Skip to main content

The Inflammatory Milieu

Cells and Cytokines

  • Chapter
  • First Online:
The Inflammatory Myopathies

Abstract

Idiopathic inflammatory myopathies (IIMs) are characterized by mononuclear inflammatory cell infiltrates in skeletal muscle with associated weakness and fatigue, although often the severity of inflammation does not correlate with clinical severity. Inflammation of other organs such as skin, lung, and gastrointestinal tract may also occur. IIMs are classified based on clinical, immunologic, and histopathologic features and include, but are not limited to, adult and juvenile dermatomyositis (DM and JDM, respectively), polymyositis (PM), and sporadic inclusion body myositis (IBM). Mononuclear cells are typically the major component of muscle inflammatory infiltrates in IIMs and include T lymphocytes (T cells), macrophages, dendritic cells (DCs), and B lymphocytes (B cells). Patterns of IIM inflammatory infiltrates include diffuse, endomysial, and perivascular. Endomysial infiltrates are composed primarily of T cells, with a high prevalence of CD8+ T cells, and to a lesser extent CD4+ T cells, DCs, and macrophages. These infiltrates typically surround muscle fibers that lack features of degeneration or necrosis. Perivascular infiltrates are composed mainly of CD4+ T cells and include macrophages, DCs, and B cells. The importance of B cells is increasingly becoming appreciated, and their involvement is likely to be critical in pathologic processes, especially related to autoantibody production and formation of ectopic lymphoid aggregates. Histopathologic features and phenotypic variability of inflammatory infiltrates, localization of infiltrates, presence of rimmed vacuoles, and involvement of microvasculature all contribute to defining IIM subsets. While we do not yet fully understand the pathological processes involved in IIMs, we are gaining information and clarity at a rapid pace. With advances in immunological detection, gene expression, protein biomarkers, and imaging of immune responses, our understanding of the molecules, pathways, and cells involved in pathogenesis continues to improve. We have only just started to understand the orchestrated life of T cells, B cells, macrophages, and DCs in myositis; many questions remain unanswered on how a system that is perturbed on a daily basis involves a large-scale but localized abnormal immune reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalakas MC, Hohlfeld R. Polymyositis and dermatomyositis. Lancet 2003;362(9388):971–82.

    PubMed  CAS  Google Scholar 

  2. Dalakas MC, Sivakumar K. The immunopathologic and inflammatory differences between dermatomyositis, polymyositis and sporadic inclusion body myositis. Curr Opin Neurol 1996;9(3):235–9.

    PubMed  CAS  Google Scholar 

  3. López de Padilla CM, Vallejo AN, Lacomis D, McNallan KT, Reed AM. Extra-nodal lymphoid microstructures in inflamed muscle and disease severity of new-onset juvenile dermatomyositis. Arthritis Rheum 2009; 60(4):1160–72.

    Google Scholar 

  4. De Bleecker JL, Engel AG, Butcher EC. Peripheral lymphoid tissue-like adhesion molecule expression in nodular infiltrates in inflammatory myopathies. Neuromuscul Disord 1996;6(4):255–60.

    PubMed  CAS  Google Scholar 

  5. Nagaraju K, Raben N, Loeffler L, et al Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc Natl Acad Sci U S A 2000;97(16):9209–14.

    PubMed  CAS  Google Scholar 

  6. Nagaraju K, Casciola-Rosen L, Lundberg I, et al Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 2005;52(6):1824–35.

    PubMed  CAS  Google Scholar 

  7. Choi YC, Dalakas MC. Expression of matrix metalloproteinases in the muscle of patients with inflammatory myopathies. Neurology 2000;54(1):65–71.

    PubMed  CAS  Google Scholar 

  8. Schoser BG, Blottner D, Stuerenburg HJ. Matrix metalloproteinases in inflammatory myopathies: enhanced immunoreactivity near atrophic myofibers. Acta Neurol Scand 2002;105(4):309–13.

    PubMed  CAS  Google Scholar 

  9. Kieseier BC, Schneider C, Clements JM, et al Expression of specific matrix metalloproteinases in inflammatory myopathies. Brain 2001;124(Pt 2):341–51.

    PubMed  CAS  Google Scholar 

  10. Hurnaus S, Mueller-Felber W, Pongratz D, Schoser BG. Serum levels of matrix metalloproteinases-2 and -9 and their tissue inhibitors in inflammatory neuromuscular disorders. Eur Neurol 2006;55(4):204–8.

    PubMed  CAS  Google Scholar 

  11. Thorsby E. Invited anniversary review: HLA associated diseases. Hum Immunol 1997;53(1):1–11.

    PubMed  CAS  Google Scholar 

  12. Tesmer LA, Lundy SK, Sarkar S, Fox DA. Th17 cells in human disease. Immunol Rev 2008;223:87–113.

    PubMed  CAS  Google Scholar 

  13. Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of T(H)17 cells. Nature 2008;453(7198):1051–7.

    PubMed  CAS  Google Scholar 

  14. Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 2008;8(5):337–48.

    PubMed  CAS  Google Scholar 

  15. Iannone F, Cauli A, Yanni G, et al T-lymphocyte immunophenotyping in polymyositis and dermatomyositis. Br J Rheumatol 1996;35(9):839–45.

    PubMed  CAS  Google Scholar 

  16. Engel AG, Arahata K. Mononuclear cells in myopathies: quantitation of functionally distinct subsets, recognition of antigen-specific cell-mediated cytotoxicity in some diseases, and implications for the pathogenesis of the different inflammatory myopathies. Hum Pathol 1986;17(7):704–21.

    PubMed  CAS  Google Scholar 

  17. Arahata K, Engel AG. Monoclonal antibody analysis of mononuclear cells in myopathies. I: quantitation of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells. Ann Neurol 1984;16(2):193–208.

    PubMed  CAS  Google Scholar 

  18. Arahata K, Engel AG. Monoclonal antibody analysis of mononuclear cells in myopathies. V: identification and quantitation of T8+ cytotoxic and T8+ suppressor cells. Ann Neurol 1988;23(5):493–9.

    PubMed  CAS  Google Scholar 

  19. Arahata K, Engel AG. Monoclonal antibody analysis of mononuclear cells in myopathies. IV: cell-mediated cytotoxicity and muscle fiber necrosis. Ann Neurol 1988;23(2):168–73.

    PubMed  CAS  Google Scholar 

  20. Emslie-Smith AM, Arahata K, Engel AG. Major histocompatibility complex class I antigen expression, immunolocalization of interferon subtypes, and T cell-mediated cytotoxicity in myopathies. Hum Pathol 1989;20(3):224–31.

    PubMed  CAS  Google Scholar 

  21. Hohlfeld R, Goebels N, Engel AG. Cellular mechanisms in inflammatory myopathies. Baillieres Clin Neurol 1993;2(3):617–35.

    PubMed  CAS  Google Scholar 

  22. Orimo S, Koga R, Goto K, et al Immunohistochemical analysis of perforin and granzyme A in inflammatory myopathies. Neuromuscul Disord 1994;4(3):219–26.

    PubMed  CAS  Google Scholar 

  23. Goebels N, Michaelis D, Engelhardt M, et al Differential expression of perforin in muscle-infiltrating T cells in polymyositis and dermatomyositis. J Clin Invest 1996;97(12):2905–10.

    PubMed  CAS  Google Scholar 

  24. Ikezoe K, Ohshima S, Osoegawa M, et al Expression of granulysin in polymyositis and inclusion-body myositis. J Neurol Neurosurg Psychiatry 2006;77(10):1187–90.

    PubMed  CAS  Google Scholar 

  25. Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol 2005;57(5):664–78.

    PubMed  CAS  Google Scholar 

  26. Lopez de Padilla CM, Vallejo AN, McNallan KT, et al Plasmacytoid dendritic cells in inflamed muscle of patients with juvenile dermatomyositis. Arthritis Rheum 2007;56(5):1658–68.

    PubMed  Google Scholar 

  27. Vallejo AN. CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 2005;205:158–69.

    PubMed  CAS  Google Scholar 

  28. Mitsuo A, Morimoto S, Nakiri Y, et al Decreased CD161+ CD8+ T cells in the peripheral blood of patients suffering from rheumatic diseases. Rheumatology (Oxford) 2006;45(12):1477–84.

    CAS  Google Scholar 

  29. Nagaraju K, Raben N, Villalba ML, et al Costimulatory markers in muscle of patients with idiopathic inflammatory myopathies and in cultured muscle cells. Clin Immunol 1999;92(2):161–9.

    PubMed  CAS  Google Scholar 

  30. Murata K, Dalakas MC. Expression of the costimulatory molecule BB-1, the ligands CTLA-4 and CD28, and their mRNA in inflammatory myopathies. Am J Pathol 1999;155(2):453–60.

    PubMed  CAS  Google Scholar 

  31. Grundtman C, Malmstrom V, Lundberg IE. Immune mechanisms in the pathogenesis of idiopathic inflammatory myopathies. Arthritis Res Ther 2007;9(2):208.

    PubMed  Google Scholar 

  32. Chevrel G, Page G, Granet C, Streichenberger N, Varennes A, Miossec P. Interleukin-17 increases the effects of IL-1 beta on muscle cells: arguments for the role of T cells in the pathogenesis of myositis. J Neuroimmunol 2003;137(1-2):125–33.

    PubMed  CAS  Google Scholar 

  33. Page G, Sattler A, Kersten S, Thiel A, Radbruch A, Miossec P. Plasma cell-like morphology of Th1-cytokine-producing cells associated with the loss of CD3 expression. Am J Pathol 2004;164(2):409–17.

    PubMed  CAS  Google Scholar 

  34. Bilgic HYS, McNallan KT, Wilson JC, et al. IL-6 and IFN-regulated genes and chemokines as biomarkers of disease activity in dermatomyositis. Arthritis Rheum 2008;(accepted for publication).

    Google Scholar 

  35. de Bleecker JL, Engel AG. Immunocytochemical study of CD45 T cell isoforms in inflammatory myopathies. Am J Pathol 1995;146(5):1178–87.

    PubMed  CAS  Google Scholar 

  36. O’Hanlon TP, Dalakas MC, Plotz PH, Miller FW. The alpha beta T-cell receptor repertoire in inclusion body myositis: diverse patterns of gene expression by muscle-infiltrating lymphocytes. J Autoimmun 1994;7(3):321–33.

    PubMed  Google Scholar 

  37. O’Hanlon TP, Dalakas MC, Plotz PH, Miller FW. Predominant TCR-alpha beta variable and joining gene expression by muscle-infiltrating lymphocytes in the idiopathic inflammatory myopathies. J Immunol 1994;152(5):2569–76.

    PubMed  Google Scholar 

  38. O’Hanlon TP, Dalakas MC, Plotz PH, Miller FW. The alpha beta T-cell receptor repertoire in idiopathic inflammatory myopathies: distinct patterns of gene expression by muscle-infiltrating lymphocytes in different clinical and serologic groups. Ann N Y Acad Sci 1995;756:410–3.

    PubMed  Google Scholar 

  39. O’Hanlon TP, Messersmith WA, Dalakas MC, Plotz PH, Miller FW. Gamma delta T cell receptor gene expression by muscle-infiltrating lymphocytes in the idiopathic inflammatory myopathies. Clin Exp Immunol 1995;100(3):519–28.

    PubMed  Google Scholar 

  40. Mizuno K, Yachie A, Nagaoki S, et al Oligoclonal expansion of circulating and tissue-infiltrating CD8+ T cells with killer/effector phenotypes in juvenile dermatomyositis syndrome. Clin Exp Immunol 2004;137(1):187–94.

    PubMed  CAS  Google Scholar 

  41. Bradshaw EM, Orihuela A, McArdel SL, et al A local antigen-driven humoral response is present in the inflammatory myopathies. J Immunol 2007;178(1):547–56.

    PubMed  CAS  Google Scholar 

  42. Englund P, Wahlstrom J, Fathi M, et al Restricted T cell receptor BV gene usage in the lungs and muscles of patients with idiopathic inflammatory myopathies. Arthritis Rheum 2007;56(1):372–83.

    PubMed  Google Scholar 

  43. Reed AM, Geyer SM, Maurer M, McNallan K, Pachman L, Wettstein P. T cell receptor repertoire restriction in active juvenile dermatomyositis. Ann Rheumatol 2008.

    Google Scholar 

  44. Benveniste O, Cherin P, Maisonobe T, et al Severe perturbations of the blood T cell repertoire in polymyositis, but not dermatomyositis patients. J Immunol 2001;167(6):3521–9.

    PubMed  CAS  Google Scholar 

  45. Benveniste O, Herson S, Salomon B, et al Long-term persistence of clonally expanded T cells in patients with polymyositis. Ann Neurol 2004;56(6):867–72.

    PubMed  CAS  Google Scholar 

  46. Hofbauer M, Wiesener S, Babbe H, et al Clonal tracking of autoaggressive T cells in polymyositis by combining laser microdissection, single-cell PCR, and CDR3-spectratype analysis. Proc Natl Acad Sci U S A 2003;100(7):4090–5.

    PubMed  CAS  Google Scholar 

  47. Page G, Chevrel G, Miossec P. Anatomic localization of immature and mature dendritic cell subsets in dermatomyositis and polymyositis: interaction with chemokines and Th1 cytokine-producing cells. Arthritis Rheum 2004;50(1):199–208.

    PubMed  CAS  Google Scholar 

  48. Thomas R, Lipsky PE. Dendritic cells: origin and differentiation. Stem Cells 1996;14(2):196–206.

    PubMed  CAS  Google Scholar 

  49. Ardavin C. Origin, precursors and differentiation of mouse dendritic cells. Nat Rev Immunol 2003;3(7):582–90.

    PubMed  CAS  Google Scholar 

  50. Reid SD, Penna G, Adorini L. The control of T cell responses by dendritic cell subsets. Curr Opin Immunol 2000;12(1):114–21.

    PubMed  CAS  Google Scholar 

  51. Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nat Immunol 2004;5(12):1219–26.

    PubMed  CAS  Google Scholar 

  52. Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003;19(2):225–34.

    PubMed  CAS  Google Scholar 

  53. Baechler EC, Batliwalla FM, Reed AM, et al Gene expression profiling in human autoimmunity. Immunol Rev 2006;210:120–37.

    PubMed  CAS  Google Scholar 

  54. O’Connor KA, Abbott KA, Sabin B, Kuroda M, Pachman LM. MxA gene expression in juvenile dermatomyositis peripheral blood mononuclear cells: association with muscle involvement. Clin Immunol 2006;120(3):319–25.

    PubMed  Google Scholar 

  55. Raju R, Dalakas MC. Gene expression profile in the muscles of patients with inflammatory myopathies: effect of therapy with IVIg and biological validation of clinically relevant genes. Brain 2005;128(Pt 8):1887–96.

    PubMed  Google Scholar 

  56. Greenberg SA, Bradshaw EM, Pinkus JL, et al. Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology 2005;65(11):1782–7.

    PubMed  CAS  Google Scholar 

  57. Tezak Z, Hoffman EP, Lutz JL, et al Gene expression profiling in DQA1*0501+ children with untreated dermatomyositis: a novel model of pathogenesis. J Immunol 2002;168(8):4154–63.

    PubMed  CAS  Google Scholar 

  58. Baechler EC, Bauer JW, Slattery CA, et al An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol Med 2007;13(1-2):59–68.

    PubMed  CAS  Google Scholar 

  59. Walsh RJ, Kong SW, Yao Y, et al Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum 2007;56(11):3784–92.

    PubMed  CAS  Google Scholar 

  60. Greenberg SA, Pinkus GS, Amato AA, Pinkus JL. Myeloid dendritic cells in inclusion-body myositis and polymyositis. Muscle Nerve 2007;35(1):17–23.

    PubMed  CAS  Google Scholar 

  61. Marsland BJ, Battig P, Bauer M, et al CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity 2005;22(4):493–505.

    Google Scholar 

  62. Sugiura T, Kawaguchi Y, Harigai M, et al Increased CD40 expression on muscle cells of polymyositis and dermatomyositis: role of CD40-CD40 ligand interaction in IL-6, IL-8, IL-15, and monocyte chemoattractant protein-1 production. J Immunol 2000;164(12):6593–600.

    PubMed  CAS  Google Scholar 

  63. Kabashima K, Sugita K, Shiraishi N, Tamamura H, Fujii N, Tokura Y. CXCR4 engagement promotes dendritic cell survival and maturation. Biochem Biophys Res Commun 2007;361(4):1012–6.

    PubMed  CAS  Google Scholar 

  64. McNiff JM, Kaplan DH. Plasmacytoid dendritic cells are present in cutaneous dermatomyositis lesions in a pattern distinct from lupus erythematosus. J Cutan Pathol 2008;35(5):452–6.

    PubMed  Google Scholar 

  65. Paquette RL, Hsu NC, Kiertscher SM, et al Interferon-alpha and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J Leukoc Biol 1998;64(3):358–67.

    PubMed  CAS  Google Scholar 

  66. Marrack P, Kappler J, Mitchell T. Type I interferons keep activated T cells alive. J Exp Med 1999;189(3):521–30.

    PubMed  CAS  Google Scholar 

  67. Marrack P, Kappler J. The T cell and its receptor. Sci Am 1986;254(2):36–45.

    PubMed  CAS  Google Scholar 

  68. Ruuth K, Carlsson L, Hallberg B, Lundgren E. Interferon-alpha promotes survival of human primary B-lymphocytes via phosphatidylinositol 3-kinase. Biochem Biophys Res Commun 2001;284(3):583–6.

    PubMed  CAS  Google Scholar 

  69. Kadowaki N, Ho S, Antonenko S, et al Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 2001;194(6):863–69.

    PubMed  CAS  Google Scholar 

  70. Zhang X, Park CS, Yoon SO, et al BAFF supports human B cell differentiation in the lymphoid follicles through distinct receptors. Int Immunol 2005;17(6):779–88.

    PubMed  CAS  Google Scholar 

  71. Krystufkova O, Vallerskog T, Barbasso Helmers S, et al. Increased serum levels of B-cell activating factor (BAFF) in subsets of patients with idiopathic inflammatory myopathies. Ann Rheum Dis 2008;epub ahead of print.

    Google Scholar 

  72. McNallan K GE, Baechler EC, Peterson EJ, Osborn T, Crowson CS, Reed AM. ΔBAFF, a diagnostic tool in the early events of autoimmunity. Arthritis Rheum 2008;58:S442.

    Google Scholar 

  73. Greenberg SA, Bradshaw EM, Pinkus JL, Pinkus GS, Burlesm T, Dse B, Breyoli LS, O’Conner KC, Amato AA. Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology 2005; 65:1782–1787

    PubMed  CAS  Google Scholar 

  74. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004;25(12):677–86.

    PubMed  CAS  Google Scholar 

  75. Schulz-Schaeffer WJ, Bruck W, Puschel K. Macrophage subtyping in the determination of age of injection sites. Int J Legal Med 1996;109(1):29–33.

    PubMed  CAS  Google Scholar 

  76. O’Laughlin S, Braverman M, Smith-Jefferies M, Buckley P. Macrophages (histiocytes) in various reactive and inflammatory conditions express different antigenic phenotypes. Hum Pathol 1992;23(12):1410–8.

    PubMed  Google Scholar 

  77. Rostasy KM, Piepkorn M, Goebel HH, Menck S, Hanefeld F, Schulz-Schaeffer WJ. Monocyte/macrophage differentiation in dermatomyositis and polymyositis. Muscle Nerve 2004;30(2):225–30.

    PubMed  Google Scholar 

  78. Confalonieri P, Bernasconi P, Megna P, Galbiati S, Cornelio F, Mantegazza R. Increased expression of beta-chemokines in muscle of patients with inflammatory myopathies. J Neuropathol Exp Neurol 2000;59(2):164–9.

    PubMed  CAS  Google Scholar 

  79. De Bleecker JL, Meire VI, Declercq W, Van Aken EH. Immunolocalization of tumor necrosis factor-alpha and its receptors in inflammatory myopathies. Neuromuscul Disord 1999;9(4):239–46.

    PubMed  CAS  Google Scholar 

  80. Tucci M, Quatraro C, Dammacco F, Silvestris F. Increased IL-18 production by dendritic cells in active inflammatory myopathies. Ann NY Acad Sci 2007;1107:184–92.

    PubMed  CAS  Google Scholar 

  81. De Paepe B, Creus KK, De Bleecker JL. Chemokine profile of different inflammatory myopathies reflects humoral versus cytotoxic immune responses. Ann N Y Acad Sci 2007;1109:441–53.

    PubMed  CAS  Google Scholar 

  82. Civatte M, Bartoli C, Schleinitz N, Chetaille B, Pellissier JF, Figarella-Branger D. Expression of the beta chemokines CCL3, CCL4, CCL5 and their receptors in idiopathic inflammatory myopathies. Neuropathol Appl Neurobiol 2005;31(1):70–9.

    PubMed  CAS  Google Scholar 

  83. Sandberg JK, Fast NM, Palacios EH, et al Selective loss of innate CD4(+) V alpha 24 natural killer T cells in human immunodeficiency virus infection. J Virol 2002;76(15):7528–34.

    PubMed  CAS  Google Scholar 

  84. Nakamura T, Takahashi K, Fukazawa T, et al Relative contribution of CD2 and LFA-1 to murine T and natural killer cell functions. J Immunol 1990;145(11):3628–34.

    PubMed  CAS  Google Scholar 

  85. Kojo S, Adachi Y, Keino H, Taniguchi M, Sumida T. Dysfunction of T cell receptor AV24AJ18+ , BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum 2001;44(5):1127–38.

    PubMed  CAS  Google Scholar 

  86. Figarella-Branger D, Pellissier JF, Bianco N, Devictor B, Toga M. Inflammatory and non-inflammatory inclusion body myositis. Characterization of the mononuclear cells and expression of the immunoreactive class I major histocompatibility complex product. Acta Neuropathol 1990;79(5):528–36.

    PubMed  CAS  Google Scholar 

  87. O’Gorman MR, Bianchi L, Zaas D, Corrochano V, Pachman LM. Decreased levels of CD54 (ICAM-1)-positive lymphocytes in the peripheral blood in untreated patients with active juvenile dermatomyositis. Clin Diagn Lab Immunol 2000;7(4):693–7.

    PubMed  Google Scholar 

  88. McNallan K, Crowson C, Reed AM. Absence of killer Ig-like inhibitory receptor with the associated HLA ligand in juvenile dermatomyositis. Hum Immunol 2008;submitted.

    Google Scholar 

  89. Li CK, Varsani H, Holton JL, Gao B, Woo P, Wedderburn LR. MHC class I overexpression on muscles in early juvenile dermatomyositis. J Rheumatol 2004;31(3):605–9.

    PubMed  CAS  Google Scholar 

  90. van der Pas J, Hengstman GJ, ter Laak HJ, Borm GF, van Engelen BG. Diagnostic value of MHC class I staining in idiopathic inflammatory myopathies. J Neurol Neurosurg Ps 2004;75(1):136–9.

    CAS  Google Scholar 

  91. Nagaraju K. Role of major histocompatibility complex class I molecules in autoimmune myositis. Curr Opin Rheumatol 2005;17(6):725–30.

    PubMed  CAS  Google Scholar 

  92. Wiendl H, Mitsdoerffer M, Hofmeister V, et al The non-classical MHC molecule HLA-G protects human muscle cells from immune-mediated lysis: implications for myoblast transplantation and gene therapy. Brain 2003;126(Pt 1):176–85.

    PubMed  Google Scholar 

  93. Wiendl H, Mitsdoerffer M, Schneider D, et al Human muscle cells express a B7-related molecule, B7-H1, with strong negative immune regulatory potential: a novel mechanism of counterbalancing the immune attack in idiopathic inflammatory myopathies. FASEB J 2003;17(13):1892–4.

    PubMed  CAS  Google Scholar 

  94. Behrens L, Bender A, Johnson MA, Hohlfeld R. Cytotoxic mechanisms in inflammatory myopathies. Co-expression of Fas and protective Bcl-2 in muscle fibres and inflammatory cells. Brain 1997;120(Pt 6):929–38.

    PubMed  Google Scholar 

  95. Tews DS, Goebel HH. Cell death and oxidative damage in inflammatory myopathies. Clin Immunol Immunopathol 1998;87(3):240–7.

    PubMed  CAS  Google Scholar 

  96. Ulfgren AK, Grundtman C, Borg K, et al Down-regulation of the aberrant expression of the inflammation mediator high mobility group box chromosomal protein 1 in muscle tissue of patients with polymyositis and dermatomyositis treated with corticosteroids. Arthritis Rheum 2004;50(5):1586–94.

    PubMed  CAS  Google Scholar 

  97. Emslie-Smith AM, Engel AG. Microvascular changes in early and advanced dermatomyositis: a quantitative study. Ann Neurol 1990;27(4):343–56.

    PubMed  CAS  Google Scholar 

  98. Kissel JT, Mendell JR, Rammohan KW. Microvascular deposition of complement membrane attack complex in dermatomyositis. N Engl J Med 1986;314(6):329–34.

    PubMed  CAS  Google Scholar 

  99. Girard JP, Springer TA. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol Today 1995;16(9):449–57.

    PubMed  CAS  Google Scholar 

  100. Lundberg I, Kratz AK, Alexanderson H, Patarroyo M. Decreased expression of interleukin-1alpha, interleukin-1beta, and cell adhesion molecules in muscle tissue following corticosteroid treatment in patients with polymyositis and dermatomyositis. Arthritis Rheum 2000;43(2):336–48.

    PubMed  CAS  Google Scholar 

  101. Park JH, Vansant JP, Kumar NG, et al Dermatomyositis: correlative MR imaging and P-31 MR spectroscopy for quantitative characterization of inflammatory disease. Radiology 1990;177(2):473–9.

    PubMed  CAS  Google Scholar 

  102. Nagaraju K, Rider LG, Fan C, et al Endothelial cell activation and neovascularization are prominent in dermatomyositis. J Autoimmune Dis 2006;3:2.

    PubMed  Google Scholar 

  103. Sallum AM, Kiss MH, Silva CA, et al Difference in adhesion molecule expression (ICAM-1 and VCAM-1) in juvenile and adult dermatomyositis, polymyositis and inclusion body myositis. Autoimmun Rev 2006;5(2):93–100.

    PubMed  CAS  Google Scholar 

  104. Wiendl H, Mitsdoerffer M, Schneider D, et al Muscle fibres and cultured muscle cells express the B7.1/2-related inducible co-stimulatory molecule, ICOSL: implications for the pathogenesis of inflammatory myopathies. Brain 2003;126(Pt 5):1026–35.

    PubMed  Google Scholar 

  105. Hausmann G, Mascaro JM, Jr., Herrero C, Cid MC, Palou J, Mascaro JM. Cell adhesion molecule expression in cutaneous lesions of dermatomyositis. Acta Derm Venereol 1996;76(3):222–5.

    PubMed  CAS  Google Scholar 

  106. Casciola-Rosen L, Nagaraju K, Plotz P, et al Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J Exp Med 2005;201(4):591–601.

    PubMed  CAS  Google Scholar 

  107. Theofilopoulos AN, Baccala R, Beutler B, Kono DH. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 2005;23:307–36.

    PubMed  CAS  Google Scholar 

  108. Griffin TA, Reed AM. Pathogenesis of myositis in children. Curr Opin Rheumatol 2007;19(5):487–91.

    PubMed  CAS  Google Scholar 

  109. Nestle FO, Conrad C, Tun-Kyi A, et al Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med 2005;202(1):135–43.

    PubMed  CAS  Google Scholar 

  110. Eloranta ML, Barbasso Helmers S, Ulfgren AK, Ronnblom L, Alm GV, Lundberg IE. A possible mechanism for endogenous activation of the type I interferon system in myositis patients with anti-Jo-1 or anti-Ro 52/anti-Ro 60 autoantibodies. Arthritis Rheum 2007;56(9):3112–24.

    PubMed  CAS  Google Scholar 

  111. Siegal FP, Kadowaki N, Shodell M, et al The nature of the principal type 1 interferon-producing cells in human blood. Science 1999;284(5421):1835–7.

    PubMed  CAS  Google Scholar 

  112. Bakay M, Wang Z, Melcon G, et al Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration. Brain 2006;129(Pt 4):996–1013.

    PubMed  Google Scholar 

  113. Greenberg SA, Sanoudou D, Haslett JN, et al Molecular profiles of inflammatory myopathies. Neurology 2002;59(8):1170–82.

    PubMed  CAS  Google Scholar 

  114. Zhou X, Dimachkie MM, Xiong M, Tan FK, Arnett FC. cDNA microarrays reveal distinct gene expression clusters in idiopathic inflammatory myopathies. Med Sci Monit 2004;10(7):BR191–7.

    PubMed  CAS  Google Scholar 

  115. Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ. Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci U S A 2005;102(38):13544–9.

    PubMed  CAS  Google Scholar 

  116. Wenzel J, Schmidt R, Proelss J, Zahn S, Bieber T, Tuting T. Type I interferon-associated skin recruitment of CXCR3+ lymphocytes in dermatomyositis. Clin Exp Dermatol 2006;31(4):576–82.

    PubMed  CAS  Google Scholar 

  117. Sugiura T, Harigai M, Kawaguchi Y, et al Increased IL-15 production of muscle cells in polymyositis and dermatomyositis. Int Immunol 2002;14(8):917–24.

    PubMed  CAS  Google Scholar 

  118. Fall N, Bove KE, Stringer K, et al Association between lack of angiogenic response in muscle tissue and high expression of angiostatic ELR-negative CXC chemokines in patients with juvenile dermatomyositis: possible link to vasculopathy. Arthritis Rheum 2005;52(10):3175–80.

    PubMed  CAS  Google Scholar 

  119. Liprandi A, Figarella-Branger D, Daniel L, Lepidi H, Bartoli C, Pellissier JF. Expression of adhesion molecules in idiopathic inflammatory myopathies. Immunohistochemical study of 17 cases. Ann Pathol 1999;19(1):12–18.

    PubMed  CAS  Google Scholar 

  120. De Paepe B, De Keyzer K, Martin JJ, De Bleecker JL. Alpha-chemokine receptors CXCR1–3 and their ligands in idiopathic inflammatory myopathies. Acta Neuropathol 2005;109(6):576–82.

    PubMed  Google Scholar 

  121. Caproni M, Torchia D, Cardinali C, et al Infiltrating cells, related cytokines and chemokine receptors in lesional skin of patients with dermatomyositis. Br J Dermatol 2004;151(4):784–91.

    PubMed  CAS  Google Scholar 

  122. De Bleecker JL, De Paepe B, Vanwalleghem IE, Schroder JM. Differential expression of chemokines in inflammatory myopathies. Neurology 2002;58(12):1779–85.

    PubMed  CAS  Google Scholar 

  123. Bartoccioni E, Gallucci S, Scuderi F, et al MHC class I, MHC class II and intercellular adhesion molecule-1 (ICAM-1) expression in inflammatory myopathies. Clin Exp Immunol 1994;95(1):166–72.

    PubMed  CAS  Google Scholar 

  124. Englund P, Nennesmo I, Klareskog L, Lundberg IE. Interleukin-1alpha expression in capillaries and major histocompatibility complex class I expression in type II muscle fibers from polymyositis and dermatomyositis patients: important pathogenic features independent of inflammatory cell clusters in muscle tissue. Arthritis Rheum 2002;46(4):1044–55.

    PubMed  CAS  Google Scholar 

  125. Dorph C, Englund P, Nennesmo I, Lundberg IE. Signs of inflammation in both symptomatic and asymptomatic muscles from patients with polymyositis and dermatomyositis. Ann Rheum Dis 2006;65(12):1565–71.

    PubMed  CAS  Google Scholar 

  126. Michaelis D, Goebels N, Hohlfeld R. Constitutive and cytokine-induced expression of human leukocyte antigens and cell adhesion molecules by human myotubes. Am J Pathol 1993;143(4):1142–9.

    PubMed  CAS  Google Scholar 

  127. Tews DS, Goebel HH. Cytokine expression profile in idiopathic inflammatory myopathies. J Neuropathol Exp Neurol 1996;55(3):342–7.

    PubMed  CAS  Google Scholar 

  128. Lepidi H, Frances V, Figarella-Branger D, Bartoli C, Machado-Baeta A, Pellissier JF. Local expression of cytokines in idiopathic inflammatory myopathies. Neuropathol Appl Neurobiol 1998;24(1):73–9.

    PubMed  CAS  Google Scholar 

  129. Tateyama M, Nagano I, Yoshioka M, Chida K, Nakamura S, Itoyama Y. Expression of tumor necrosis factor-alpha in muscles of polymyositis. J Neurol Sci 1997;146(1):45–51.

    PubMed  CAS  Google Scholar 

  130. Fedczyna TO, Lutz J, Pachman LM. Expression of TNFalpha by muscle fibers in biopsies from children with untreated juvenile dermatomyositis: association with the TNFalpha-308A allele. Clin Immunol 2001;100(2):236–9.

    PubMed  CAS  Google Scholar 

  131. Pachman LM, Liotta-Davis MR, Hong DK, et al TNFalpha-308A allele in juvenile dermatomyositis: association with increased production of tumor necrosis factor alpha, disease duration, and pathologic calcifications. Arthritis Rheum 2000;43(10):2368–77.

    PubMed  CAS  Google Scholar 

  132. Hassan AB, Fathi M, Dastmalchi M, Lundberg IE, Padyukov L. Genetically determined imbalance between serum levels of tumour necrosis factor (TNF) and interleukin (IL)-10 is associated with anti-Jo-1 and anti-Ro52 autoantibodies in patients with poly- and dermatomyositis. J Autoimmun 2006;27(1):62–8.

    PubMed  CAS  Google Scholar 

  133. Shimizu T, Tomita Y, Son K, Nishinarita S, Sawada S, Horie T. Elevation of serum soluble tumour necrosis factor receptors in patients with polymyositis and dermatomyositis. Clin Rheumatol 2000;19(5):352–9.

    PubMed  CAS  Google Scholar 

  134. Dastmalchi M, Grundtman C, Alexanderson H, et al A high incidence of disease flares in an open pilot study of infliximab in patients with refractory inflammatory myopathies. Ann Rheum Dis 2008; 67(12):1670–7.

    PubMed  CAS  Google Scholar 

  135. Iannone F, Scioscia C, Falappone PC, Covelli M, Lapadula G. Use of etanercept in the treatment of dermatomyositis: a case series. J Rheumatol 2006;33(9):1802–4.

    PubMed  CAS  Google Scholar 

  136. Riley P, McCann LJ, Maillard SM, Woo P, Murray KJ, Pilkington CA. Effectiveness of infliximab in the treatment of refractory juvenile dermatomyositis with calcinosis. Rheumatology (Oxford) 2008;47(6):877–80.

    CAS  Google Scholar 

  137. Labioche I, Liozon E, Weschler B, Loustaud-Ratti V, Soria P, Vidal E. Refractory polymyositis responding to infliximab: extended follow-up. Rheumatology (Oxford) 2004;43(4):531–2.

    CAS  Google Scholar 

  138. Uthman I, El-Sayad J. Refractory polymyositis responding to infliximab. Rheumatology (Oxford) 2004;43(9):1198–9.

    CAS  Google Scholar 

  139. Sprott H, Glatzel M, Michel BA. Treatment of myositis with etanercept (Enbrel), a recombinant human soluble fusion protein of TNF-alpha type II receptor and IgG1. Rheumatology (Oxford) 2004;43(4):524–6.

    CAS  Google Scholar 

  140. Barohn RJ, Herbelin L, Kissel JT, et al Pilot trial of etanercept in the treatment of inclusion-body myositis. Neurology 2006;66(2 Suppl 1):S123–4.

    PubMed  CAS  Google Scholar 

  141. Hengstman GJ, De Bleecker JL, Feist E, et al Open-label trial of anti-TNF-alpha in dermato- and polymyositis treated concomitantly with methotrexate. Eur Neurol 2008;59(3-4):159–63.

    PubMed  CAS  Google Scholar 

  142. Liozon E, Ouattara B, Loustaud-Ratti V, Vidal E. Severe polymyositis and flare in autoimmunity following treatment with adalimumab in a patient with overlapping features of polyarthritis and scleroderma. Scand J Rheumatol 2007;36(6):484–6.

    PubMed  CAS  Google Scholar 

  143. Ramos-Casals M, Brito-Zeron P, Munoz S, et al Autoimmune diseases induced by TNF-targeted therapies: analysis of 233 cases. Medicine (Baltimore) 2007;86(4):242–51.

    Google Scholar 

  144. Lundberg I, Ulfgren AK, Nyberg P, Andersson U, Klareskog L. Cytokine production in muscle tissue of patients with idiopathic inflammatory myopathies. Arthritis Rheum 1997;40(5):865–74.

    PubMed  CAS  Google Scholar 

  145. Schmidt J, Barthel K, Wrede A, Salajegheh M, Bahr M, Dalakas MC. Interrelation of inflammation and APP in sIBM: IL-1 beta induces accumulation of beta-amyloid in skeletal muscle. Brain 2008;131(Pt 5):1228–40.

    PubMed  Google Scholar 

  146. Chevrel G, Granet C, Miossec P. Contribution of tumour necrosis factor alpha and interleukin (IL) 1beta to IL6 production, NF-kappaB nuclear translocation, and class I MHC expression in muscle cells: in vitro regulation with specific cytokine inhibitors. Ann Rheum Dis 2005;64(9):1257–62.

    PubMed  CAS  Google Scholar 

  147. Grundtman C, Salomonsson S, Dorph C, Bruton J, Andersson U, Lundberg IE. Immunolocalization of interleukin-1 receptors in the sarcolemma and nuclei of skeletal muscle in patients with idiopathic inflammatory myopathies. Arthritis Rheum 2007;56(2):674–87.

    PubMed  Google Scholar 

  148. Son K, Tomita Y, Shimizu T, Nishinarita S, Sawada S, Horie T. Abnormal IL-1 receptor antagonist production in patients with polymyositis and dermatomyositis. Intern Med 2000;39(2):128–35.

    PubMed  CAS  Google Scholar 

  149. Baird GS, Montine TJ. Multiplex immunoassay analysis of cytokines in idiopathic inflammatory myopathy. Arch Pathol Lab Med 2008;132(2):232–8.

    PubMed  CAS  Google Scholar 

  150. Furlan A, Botsios C, Ruffatti A, Todesco S, Punzi L. Antisynthetase syndrome with refractory polyarthritis and fever successfully treated with the IL-1 receptor antagonist, anakinra: a case report. Joint Bone Spine 2008;75(3):366–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reed, A.M., Griffin, T.A. (2009). The Inflammatory Milieu. In: Kagen, L. (eds) The Inflammatory Myopathies. Humana Press. https://doi.org/10.1007/978-1-60327-827-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-827-0_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-828-7

  • Online ISBN: 978-1-60327-827-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics