7.

    PubMed  CAS  Google Scholar 

  185. Goya M, Miyamoto S, Nagai K, et al. Growth inhibition of human prostate cancer cells in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice by a ligand-specific antibody to human insulin-like growth factors. Cancer Res 2004;64:6252–8.

    PubMed  CAS  Google Scholar 

  186. Kawada M, Inoue H, Masuda T, Ikeda D. Insulin-like growth factor I secreted from prostate stromal cells mediates tumor-stromal cell interactions of prostate cancer. Cancer Res 2006;66:4419–25.

    PubMed  CAS  Google Scholar 

  187. Xu C, Graf LF, Fazli L, et al. Regulation of global gene expression in the bone marrow microenvironment by androgen: androgen ablation increases insulin-like growth factor binding protein-5 expression. Prostate 2007;67:1621–9.

    PubMed  CAS  Google Scholar 

  188. Burfeind P, Chernicky CL, Rininsland F, Ilan J. Antisense RNA to the type I insulin-like growth factor receptor suppresses tumor growth and prevents invasion by rat prostate cancer cells in vivo. Proc Natl Acad Sci USA 1996;93:7263–8.

    PubMed  CAS  Google Scholar 

  189. Denley A, Cosgrove LJ, Booker GW, Wallace JC, Forbes BE. Molecular interactions of the IGF system. Cytokine Growth Factor Rev 2005;16:421–39.

    PubMed  CAS  Google Scholar 

  190. Baserga R. The insulin-like growth factor-I receptor as a target for cancer therapy. Expert Opin Ther Targets 2005;9:753–68.

    PubMed  CAS  Google Scholar 

  191. Plymate SR, Haugk K, Coleman I, et al. An antibody targeting the type I insulin-like growth factor receptor enhances the castration-induced response in androgen-dependent prostate cancer. Clin Cancer Res 2007;13:6429–39.

    PubMed  CAS  Google Scholar 

  192. LeRoith D, Helman L. The new kid on the block(ade) of the IGF-1 receptor. Cancer Cell 2004;5:201–2.

    PubMed  CAS  Google Scholar 

  193. Cohen BD, Baker DA, Soderstrom C, et al. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 2005;11:2063–73.

    PubMed  CAS  Google Scholar 

  194. Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther 2007;6:1–12.

    PubMed  CAS  Google Scholar 

  195. Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 2004;5:221–30.

    PubMed  CAS  Google Scholar 

  196. Garcia-Echeverria C, Pearson MA, Marti A, et al. In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 2004;5:231–9.

    PubMed  CAS  Google Scholar 

  197. Wu J, Li W, Craddock BP, et al. Small-molecule inhibition and activation-loop trans-phosphorylation of the IGF1 receptor. EMBO J 2008;27:1985–94.

    PubMed  CAS  Google Scholar 

  198. Baxter RC. Changes in the IGF-IGFBP axis in critical illness. Best Pract Res Clin Endocrinol Metab 2001;15:421–34.

    PubMed  CAS  Google Scholar 

  199. Clemmons DR. Use of mutagenesis to probe IGF-binding protein structure/function relationships. Endocr Rev 2001;22:800–17.

    PubMed  CAS  Google Scholar 

  200. Figueroa JA, De Raad S, Tadlock L, Speights VO, Rinehart JJ. Differential expression of insulin-like growth factor binding proteins in high versus low Gleason score prostate cancer. J Urol 1998;159:1379–83.

    PubMed  CAS  Google Scholar 

  201. Thomas LN, Cohen P, Douglas RC, Lazier C, Rittmaster RS. Insulin-like growth factor binding protein 5 is associated with involution of the ventral prostate in castrated and finasteride-treated rats. Prostate 1998;35:273–8.

    PubMed  CAS  Google Scholar 

  202. Goossens K, Esquenet M, Swinnen JV, Manin M, Rombauts W, Verhoeven G. Androgens decrease and retinoids increase the expression of insulin-like growth factor-binding protein-3 in LNcaP prostatic adenocarcinoma cells. Mol Cell Endocrinol 1999;155:9–18.

    PubMed  CAS  Google Scholar 

  203. Kimura G, Kasuya J, Giannini S, et al. Insulin-like growth factor (IGF) system components in human prostatic cancer cell-lines: LNCaP, DU145, and PC-3 cells. Int J Urol 1996;3:39–46.

    PubMed  CAS  Google Scholar 

  204. Kanety H, Madjar Y, Dagan Y, et al. Serum insulin-like growth factor-binding protein-2 (IGFBP-2) is increased and IGFBP-3 is decreased in patients with prostate cancer: correlation with serum prostate-specific antigen. J Clin Endocrinol Metab 1993;77:229–33.

    PubMed  CAS  Google Scholar 

  205. Angelloz-Nicoud P, Binoux M. Autocrine regulation of cell proliferation by the insulin-like growth factor (IGF) and IGF binding protein-3 protease system in a human prostate carcinoma cell line (PC-3). Endocrinology 1995;136:5485–92.

    PubMed  CAS  Google Scholar 

  206. Damon SE, Maddison L, Ware JL, Plymate SR. Overexpression of an inhibitory insulin-like growth factor binding protein (IGFBP), IGFBP-4, delays onset of prostate tumor formation. Endocrinology 1998;139:3456–64.

    PubMed  CAS  Google Scholar 

  207. Rajah R, Valentinis B, Cohen P. Insulin-like growth factor (IGF)-binding protein-3 induces apoptosis and mediates the effects of transforming growth factor-beta1 on programmed cell death through a p53- and IGF-independent mechanism. J Biol Chem 1997;272:12181–8.

    PubMed  CAS  Google Scholar 

  208. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 1995;16:3–34.

    PubMed  CAS  Google Scholar 

  209. Perks CM, Holly JM. The insulin-like growth factor (IGF) family and breast cancer. Breast Dis 2003;18:45–60.

    PubMed  CAS  Google Scholar 

  210. Schneider MR, Zhou R, Hoeflich A, et al. Insulin-like growth factor-binding protein-5 inhibits growth and induces differentiation of mouse osteosarcoma cells. Biochem Biophys Res Commun 2001;288:435–42.

    PubMed  CAS  Google Scholar 

  211. Hoeflich A, Wu M, Mohan S, et al. Overexpression of insulin-like growth factor-binding protein-2 in transgenic mice reduces postnatal body weight gain. Endocrinology 1999;140:5488–96.

    PubMed  CAS  Google Scholar 

  212. Miyake H, Pollak M, Gleave ME. Castration-induced up-regulation of insulin-like growth factor binding protein-5 potentiates insulin-like growth factor-I activity and accelerates progression to androgen independence in prostate cancer models. Cancer Res 2000;60:3058–64.

    PubMed  CAS  Google Scholar 

  213. Nam T, Moralez A, Clemmons D. Vitronectin binding to IGF binding protein-5 (IGFBP-5) alters IGFBP-5 modulation of IGF-I actions. Endocrinology 2002;143:30–6.

    PubMed  CAS  Google Scholar 

  214. Schutt BS, Langkamp M, Rauschnabel U, Ranke MB, Elmlinger MW. Integrin-mediated action of insulin-like growth factor binding protein-2 in tumor cells. J Mol Endocrinol 2004;32:859–68.

    PubMed  CAS  Google Scholar 

  215. Clemmons DR, Maile LA. Interaction between insulin-like growth factor-I receptor and alphaVbeta3 integrin linked signaling pathways: cellular responses to changes in multiple signaling inputs. Mol Endocrinol 2005;19:1–11.

    PubMed  CAS  Google Scholar 

  216. Jerome L, Alami N, Belanger S, et al. Recombinant human insulin-like growth factor binding protein 3 inhibits growth of human epidermal growth factor receptor-2-overexpressing breast tumors and potentiates herceptin activity in vivo. Cancer Res 2006;66:7245–52.

    PubMed  CAS  Google Scholar 

  217. Alami N, Page V, Yu Q, et al. Recombinant human insulin-like growth factor-binding protein 3 inhibits tumor growth and targets the Akt pathway in lung and colon cancer models. Growth Horm IGF Res 2008;18:487–96.

    PubMed  CAS  Google Scholar 

  218. Liu B, Lee KW, Li H, et al. Combination therapy of insulin-like growth factor binding protein-3 and retinoid X receptor ligands synergize on prostate cancer cell apoptosis in vitro and in vivo. Clin Cancer Res 2005;11:4851–6.

    PubMed  CAS  Google Scholar 

  219. So AI, Levitt RJ, Eigl B, Fazli L, Muramaki M, Leung S, Cheang MC, Nielsen TO, Gleave M, Pollak M. Insulin-like growth factor binding protein-2 is a novel therapeutic target associated with breast cancer. Clin Cancer Res 2008;14(21):6944–54.

    PubMed  CAS  Google Scholar 

  220. Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 2004;22:2954–63.

    PubMed  CAS  Google Scholar 

  221. Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J 1998;333 (Pt 3):471–90.

    PubMed  CAS  Google Scholar 

  222. Persad S, Attwell S, Gray V, et al. Inhibition of integrin-linked kinase (ILK) suppresses activation of protein kinase B/Akt and induces cell cycle arrest and apoptosis of PTEN-mutant prostate cancer cells. Proc Natl Acad Sci USA 2000;97:3207–12.

    PubMed  CAS  Google Scholar 

  223. Muller M, Rink K, Krause H, Miller K. PTEN/MMAC1 mutations in prostate cancer. Prostate Cancer Prostatic Dis 2000;3:S32.

    PubMed  Google Scholar 

  224. Trotman LC, Niki M, Dotan ZA, et al. Pten dose dictates cancer progression in the prostate. PLoS Biol 2003;1:E59.

    PubMed  Google Scholar 

  225. Yoshimoto M, Joshua AM, Cunha IW, et al. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol 2008.

    Google Scholar 

  226. McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 1999;59:4291–6.

    PubMed  CAS  Google Scholar 

  227. Grunwald V, DeGraffenried L, Russel D, Friedrichs WE, Ray RB, Hidalgo M. Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res 2002;62:6141–5.

    PubMed  CAS  Google Scholar 

  228. Giri D, Ittmann M. Inactivation of the PTEN tumor suppressor gene is associated with increased angiogenesis in clinically localized prostate carcinoma. Hum Pathol 1999;30:419–24.

    PubMed  CAS  Google Scholar 

  229. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002;2:489–501.

    PubMed  CAS  Google Scholar 

  230. Culig Z, Klocker H, Bartsch G, Hobisch A. Androgen receptor mutations in carcinoma of the prostate: significance for endocrine therapy. Am J Pharmacogenomics 2001;1:241–9.

    PubMed  CAS  Google Scholar 

  231. Wang S, Gao J, Lei Q, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003;4:209–21.

    PubMed  CAS  Google Scholar 

  232. Zhao H, Dupont J, Yakar S, Karas M, LeRoith D. PTEN inhibits cell proliferation and induces apoptosis by downregulating cell surface IGF-IR expression in prostate cancer cells. Oncogene 2004;23:786–94.

    PubMed  CAS  Google Scholar 

  233. Davies MA, Kim SJ, Parikh NU, Dong Z, Bucana CD, Gallick GE. Adenoviral-mediated expression of MMAC/PTEN inhibits proliferation and metastasis of human prostate cancer cells. Clin Cancer Res 2002;8:1904–14.

    PubMed  CAS  Google Scholar 

  234. Bertram J, Peacock JW, Tan C, et al. Inhibition of the phosphatidylinositol 3’-kinase pathway promotes autocrine Fas-induced death of phosphatase and tensin homologue-deficient prostate cancer cells. Cancer Res 2006;66:4781–8.

    PubMed  CAS  Google Scholar 

  235. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005;9:59–71.

    PubMed  CAS  Google Scholar 

  236. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91:231–41.

    PubMed  CAS  Google Scholar 

  237. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998;282:1318–21.

    PubMed  CAS  Google Scholar 

  238. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–68.

    PubMed  CAS  Google Scholar 

  239. Kops GJ, Burgering BM. Forkhead transcription factors are targets of signalling by the proto-oncogene PKB (C-AKT). J Anat 2000;197 Pt 4:571–4.

    PubMed  CAS  Google Scholar 

  240. Mitsiades CS, Mitsiades N, Poulaki V, et al. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 2002;21:5673–83.

    PubMed  CAS  Google Scholar 

  241. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005;307:1098–101.

    PubMed  CAS  Google Scholar 

  242. Lee JT, Steelman LS, Chappell WH, McCubrey JA. Akt inactivates ERK causing decreased response to chemotherapeutic drugs in advanced CaP cells. Cell Cycle 2008;7:631–6.

    PubMed  CAS  Google Scholar 

  243. Priulla M, Calastretti A, Bruno P, et al. Preferential chemosensitization of PTEN-mutated prostate cells by silencing the Akt kinase. Prostate 2007;67:782–9.

    PubMed  CAS  Google Scholar 

  244. Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004;23:3151–71.

    PubMed  CAS  Google Scholar 

  245. Martin KA, Blenis J. Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv Cancer Res 2002;86:1–39.

    PubMed  CAS  Google Scholar 

  246. Majumder PK, Febbo PG, Bikoff R, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 2004;10:594–601.

    PubMed  CAS  Google Scholar 

  247. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 1998;273:14484–94.

    PubMed  CAS  Google Scholar 

  248. Mita MM, Mita A, Rowinsky EK. Mammalian target of rapamycin: a new molecular target for breast cancer. Clin Breast Cancer 2003;4:126–37.

    PubMed  CAS  Google Scholar 

  249. Battegay EJ. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J Mol Med 1995;73:333–46.

    PubMed  CAS  Google Scholar 

  250. Aragon-Ching JB, Dahut WL.The role of angiogenesis inhibitors in prostate cancer. Cancer J 2008;14: 20–5.

    PubMed  CAS  Google Scholar 

  251. Cao Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal 2009;2(59): re1.

    PubMed  Google Scholar 

  252. Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med 2005;9:267–85.

    PubMed  CAS  Google Scholar 

  253. George DJ, Halabi S, Shepard TF, Vogelzang NJ, Hayes DF, Small EJ, Kantoff PW. Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res 2001;7:1932–6.

    PubMed  CAS  Google Scholar 

  254. Di Lorenzo G, Figg WD, Fossa SD, Mirone V, Autorino R, Longo N, Imbimbo C, Perdona S, Giordano A, Giuliano M, Labianca R, De Placido S. Combination of bevacizumab and docetaxel in docetaxel-pretreated hormone-refractory prostate cancer: a phase 2 study. Eur Urol 2008;54:1089–94.

    PubMed  Google Scholar 

  255. George D. Platelet-derived growth factor receptors: a therapeutic target in solid tumors. Semin Oncol 2001;28:27–33.

    PubMed  CAS  Google Scholar 

  256. Mathew P, Thall PF, Jones D, Perez C, Bucana C, Troncoso P, Kim SJ, Fidler IJ, Logothetis C. Platelet-derived growth factor receptor inhibitor imatinib mesylate and docetaxel: a modular phase I trial in androgen-independent prostate cancer. J Clin Oncol 2004;22:3323–9.

    PubMed  CAS  Google Scholar 

  257. Grandinetti CA, Goldspiel BR. Sorafenib and sunitinib: novel targeted therapies for renal cell cancer. Pharmacotherapy 2007;27:1125–44.

    PubMed  CAS  Google Scholar 

  258. Chi KN, Ellard SL, Hotte SJ, Czaykowski P, Moore M, Ruether JD, Schell AJ, Taylor S, Hansen C, Gauthier I, Walsh W, Seymour L. A phase II study of sorafenib in patients with chemo-naive castration-resistant prostate cancer. Ann Oncol 2008;19:746–51.

    PubMed  CAS  Google Scholar 

  259. Dahut WL, Scripture C, Posadas E, Jain L, Gulley JL, Arlen PM, Wright JJ, Yu Y, Cao L, Steinberg SM, Aragon-Ching JB, Venitz J, Jones E, Chen CC, Figg WD (2008) A phase II clinical trial of sorafenib in androgen-independent prostate cancer. Clin Cancer Res 2008;14:209–14.

    PubMed  CAS  Google Scholar 

  260. Steinbild S, Mross K, Frost A, Morant R, Gillessen S, Dittrich C, Strumberg D, Hochhaus A, Hanauske AR, Edler L, Burkholder I, Scheulen M. A clinical phase II study with sorafenib in patients with progressive hormone-refractory prostate cancer: a study of the CESAR Central European Society for Anticancer Drug Research-EWIV. Br J Cancer 2007;97:1480–5.

    PubMed  CAS  Google Scholar 

  261. Mantovani A. Cancer: Inflaming metastasis. Nature 2009;457:36–7.

    PubMed  CAS  Google Scholar 

  262. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, Luo JL, Karin M. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 2009;457:102–6.

    PubMed  CAS  Google Scholar 

  263. Giannitsas K, Konstantinopoulos A, Perimenis P. Non-steroidal anti-inflammatory drugs in the treatment of genitourinary malignancies: focus on clinical data. Expert Opin Investig Drugs 2007;16:1841–9.

    PubMed  CAS  Google Scholar 

  264. Rayet B, Gelinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999;18:6938–47.

    PubMed  CAS  Google Scholar 

  265. McDonnell TJ, Chari NS, Cho-Vega JH, Troncoso P, Wang X, Bueso-Ramos CE, Coombes K, Brisbay S, Lopez R, Prendergast G, Logothetis C, Do KA. Biomarker expression patterns that correlate with high grade features in treatment naive, organ-confined prostate cancer. BMC Med Genomics 2008;1:1.

    PubMed  Google Scholar 

  266. Savli H, Szendroi A, Romics I, Nagy B. Gene network and canonical pathway analysis in prostate cancer: a microarray study. Exp Mol Med 2008;40:176–85.

    PubMed  CAS  Google Scholar 

  267. Abdulghani J, Gu L, Dagvadorj A, Lutz J, Leiby B, Bonuccelli G, Lisanti MP, Zellweger T, Alanen K, Mirtti T, Visakorpi T, Bubendorf L, Nevalainen MT. Stat3 promotes metastatic progression of prostate cancer. Am J Pathol 2008;172:1717–28.

    PubMed  CAS  Google Scholar 

  268. Molckovsky A, Siu LL. First-in-class, first-in-human phase I results of targeted agents: Highlights of the 2008 American Society of Clinical Oncology meeting. J Hematol Oncol 2008;1:20.

    PubMed  Google Scholar 

  269. Bhasin D, Cisek K, Pandharkar T, Regan N, Li C, Pandit B, Lin J, Li PK. Design, synthesis, and studies of small molecule STAT3 inhibitors. Bioorg Med Chem Lett 2008;18:391–5.

    PubMed  CAS  Google Scholar 

  270. Chinni SR, Yamamoto H, Dong Z, Sabbota A, Bonfil RD, Cher ML. CXCL12/CXCR4 transactivates HER2 in lipid rafts of prostate cancer cells and promotes growth of metastatic deposits in bone. Mol Cancer Res 2008;6:446–57.

    PubMed  CAS  Google Scholar 

  271. Kryczek I, Wei S, Keller E, Liu R, Zou W. Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol 2007;292:C987–95.

    PubMed  CAS  Google Scholar 

  272. Chinni SR, Sivalogan S, Dong Z, Filho JC, Deng X, Bonfil RD, Cher ML. CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12. Prostate 2006;66:32–48.

    PubMed  CAS  Google Scholar 

  273. Murakami T, Maki W, Cardones AR, Fang H, Tun Kyi A, Nestle FO, Hwang ST. Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res 2002;62:7328–34.

    PubMed  CAS  Google Scholar 

  274. Kajiyama H, Shibata K, Terauchi M, Ino K, Nawa A, Kikkawa F. Involvement of SDF-1alpha/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. Int J Cancer 2008;122:91–9.

    PubMed  CAS  Google Scholar 

  275. Sun YX, Schneider A, Jung Y, Wang J, Dai J, Cook K, Osman NI, Koh-Paige AJ, Shim H, Pienta KJ, Keller ET, McCauley LK, Taichman RS. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 2005;20:318–29.

    PubMed  CAS  Google Scholar 

  276. Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 2004;14:171–9.

    PubMed  CAS  Google Scholar 

  277. Wong D, Korz W. Translating an Antagonist of Chemokine Receptor CXCR4: from bench to bedside. Clin Cancer Res 2008;14:7975–80.

    PubMed  CAS  Google Scholar 

  278. Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004;431:707–12.

    PubMed  CAS  Google Scholar 

  279. Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A, Rosenthal A, Epstein EH, Jr., de Sauvage FJ. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 1998;391:90–2.

    PubMed  CAS  Google Scholar 

  280. Narita S, So A, Ettinger S, Hayashi N, Muramaki M, Fazli L, Kim Y, Gleave ME. GLI2 knockdown using an antisense oligonucleotide induces apoptosis and chemosensitizes cells to paclitaxel in androgen-independent prostate cancer. Clin Cancer Res 2008;14:5769–77.

    PubMed  CAS  Google Scholar 

  281. Brown JM, Corey E, Lee ZD, True LD, Yun TJ, Tondravi M, Vessella RL. Osteoprotegerin and rank ligand expression in prostate cancer. Urology 2001;57:611–6.

    PubMed  CAS  Google Scholar 

  282. Chen G, Sircar K, Aprikian A, Potti A, Goltzman D, Rabbani SA. Expression of RANKL/RANK/OPG in primary and metastatic human prostate cancer as markers of disease stage and functional regulation. Cancer 2006;107:289–98.

    PubMed  CAS  Google Scholar 

  283. Fili S, Karalaki M, Schaller B. Mechanism of bone metastasis: The role of osteoprotegerin and of the host-tissue microenvironment-related survival factors. Cancer Lett 2009;283(1):10–19.

    PubMed  CAS  Google Scholar 

  284. Ando K, Mori K, Redini F, Heymann D. RANKL/RANK/OPG: key therapeutic target in bone oncology. Curr Drug Discov Technol 2008;5:263–8.

    PubMed  CAS  Google Scholar 

  285. Armstrong AP, Miller RE, Jones JC, Zhang J, Keller ET, Dougall WC. RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate 2008;68:92–104.

    PubMed  CAS  Google Scholar 

  286. Miller RE, Roudier M, Jones J, Armstrong A, Canon J, Dougall WC. RANK ligand inhibition plus docetaxel improves survival and reduces tumor burden in a murine model of prostate cancer bone metastasis. Mol Cancer Ther 2008;7: 2160–9.

    PubMed  CAS  Google Scholar 

  287. Saad F, Markus R, Goessl C. Targeting the receptor activator of nuclear factor-kappaB (RANK) ligand in prostate cancer bone metastases. BJU Int 2008;101:1071–5.

    PubMed  CAS  Google Scholar 

  288. Fizazi K, Lipton A, Mariette X, Body JJ, Rahim Y, Gralow JR, Gao G, Wu L, Sohn W, Jun S. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol 2009;27(10):1564–1571.

    PubMed  CAS  Google Scholar 

  289. Carducci MA, Jimeno A. Targeting bone metastasis in prostate cancer with endothelin receptor antagonists. Clin Cancer Res 2006;12:6296s–6300s.

    PubMed  CAS  Google Scholar 

  290. Nelson JB, Hedican SP, George DJ, Reddi AH, Piantadosi S, Eisenberger MA, Simons JW. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med 1995;1:944–9.

    PubMed  CAS  Google Scholar 

  291. Warren R, Liu G. ZD4054: a specific endothelin A receptor antagonist with promising activity in metastatic castration-resistant prostate cancer. Expert Opin Investig Drugs 2008;17:1237–45.

    PubMed  CAS  Google Scholar 

  292. Knudsen BS, Gmyrek GA, Inra J, Scherr DS, Vaughan ED, Nanus DM, Kattan MW, Gerald WL, Vande Woude GF. High expression of the Met receptor in prostate cancer metastasis to bone. Urology 2002;60:1113–7.

    PubMed  Google Scholar 

  293. Pisters LL, Troncoso P, Zhau HE, Li W, von Eschenbach AC, Chung LW. c-met proto-oncogene expression in benign and malignant human prostate tissues. J Urol 1995;154:293–8.

    PubMed  CAS  Google Scholar 

  294. Toschi L, Janne PA. Single-agent and combination therapeutic strategies to inhibit hepatocyte growth factor/MET signaling in cancer. Clin Cancer Res 2008;14:5941–6.

    PubMed  CAS  Google Scholar 

  295. Park SI, Zhang J, Phillips KA, Araujo JC, Najjar AM, Volgin AY, Gelovani JG, Kim SJ, Wang Z, Gallick GE. Targeting SRC family kinases inhibits growth and lymph node metastases of prostate cancer in an orthotopic nude mouse model. Cancer Res 2008;68:3323–33.

    PubMed  CAS  Google Scholar 

  296. Raff AB, Gray A, Kast WM. Prostate stem cell antigen: A prospective therapeutic and diagnostic target. Cancer Lett 2008;277(2):123–32.

    Google Scholar 

  297. Saffran DC, Raitano AB, Hubert RS, Witte ON, Reiter RE, Jakobovits A Anti-PSCA mAbs inhibit tumor growth and metastasis formation and prolong the survival of mice bearing human prostate cancer xenografts. Proc Natl Acad Sci USA 2001;98:2658–63.

    PubMed  CAS  Google Scholar 

  298. Mehta PB, Jenkins BL, McCarthy L, Thilak L, Robson CN, Neal DE, Leung HY. MEK5 overexpression is associated with metastatic prostate cancer, and stimulates proliferation, MMP-9 expression and invasion. Oncogene 2003;22:1381–9.

    PubMed  CAS  Google Scholar 

  299. Strock CJ, Park JI, Nakakura EK, Bova GS, Isaacs JT, Ball DW, Nelkin BD. Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells. Cancer Res 2006;66:7509–15.

    PubMed  CAS  Google Scholar 

  300. Lin D, Watahiki A, Bayani J, Zhang F, Liu L, Ling V, Sadar MD, English J, Fazli L, So A, Gout PW, Gleave M, Squire JA, Wang YZ. ASAP1, a gene at 8q24, is associated with prostate cancer metastasis. Cancer Res 2008;68:4352–9.

    PubMed  CAS  Google Scholar 

  301. Forootan SS, Wong YC, Dodson A, Wang X, Lin K, Smith PH, Foster CS, Ke Y. Increased Id-1 expression is significantly associated with poor survival of patients with prostate cancer. Hum Pathol 2007;38:1321–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin E. Gleave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gleave, M.E., Cox, M.E., Wang, Y. (2010). Cell Biology of Prostate Cancer and Molecular Targets. In: Figg, W., Chau, C., Small, E. (eds) Drug Management of Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-829-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-829-4_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60327-831-7

  • Online ISBN: 978-1-60327-829-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics