Skip to main content

Pseudomonas aeruginosa

  • Chapter
Antimicrobial Drug Resistance

Part of the book series: Infectious Disease ((ID))

P. aeruginosa is a Gram-negative bacillus that is typically 1–3 µm in length. The organism is typically a strict aerobe. It grows on many solid media and can grow at both 37 and 42°. Most strains have a characteristic grapelike odor. It does not ferment carbohydrates. It is positive in the indophenol oxidase test, and is Simmon’s citrate positive, l-arginine dehydrolase positive, l-lysine decarboxylase negative, and l-ornithine decarboxylase negative (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kiska DL, Gilligan PH. Pseudomonas. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA and Yolken RH, eds. Manual of Clinical Microbiology, 8th ed, Vol. 1. Washington, DC: American Society for Microbiology Press, 2003:719–728

    Google Scholar 

  2. Paterson DL. The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis 2006;43 Suppl 2:S43–S48

    Article  PubMed  Google Scholar 

  3. Morrison AJ, Jr, Wenzel RP. Epidemiology of infections due to Pseudomonas aeruginosa. Rev Infect Dis 1984;6 Suppl 3: S627–S642

    PubMed  Google Scholar 

  4. Srinivasan A, Wolfenden LL, Song X, et al. An outbreak of Pseudomonas aeruginosa infections associated with flexible bron-choscopes. N Engl J Med 2003;348:221–227

    Article  PubMed  Google Scholar 

  5. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002;165:867–903

    PubMed  Google Scholar 

  6. Chastre J, Luyt CE, Combes A and Trouillet JL. Use of quantitative cultures and reduced duration of antibiotic regimens for patients with ventilator-associated pneumonia to decrease resistance in the intensive care unit. Clin Infect Dis 2006;43 Suppl 2:S75–S81

    Article  PubMed  CAS  Google Scholar 

  7. Micek ST, Kollef KE, Reichley RM, Roubinian N and Kollef MH. Health care-associated pneumonia and community-acquired pneumonia: a single-center experience. Antimicrob Agents Chemother 2007;51:3568–3573

    Article  PubMed  CAS  Google Scholar 

  8. Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother 2001;47:247–250

    Article  PubMed  CAS  Google Scholar 

  9. Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 2006;43 Suppl 2:S49–56

    Article  PubMed  CAS  Google Scholar 

  10. Lister PD, Gardner VM and Sanders CC. Clavulanate induces expression of the Pseudomonas aeruginosa AmpC cephalospori-nase at physiologically relevant concentrations and antagonizes the antibacterial activity of ticarcillin. Antimicrob Agents Chemother 1999;43:882–889

    PubMed  CAS  Google Scholar 

  11. Doi Y, de Oliveira Garcia D, Adams J and Paterson DL. Coproduction of novel 16S rRNA methylase RmtD and metallo- beta-lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil. Antimicrob Agents Chemother 2007;51:852–856

    Article  PubMed  CAS  Google Scholar 

  12. Lolans K, Queenan AM, Bush K, Sahud A and Quinn JP. First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-beta-lactamase (VIM-2) in the United States. Antimicrob Agents Chemother 2005;49:3538–3540

    Article  PubMed  CAS  Google Scholar 

  13. Naumovski L, Quinn JP, Miyashiro D, et al. Outbreak of ceftazi-dime resistance due to a novel extended-spectrum beta-lactamase in isolates from cancer patients. Antimicrob Agents Chemother 1992;36:1991–1996

    PubMed  CAS  Google Scholar 

  14. Queenan AM, Shang W, Schreckenberger P, Lolans K, Bush K and Quinn J. SME-3, a novel member of the Serratia marcescens SME family of carbapenem-hydrolyzing beta-lactamases. Antimicrob Agents Chemother 2006;50:3485–3487

    Article  PubMed  CAS  Google Scholar 

  15. Queenan AM, Torres-Viera C, Gold HS, et al. SME-type carbap-enem-hydrolyzing class A beta-lactamases from geographically diverse Serratia marcescens strains. Antimicrob Agents Chemother 2000;44:3035–3039

    Article  PubMed  CAS  Google Scholar 

  16. Quinn JP, Miyashiro D, Sahm D, Flamm R and Bush K. Novel plasmid-mediated beta-lactamase (TEM-10) conferring selective resistance to ceftazidime and aztreonam in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 1989;33:1451–1456

    PubMed  CAS  Google Scholar 

  17. Rasmussen BA, Bradford PA, Quinn JP, Wiener J, Weinstein RA and Bush K. Genetically diverse ceftazidime-resistant isolates from a single center: biochemical and genetic characterization of TEM-10 beta-lactamases encoded by different nucleotide sequences. Antimicrob Agents Chemother 1993;37:1989–1992

    PubMed  CAS  Google Scholar 

  18. Wiener J, Quinn JP, Bradford PA, et al. Multiple antibiotic-resistant Klebsiella and Escherichia coli in nursing homes. JAMA 1999;281:517–523

    Article  PubMed  CAS  Google Scholar 

  19. Wong-Beringer A, Hindler J, Loeloff M, et al. Molecular correlation for the treatment outcomes in bloodstream infections caused by Escherichia coli and Klebsiella pneumoniae with reduced susceptibility to ceftazidime. Clin Infect Dis 2002;34:135–146

    Article  PubMed  CAS  Google Scholar 

  20. Villegas MV, Lolans K, Correa A, Kattan JN, Lopez JA and Quinn JP. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrob Agents Chemother 2007;51:1553–1555

    Article  PubMed  CAS  Google Scholar 

  21. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005;18:657–686

    Article  PubMed  CAS  Google Scholar 

  22. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002;34:634–640

    Article  PubMed  CAS  Google Scholar 

  23. Ochs MM, McCusker MP, Bains M and Hancock RE. Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob Agents Chemother 1999;43:1085–1090

    PubMed  CAS  Google Scholar 

  24. Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis 2007;45:88–94

    Article  PubMed  CAS  Google Scholar 

  25. Doi Y, Ghilardi AC, Adams J, de Oliveira Garcia D and Paterson DL. High prevalence of metallo-beta-lactamase and 16S rRNA methylase coproduction among imipenem-resistant Pseudomonas aeruginosa isolates in Brazil. Antimicrob Agents Chemother 2007;51:3388–3390

    Article  PubMed  CAS  Google Scholar 

  26. Paterson DL, Doi Y. A step closer to extreme drug resistance (XDR) in gram-negative bacilli. Clin Infect Dis 2007;45:1179–1181

    Article  PubMed  Google Scholar 

  27. Paterson DL, Lipman J. Returning to the pre-antibiotic era in the critically ill: the XDR problem. Crit Care Med 2007;35:1789–1791

    Article  PubMed  Google Scholar 

  28. Fink MP, Snydman DR, Niederman MS, et al. Treatment of severe pneumonia in hospitalized patients: results of a multicenter, randomized, double-blind trial comparing intravenous ciprofloxacin with imipenem–cilastatin. The Severe Pneumonia Study Group. Antimicrob Agents Chemother 1994;38:547–557

    PubMed  CAS  Google Scholar 

  29. Carmeli Y, Troillet N, Eliopoulos GM and Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother 1999;43:1379–1382

    PubMed  CAS  Google Scholar 

  30. Cometta A, Baumgartner JD, Lew D, et al. Prospective randomized comparison of imipenem monotherapy with imipenem plus netilm-icin for treatment of severe infections in nonneutropenic patients. Antimicrob Agents Chemother 1994;38:1309–1313

    PubMed  CAS  Google Scholar 

  31. Jaccard C, Troillet N, Harbarth S, et al. Prospective randomized comparison of imipenem—cilastatin and piperacillin—tazobactam in nosocomial pneumonia or peritonitis. Antimicrob Agents Chemother 1998;42:2966–2972

    PubMed  CAS  Google Scholar 

  32. Zanetti G, Bally F, Greub G, et al. Cefepime versus imipenem— cilastatin for treatment of nosocomial pneumonia in intensive care unit patients: a multicenter, evaluator-blind, prospective, randomized study. Antimicrob Agents Chemother 2003;47:3442–3447

    Article  PubMed  CAS  Google Scholar 

  33. Defez C, Fabbro-Peray P, Bouziges N, et al. Risk factors for multidrug-resistant Pseudomonas aeruginosa nosocomial infection. J Hosp Infect 2004;57:209–216

    Article  PubMed  CAS  Google Scholar 

  34. Nouer SA, Nucci M, de-Oliveira MP, Pellegrino FL and Moreira BM. Risk factors for acquisition of multidrug-resistant Pseudomonas aeruginosa producing SPM metallo-beta-lactamase. Antimicrob Agents Chemother 2005;49:3663–3667

    Article  PubMed  CAS  Google Scholar 

  35. Bratu S, Quale J, Cebular S, Heddurshetti R and Landman D. Multidrug-resistant Pseudomonas aeruginosa in Brooklyn, New York: molecular epidemiology and in vitro activity of polymyxin B. Eur J Clin Microbiol Infect Dis 2005;24:196–201

    Article  PubMed  CAS  Google Scholar 

  36. Paramythiotou E, Lucet JC, Timsit JF, et al. Acquisition of multid-rug-resistant Pseudomonas aeruginosa in patients in intensive care units: role of antibiotics with antipseudomonal activity. Clin Infect Dis 2004;38:670–677

    Article  PubMed  Google Scholar 

  37. Tacconelli E, Tumbarello M, Bertagnolio S, et al. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: analysis of trends in prevalence and epidemiology. Emerg Infect Dis 2002;8:220–221

    Article  PubMed  Google Scholar 

  38. Harris A, Torres-Viera C, Venkataraman L, DeGirolami P, Samore M and Carmeli Y. Epidemiology and clinical outcomes of patients with multiresistant Pseudomonas aeruginosa. Clin Infect Dis 1999;28:1128–1133

    Article  PubMed  CAS  Google Scholar 

  39. Crespo MP, Woodford N, Sinclair A, et al. Outbreak of carbapen-em-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-beta-lactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol 2004;42:5094–5101

    Article  PubMed  CAS  Google Scholar 

  40. Tsakris A, Pournaras S, Woodford N, et al. Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapen-emase in Greece. J Clin Microbiol 2000;38:1290–1292

    PubMed  CAS  Google Scholar 

  41. Deplano A, Denis O, Poirel L, et al. Molecular characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aerugi-nosa. J Clin Microbiol 2005;43:1198–1204

    Article  PubMed  CAS  Google Scholar 

  42. Hsieh MH, Yu CM, Yu VL and Chow JW. Synergy assessed by checkerboard. A critical analysis. Diagn Microbiol Infect Dis 1993;16:343–349

    Article  PubMed  CAS  Google Scholar 

  43. Hilf M, Yu VL, Sharp J, Zuravleff JJ, Korvick JA and Muder RR. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med 1989;87:540–546

    Article  PubMed  CAS  Google Scholar 

  44. Leibovici L, Paul M, Poznanski O, et al. Monotherapy versus beta-lactam-aminoglycoside combination treatment for gram-negative bacteremia: a prospective, observational study. Antimicrob Agents Chemother 1997;41:1127–1133

    PubMed  CAS  Google Scholar 

  45. Vidal F, Mensa J, Almela M, et al. Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Analysis of 189 episodes. Arch Intern Med 1996;156:2121–2126

    Article  PubMed  CAS  Google Scholar 

  46. Paul M, Benuri-Silbiger I, Soares-Weiser K and Leibovici L. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ 2004;328:668

    Article  PubMed  CAS  Google Scholar 

  47. Paul M, Leibovici L. Combination antibiotic therapy for Pseudomonas aeruginosa bacteraemia. Lancet Infect Dis 2005;5:192–193; discussion 193–194

    Article  PubMed  Google Scholar 

  48. Mizuta M, Linkin DR, Nachamkin I, et al. Identification of optimal combinations for empirical dual antimicrobial therapy of Pseudomonas aeruginosa infection: potential role of a combination antibiogram. Infect Control Hosp Epidemiol 2006;27:413–415

    Article  PubMed  Google Scholar 

  49. Bhat S, Fujitani S, Potoski BA, et al. Pseudomonas aeruginosa infections in the Intensive Care Unit: can the adequacy of empirical beta-lactam antibiotic therapy be improved? Int J Antimicrob Agents 2007;30:458–462

    Article  PubMed  CAS  Google Scholar 

  50. Lodise TP, Jr, Lomaestro B and Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 2007;44:357–363

    Article  PubMed  CAS  Google Scholar 

  51. Lorente L, Lorenzo L, Martin MM, Jimenez A and Mora ML. Meropenem by continuous versus intermittent infusion in ventilator-associated pneumonia due to gram-negative bacilli. Ann Pharmacother 2006;40:219–223

    Article  PubMed  CAS  Google Scholar 

  52. Bhat SV, Peleg AY, Lodise TP, Jr, et al. Failure of current cefepime breakpoints to predict clinical outcomes of bacteremia caused by gram-negative organisms. Antimicrob Agents Chemother 2007;51:4390–4395

    Article  PubMed  CAS  Google Scholar 

  53. Capitano B, Nicolau DP, Potoski BA, et al. Meropenem administered as a prolonged infusion to treat serious gram-negative central nervous system infections. Pharmacotherapy 2004;24:803–807

    Article  PubMed  Google Scholar 

  54. Li C, Du X, Kuti JL and Nicolau DP. Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother 2007;51:1725–1730

    Article  PubMed  CAS  Google Scholar 

  55. Yang JC, Tsuji BT and Forrest A. Optimizing use of quinolones in the critically ill. Semin Respir Crit Care Med 2007;28:586–595

    Article  PubMed  Google Scholar 

  56. Rea RS, Capitano B. Optimizing use of aminoglycosides in the critically ill. Semin Respir Crit Care Med 2007;28:596–603

    Article  PubMed  Google Scholar 

  57. Li J, Nation RL, Turnidge JD, et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis 2006;6:589–601

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Paterson, D.L., Kim, BN. (2009). Pseudomonas aeruginosa. In: Mayers, D.L. (eds) Antimicrobial Drug Resistance. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-60327-595-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-595-8_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-594-1

  • Online ISBN: 978-1-60327-595-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics