Skip to main content

Mechanisms of Resistance in Haemophilus influenzae and Moraxella catarrhalis

  • Chapter
Book cover Antimicrobial Drug Resistance

Part of the book series: Infectious Disease ((ID))

  • 2152 Accesses

Haemophilus infl uenzae and Moraxella catarrhalis are found as both respiratory tract commensals and respiratory and invasive pathogens. While it is ideal to tailor chemotherapy to a known pathogen with a known drug susceptibility profi le it is often diffi cult or impractical to isolate the causative agent, and many infections are treated empirically (1). It is therefore important to know the activity of antimicrobial agents against the pathogens associated with diseases being treated empirically and the effect of resistance mechanisms on in vivo activity. Antimicrobial agents should be used rationally, avoiding overuse, tailoring treatment to identifi ed pathogens as much as possible, and basing empiric treatment on the disease being treated and the susceptibility of the predominant pathogens at breakpoints based on pharmacokinetic (PK) and pharmacodynamic (PD) parameters (2). The current status of resistance mechanisms found in Haemophilus infl uenzae and Moraxella catarrhalis against the antimicrobial agents recommended for empiric and directed treatment of the diseases caused by these pathogens form the basis of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett JG, Dowell SF, Mandell LA, File Jr TM, Musher DM, Fine MJ. Practice guidelines for the management of community-acquired pneumonia in adults. Infectious Diseases Society of America. Clin Infect Dis 2000; 31:347–382

    Article  PubMed  CAS  Google Scholar 

  2. Jacobs MR. Anti-infective pharmacodynamics — maximizing efficacy, minimizing toxicity. Drug Discovery Today 2004; 1:505–512

    CAS  Google Scholar 

  3. Coles CL, Kanungo R, Rahmathullah L, et al. Pneumococcal nasopharyngeal colonization in young South Indian infants. Pediatr Infect Dis J 2001; 20:289–295

    Article  PubMed  CAS  Google Scholar 

  4. Sethi S, Evans N, Grant BJ, Murphy TF. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med 2002; 347:465–471

    Article  PubMed  Google Scholar 

  5. Hasegawa K, Kobayashi R, Takada E, et al. High prevalence of type b {beta}-lactamase-non-producing ampicillin-resistant Haemophilus influenzae in meningitis: the situation in Japan where Hib vaccine has not been introduced. J Antimicrob Chemother 2006; 57:1077–1082

    Article  PubMed  CAS  Google Scholar 

  6. Tunkel AR, Hartman BJ, Kaplan SL, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis 2004; 39:1267–1284

    Article  PubMed  Google Scholar 

  7. Juven T, Mertsola J, Waris M, et al. Etiology of community-acquired pneumonia in 254 hospitalized children. Pediatr Infect Dis J 2000; 19:293–298

    Article  PubMed  CAS  Google Scholar 

  8. McCracken GH, Jr. Etiology and treatment of pneumonia. Pediatr Infect Dis J 2000; 19:373–377

    Article  PubMed  Google Scholar 

  9. Heiskanen-Kosma T, Korppi M, Jokinen C, et al. Etiology of childhood pneumonia: serologic results of a prospective, population-based study. Pediatr Infect Dis J 1998; 17:986–991

    Article  PubMed  CAS  Google Scholar 

  10. McIntosh K. Community-acquired pneumonia in children. N Engl J Med 2002; 346:429–437

    Article  PubMed  Google Scholar 

  11. Bradley JS. Management of community-acquired pediatric pneumonia in an era of increasing antibiotic resistance and conjugate vaccines. Pediatr Infect Dis J 2002; 21:592–598; discussion 613–614

    Article  PubMed  Google Scholar 

  12. Block S, Hedrick J, Hammerschlag MR, Cassell GH, Craft JC. Mycoplasma pneumoniae and Chlamydia pneumoniae in pediatric community-acquired pneumonia: comparative efficacy and safety of clarithromycin vs. erythromycin ethylsuccinate. Pediatr Infect Dis J 1995; 14:471–477

    PubMed  CAS  Google Scholar 

  13. McMillan JA. Chlamydia pneumoniae revisited. Pediatr Infect Dis J 1998; 17:1046–1047

    Article  PubMed  CAS  Google Scholar 

  14. Mandell LA, Bartlett JG, Dowell SF, File TM, Jr, Musher DM, Whitney C. Update of practice guidelines for the management of community-acquired pneumonia in immunocompetent adults. Clin Infect Dis 2003; 37:1405–1433

    Article  PubMed  Google Scholar 

  15. Niederman MS, Mandell LA, Anzueto A, et al. Guidelines for the management of adults with community-acquired pneumonia. Diagnosis, assessment of severity, antimicrobial therapy, and prevention. Am J Respir Crit Care Med 2001; 163:1730–1754

    PubMed  CAS  Google Scholar 

  16. Stevens DL. The role of vancomycin in the treatment paradigm. Clin Infect Dis 2006; 42 Suppl 1:S51–S57

    Article  PubMed  CAS  Google Scholar 

  17. Daly KA. Epidemiology of otitis media. Otolaryngol Clin North Am 1991; 24:775–786

    PubMed  CAS  Google Scholar 

  18. Dagan R, Leibovitz E. Bacterial eradication in the treatment of otitis media. Lancet Infect Dis 2002; 2:593–604

    Article  PubMed  Google Scholar 

  19. Dowell SF, Butler JC, Giebink GS, et al. Acute otitis media: management and surveillance in an era of pneumococcal resistance — a report from the drug-resistant Streptococcus pneumoniae Therapeutic Working Group. Pediatr Infect Dis J 1999; 18:1–9

    Article  PubMed  CAS  Google Scholar 

  20. Casey JR, Pichichero ME. Changes in frequency and pathogens causing acute otitis media in 1995–2003. Pediatr Infect Dis J 2004; 23:824–828

    Article  PubMed  Google Scholar 

  21. Pichichero ME, Casey JR. Emergence of a multiresistant serotype 19A pneumococcal strain not included in the 7-valent conjugate vaccine as an otopathogen in children. JAMA 2007; 298:1772–1778

    Article  PubMed  CAS  Google Scholar 

  22. Pelton SI, Huot H, Finkelstein JA, et al. Emergence of 19A as virulent and multidrug resistant pneumococcus in Massachusetts following universal immunization of infants with pneumococcal conjugate vaccine. Pediatr Infect Dis J 2007; 26:468–472

    Article  PubMed  Google Scholar 

  23. American Academy of Pediatrics and American Academy of Family Physicians Clinical Practice Guideline. Diagnosis and management of acute otitis media. Pediatrics 2004; 113:1451–1465

    Article  Google Scholar 

  24. Anon JB, Jacobs MR, Poole MD, et al. Antimicrobial treatment guidelines for acute bacterial rhinosinusitis. Otolaryngol Head Neck Surg 2004; 130:1–45

    PubMed  Google Scholar 

  25. Sethi S. Infectious exacerbations of chronic bronchitis: diagnosis and management. J Antimicrob Chemother 1999; 43 Suppl A:97–105

    Article  PubMed  CAS  Google Scholar 

  26. Sethi S, Murphy TF. Acute exacerbations of chronic bronchitis: new developments concerning microbiology and pathophysiology — impact on approaches to risk stratification and therapy. Infect Dis Clin North Am 2004; 18:861–882, ix

    Article  PubMed  Google Scholar 

  27. Balter MS, La Forge J, Low DE, Mandell L, Grossman RF. Canadian guidelines for the management of acute exacerbations of chronic bronchitis. Can Respir J 2003; 10 Suppl B:3B–32B

    PubMed  Google Scholar 

  28. Turnidge J, Kahlmeter G, Kronvall G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin Microbiol Infect 2006; 12:418–425

    Article  PubMed  CAS  Google Scholar 

  29. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement. M100-S16. CLSI, Wayne, PA 2006

    Google Scholar 

  30. BSAC. BSAC Methods for Antimicrobial Susceptibility Testing, Version 5, January 2006. http://www.bsac.org.uk/db/documents/version_5_.pdf 2006

  31. Jacobs MR, Bajaksouzian S, Windau A, et al. Susceptibility of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis to 17 oral antimicrobial agents based on pharmacodynamic parameters: 1998–2001 U S Surveillance Study. Clin Lab Med 2004; 24:503–530

    Article  PubMed  Google Scholar 

  32. Andes D, Anon J, Jacobs MR, Craig WA. Application of phar-macokinetics and pharmacodynamics to antimicrobial therapy of respiratory tract infections. Clin Lab Med 2004; 24:477–502

    Article  PubMed  Google Scholar 

  33. Chambers HF. Penicillin-binding protein-mediated resistance in pneumococci and staphylococci. J Infect Dis 1999; 179 Suppl 2:S353–359

    Article  PubMed  CAS  Google Scholar 

  34. Massova I, Mobashery S. Structural and mechanistic aspects of evolution of beta-lactamases and penicillin-binding proteins. Curr Pharm Des 1999; 5:929–937

    PubMed  CAS  Google Scholar 

  35. Ghuysen JM. Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol 1994; 2:372–380

    Article  PubMed  CAS  Google Scholar 

  36. Blumberg PM, Strominger JL. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev 1974; 38:291–335

    PubMed  CAS  Google Scholar 

  37. Hotomi M, Sakai KF, Billal DS, Shimada J, Suzumoto M, Yamanaka N. Antimicrobial resistance in Haemophilus influenzae isolated from the nasopharynx among Japanese children with acute otitis media. Acta Otolaryngol 2006; 126:130–137

    Article  PubMed  CAS  Google Scholar 

  38. Hasegawa K, Yamamoto K, Chiba N, et al. Diversity of ampicillin-resistance genes in Haemophilus influenzae in Japan and the United States. Microb Drug Resist 2003; 9:39–46

    Article  PubMed  CAS  Google Scholar 

  39. Jacobs MR. Worldwide trends in antimicrobial resistance among common respiratory tract pathogens in children. Pediatr Infect Dis J 2003; 22:S109–S119

    Article  PubMed  Google Scholar 

  40. Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother 1998; 42:1–17

    PubMed  CAS  Google Scholar 

  41. Jordens JZ, Slack MP. Haemophilus influenzae: then and now. Eur J Clin Microbiol Infect Dis 1995; 14:935–948

    Article  PubMed  CAS  Google Scholar 

  42. Rubin LG, Medeiros AA, Yolken RH, Moxon ER. Ampicillin treatment failure of apparently beta-lactamase-negative Haemophilus influenzae type b meningitis due to novel beta-lactamase. Lancet 1981; 2:1008–1010

    Article  PubMed  CAS  Google Scholar 

  43. Wallace RJ, Jr., Steingrube VA, Nash DR, et al. BRO beta-lactamases of Branhamella catarrhalis and Moraxella subgenus Moraxella, including evidence for chromosomal beta-lactamase transfer by conjugation in B. catarrhalis, M. nonliquefaciens, and M. lacunata. Antimicrob Agents Chemother 1989; 33:1845–1854

    PubMed  CAS  Google Scholar 

  44. Bush K. Beta-lactamase inhibitors from laboratory to clinic. Clin Microbiol Rev 1988; 1:109–123

    PubMed  CAS  Google Scholar 

  45. Bozdogan B, Tristram S, Appelbaum PC. Combination of altered PBPs and expression of cloned extended-spectrum beta- lactamases confers cefotaxime resistance in Haemophilus influenzae. J Antimicrob Chemother 2006; 57:747–749

    Article  PubMed  CAS  Google Scholar 

  46. Pitout M, MacDonald K, Musgrave H, et al. Characterization of extended spectrum beta-lactamase (ESBL) activity in Haemophilus influenzae. In: Program and Abstracts of the 42nd Interscience Conference on Antimicrobials and Chemotherapy, San Diego, CA. American Society for Microbiology, Washington, DC, USA. Abstract C2–C645, p. 96, 2002

    Google Scholar 

  47. Tristram S, Jacobs MR, Appelbaum PC. Antimicrobial resistance in Haemophilus influenzae. Clin Microbiol Rev 2007; 20:368–389

    Article  PubMed  CAS  Google Scholar 

  48. Ubukata K, Shibasaki Y, Yamamoto K, et al. Association of amino acid substitutions in penicillin-binding protein 3 with beta-lactam resistance in beta-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob Agents Chemother 2001; 45:1693–1699

    Article  PubMed  CAS  Google Scholar 

  49. Dabernat H, Delmas C, Seguy M, et al. Diversity of beta-lactam resistance-conferring amino acid substitutions in penicillin-binding protein 3 of Haemophilus influenzae. Antimicrob Agents Chemother 2002; 46:2208–2218

    Article  PubMed  CAS  Google Scholar 

  50. Sanbongi Y, Suzuki T, Osaki Y, Senju N, Ida T, Ubukata K. Molecular evolution of beta-lactam-resistant Haemophilus influ-enzae: 9-year surveillance of penicillin-binding protein 3 mutations in isolates from Japan. Antimicrob Agents Chemother 2006; 50:2487–2492

    Article  PubMed  CAS  Google Scholar 

  51. Takahata S, Ida T, Senju N, et al. Horizontal gene transfer of ftsI, encoding penicillin-binding protein 3, in Haemophilus influenzae. Antimicrob Agents Chemother 2007; 51:1589–1595

    Article  PubMed  CAS  Google Scholar 

  52. Fluit AC, Florijn A, Verhoef J, Milatovic D. Susceptibility of European beta-lactamase-positive and -negative Haemophilus influenzae isolates from the periods 1997/1998 and 2002/2003. J Antimicrob Chemother 2005; 56:133–138

    Article  PubMed  CAS  Google Scholar 

  53. Dabernat H, Seguy M, Faucon G, Delmas C. Epidemiology of Haemophilus influenzae strains identified in 2001 in France, and assessment of their susceptibility to beta-lactams. Med Mal Infect 2004; 34:97–101

    Article  PubMed  CAS  Google Scholar 

  54. Kim IS, Ki CS, Kim S, et al. Diversity of ampicillin resistance genes and antimicrobial susceptibility patterns in Haemophilus influenzae strains isolated in Korea. Antimicrob Agents Chemother 2007; 51:453–460

    Article  PubMed  CAS  Google Scholar 

  55. Garcia-Cobos S, Campos J, Lazaro E, et al. Ampicillin-resistant non-beta-lactamase-producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob Agents Chemother 2007; 51:2564–2573

    Article  PubMed  CAS  Google Scholar 

  56. Ng WL, Kazmierczak KM, Robertson GT, Gilmour R, Winkler ME. Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. J Bacteriol 2003; 185:359–370

    Article  PubMed  CAS  Google Scholar 

  57. Vazquez D, Monro RE. Effects of some inhibitors of protein synthesis on the binding of aminoacyl tRNA to ribosomal subunits. Biochim Biophys Acta 1967; 142:155–173

    PubMed  CAS  Google Scholar 

  58. Tait-Kamradt A, Davies T, Cronan M, Jacobs MR, Appelbaum PC, Sutcliffe J. Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrob Agents Chemother 2000; 44:2118–2125

    Article  PubMed  CAS  Google Scholar 

  59. Tait-Kamradt A, Davies T, Appelbaum PC, et al. Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrob Agents Chemother 2000; 44:3395–3401

    Article  PubMed  CAS  Google Scholar 

  60. Sanchez L, Leranoz S, Puig M, Loren JG, Nikaido H, Vinas M. Molecular basis of antimicrobial resistance in non-typable Haemophilus influenzae. Microbiologia 1997; 13:309–314

    PubMed  CAS  Google Scholar 

  61. Sanchez L, Pan W, Vinas M, Nikaido H. The acrAB homolog of Haemophilus influenzae codes for a functional multidrug efflux pump. J Bacteriol 1997; 179:6855–6857

    PubMed  CAS  Google Scholar 

  62. Bogdanovich T, Bozdogan B, Appelbaum PC. Effect of efflux on telithromycin and macrolide susceptibility in Haemophilus influen-zae. Antimicrob Agents Chemother 2006; 50:893–898

    Article  PubMed  CAS  Google Scholar 

  63. Chopra I, Hawkey PM, Hinton M. Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother 1992; 29:245–277

    Article  PubMed  CAS  Google Scholar 

  64. Marshall B, Roberts M, Smith A, Levy SB. Homogeneity of transferable tetracycline-resistance determinants in Haemophilus species. J Infect Dis 1984; 149:1028–1029

    PubMed  CAS  Google Scholar 

  65. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65:232–260

    Article  PubMed  CAS  Google Scholar 

  66. Campos J, Chanyangam M, deGroot R, Smith AL, Tenover FC, Reig R. Genetic relatedness of antibiotic resistance determinants in multiply resistant Hemophilus influenzae. J Infect Dis 1989; 160:810–817

    PubMed  CAS  Google Scholar 

  67. Levy J, Verhaegen G, De Mol P, Couturier M, Dekegel D, Butzler JP. Molecular characterization of resistance plasmids in epidemiologi-cally unrelated strains of multiresistant Haemophilus influenzae. J Infect Dis 1993; 168:177–187

    PubMed  CAS  Google Scholar 

  68. Wang JC. DNA topoisomerases. Annu Rev Biochem 1985; 54:665–697

    Article  PubMed  CAS  Google Scholar 

  69. Pan XS, Fisher LM. DNA gyrase and topoisomerase IV are dual targets of clinafloxacin action in Streptococcus pneumoniae. Antimicrob Agents Chemother 1998; 42:2810–2816

    PubMed  CAS  Google Scholar 

  70. Davies TA, Kelly LM, Hoellman DB, et al. Activities and postan-tibiotic effects of gemifloxacin compared to those of 11 other agents against Haemophilus influenzae and Moraxella catarrhalis. Antimicrob Agents Chemother 2000; 44:633–639

    Article  PubMed  CAS  Google Scholar 

  71. Davies TA, Kelly LM, Pankuch GA, Credito KL, Jacobs MR, Appelbaum PC. Antipneumococcal activities of gemifloxacin compared to those of nine other agents. Antimicrob Agents Chemother 2000; 44:304–310

    Article  PubMed  CAS  Google Scholar 

  72. Perez-Vazquez M, Roman F, Garcia-Cobos S, Campos J. Fluoroquinolone resistance in Haemophilus influenzae is associated with hypermutability. Antimicrob Agents Chemother 2007; 51:1566–1569

    Article  PubMed  CAS  Google Scholar 

  73. Burns JL, Mendelman PM, Levy J, Stull TL, Smith AL. A permeability barrier as a mechanism of chloramphenicol resistance in Haemophilus influenzae. Antimicrob Agents Chemother 1985; 27:46–54

    PubMed  CAS  Google Scholar 

  74. Roberts MC, Swenson CD, Owens LM, Smith AL. Characterization of chloramphenicol-resistant Haemophilus influenzae. Antimicrob Agents Chemother 1980; 18:610–615

    PubMed  CAS  Google Scholar 

  75. Powell M, Livermore DM. Mechanisms of chloramphenicol resistance in Haemophilus influenzae in the United Kingdom. J Med Microbiol 1988; 27:89–93

    Article  PubMed  CAS  Google Scholar 

  76. Burchall JJ, Hitchings GH. Inhibitor binding analysis of dihy-drofolate reductases from various species. Mol Pharmacol 1965; 1:126–136

    PubMed  CAS  Google Scholar 

  77. Hartman PG. Molecular aspects and mechanism of action of dihy-drofolate reductase inhibitors. J Chemother 1993; 5:369–376

    PubMed  CAS  Google Scholar 

  78. Then R, Angehrn P. Nature of the bacterial action of sulfonamides and trimethoprim, alone and in combination. J Infect Dis 1973; 128:Suppl:498–501

    PubMed  Google Scholar 

  79. Adrian PV, Klugman KP. Mutations in the dihydrofolate reductase gene of trimethoprim-resistant isolates of Streptococcus pneumo-niae. Antimicrob Agents Chemother 1997; 41:2406–2413

    PubMed  CAS  Google Scholar 

  80. Maskell JP, Sefton AM, Hall LM. Multiple mutations modulate the function of dihydrofolate reductase in trimethoprim-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 2001; 45:1104–1108

    Article  PubMed  CAS  Google Scholar 

  81. Pikis A, Donkersloot JA, Rodriguez WJ, Keith JM. A conservative amino acid mutation in the chromosome-encoded dihydrofolate reductase confers trimethoprim resistance in Streptococcus pneu-moniae. J Infect Dis 1998; 178:700–706

    Article  PubMed  CAS  Google Scholar 

  82. de Groot R, Chaffin DO, Kuehn M, Smith AL. Trimethoprim resistance in Haemophilus influenzae is due to altered dihydro-folate reductase(s). Biochem J 1991; 274 (Pt 3):657–662

    PubMed  Google Scholar 

  83. Then RL. Neisseriaceae, a group of bacteria with dihydrofolate reductases, moderately susceptible to trimethoprim. Zentralbl Bakteriol [Orig A] 1979; 245:450–458

    CAS  Google Scholar 

  84. Burman LG. The antimicrobial activities of trimethoprim and sulfonamides. Scand J Infect Dis 1986; 18:3–13

    Article  PubMed  CAS  Google Scholar 

  85. Wallace RJ, Jr, Nash DR, Steingrube VA. Antibiotic susceptibilities and drug resistance in Moraxella (Branhamella) catarrhalis. Am J Med 1990; 88:46S–50S

    Article  PubMed  Google Scholar 

  86. Eliopoulos GM, Wennersten CB. In vitro activity of trimethoprim alone compared with trimethoprim—sulfamethoxazole and other antimicrobials against bacterial species associated with upper respiratory tract infections. Diagn Microbiol Infect Dis 1997; 29:33–38

    Article  PubMed  CAS  Google Scholar 

  87. Enne VI, King A, Livermore DM, Hall LM. Sulfonamide resistance in Haemophilus influenzae mediated by acquisition of sul2 or a short insertion in chromosomal folP. Antimicrob Agents Chemother 2002; 46:1934–1939

    Article  PubMed  CAS  Google Scholar 

  88. Bower BD. Ampicillin ‘failure’ in H. influenzae meningitis. Dev Med Child Neurol 1973; 15:813–814

    Article  PubMed  CAS  Google Scholar 

  89. Khan W, Ross S, Rodriguez W, Controni G, Saz AK. Haemophilus influenzae type B resistant to ampicillin. A report of two cases. JAMA 1974; 229:298–301

    CAS  Google Scholar 

  90. Tomeh MO, Starr SE, McGowan JE, Jr, Terry PM, Nahmias AJ. Ampicillin-resistant Haemophilus influenzae type B infection. JAMA 1974; 229:295–297

    Article  PubMed  CAS  Google Scholar 

  91. Farrar WE, Jr., O'Dell NM. Beta-lactamase activity in ampicillin-resistant Haemophilus influenzae. Antimicrob Agents Chemother 1974; 6:625–629

    PubMed  CAS  Google Scholar 

  92. Philpott-Howard J, Williams JD. Increase in antibiotic resistance in Haemophilus influenzae in the United Kingdom since 1977: report of study group. Br Med J (Clin Res Ed) 1982; 284:1597–1599

    Article  CAS  Google Scholar 

  93. Markowitz SM. Isolation of an ampicillin-resistant, non-beta-lactamase-producing strain of Haemophilus influenzae. Antimicrob Agents Chemother 1980; 17:80–83

    PubMed  CAS  Google Scholar 

  94. Mendelman PM, Chaffin DO, Stull TL, Rubens CE, Mack KD, Smith AL. Characterization of non-beta-lactamase-mediated ampicillin resistance in Haemophilus influenzae. Antimicrob Agents Chemother 1984; 26:235–244

    PubMed  CAS  Google Scholar 

  95. Jacobs MR, Bajaksouzian S, Zilles A, Lin G, Pankuch GA, Appelbaum PC. Susceptibilities of Streptococcus pneumoniae and Haemophilus influenzae to 10 oral antimicrobial agents based on pharmacodynamic parameters: 1997 U.S. Surveillance study. Antimicrob Agents Chemother 1999; 43:1901–1908

    CAS  Google Scholar 

  96. Jacobs MR, Felmingham D, Appelbaum PC, Gruneberg RN. The Alexander Project 1998–2000: susceptibility of pathogens isolated from community-acquired respiratory tract infection to commonly used antimicrobial agents. J Antimicrob Chemother 2003; 52:229–246

    Article  PubMed  CAS  Google Scholar 

  97. Peric M, Bozdogan B, Jacobs MR, Appelbaum PC. Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother 2003; 47:1017–1022

    Article  PubMed  CAS  Google Scholar 

  98. Tamargo I, Fuentes K, Llop A, Oteo J, Campos J. High levels of multiple antibiotic resistance among 938 Haemophilus influenzae type b meningitis isolates from Cuba (1990–2002). J Antimicrob Chemother 2003; 52:695–698

    Article  PubMed  CAS  Google Scholar 

  99. Nazir J, Urban C, Mariano N, et al. Quinolone-resistant Haemophilus influenzae in a long-term care facility: clinical and molecular epidemiology. Clin Infect Dis 2004; 38:1564–1569

    Article  PubMed  CAS  Google Scholar 

  100. Yokota SI, Ohkoshi Y, Sato K, Fujii N. Emergence of fluoroquinolone-resistant Haemophilus influenzae strains among elderly patients but not in children. J Clin Microbiol 2007

    Google Scholar 

  101. Walker ES, Levy F. Genetic trends in a population evolving antibiotic resistance. Evol Int J Org Evol 2001; 55:1110–1122

    CAS  Google Scholar 

  102. Jacobs M. Optimisation of antimicrobial therapy using phar-macokinetic and pharmacodynamic parameters. Clin Microbiol Infect 2001; 7:589–596

    Article  PubMed  CAS  Google Scholar 

  103. Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am 2003; 17:479–501

    Article  PubMed  Google Scholar 

  104. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26:1–10; quiz 11–12

    Article  PubMed  CAS  Google Scholar 

  105. Ambrose PG, Anon JB, Owen JS, et al. Use of pharmacodynamic end points in the evaluation of gatifloxacin for the treatment of acute maxillary sinusitis. Clin Infect Dis 2004; 38:1513–1520

    Article  PubMed  CAS  Google Scholar 

  106. Hasegawa K, Chiba N, Kobayashi R, et al. Rapidly increasing prevalence of beta-lactamase-nonproducing, ampicillin-resistant Haemophilus influenzae type b in patients with meningitis. Antimicrob Agents Chemother 2004; 48:1509–1514

    Article  PubMed  CAS  Google Scholar 

  107. Koeth LM, Jacobs MR, Good CE, et al. Comparative in vitro activity of a pharmacokinetically enhanced oral formulation of amoxicillin/clavulanic acid (2000/125 mg twice daily) against 9172 respiratory isolates collected worldwide in 2000. Int J Infect Dis 2004; 8:362–373

    PubMed  CAS  Google Scholar 

  108. Jacobs MR. In vivo veritas: in vitro macrolide resistance in systemic Streptococcus pneumoniae infections does result in clinical failure. Clin Infect Dis 2002; 35:565–569

    Article  PubMed  Google Scholar 

  109. Nakamura T, Takahashi H. Antibacterial activity of oral cephems against various clinically isolated strains and evaluation of efficacy based on the pharmacokinetics/pharmacodynamics theory. Jpn J Antibiot 2004; 57:465–474

    PubMed  Google Scholar 

  110. Liu P, Rand KH, Obermann B, Derendorf H. Pharmacokinetic-pharmacodynamic modelling of antibacterial activity of cefpo-doxime and cefixime in in vitro kinetic models. Int J Antimicrob Agents 2005; 25:120–129

    Article  PubMed  CAS  Google Scholar 

  111. Schaad UB. Fluoroquinolone antibiotics in infants and children. Infect Dis Clin North Am 2005; 19:617–628

    Article  PubMed  Google Scholar 

  112. Clinical and Laboratory Standards Institute. M7-A7 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 7th edn. CLSI, Wayne, PA 2006

    Google Scholar 

  113. Jacobs MR, Bajaksouzian S, Windau A, et al. Effects of various test media on the activities of 21 antimicrobial agents against Haemophilus influenzae. J Clin Microbiol 2002; 40:3269–3276

    Article  PubMed  CAS  Google Scholar 

  114. Reynolds R, Shackcloth J, Felmingham D, MacGowan A. Comparison of BSAC agar dilution and NCCLS broth microdilution MIC methods for in vitro susceptibility testing of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis: the BSAC Respiratory Resistance Surveillance Programme. J Antimicrob Chemother 2003; 52:925–930

    Article  PubMed  CAS  Google Scholar 

  115. Fuchs PC, Barry AL, Brown SD. Influence of variations in test methods on susceptibility of Haemophilus influenzae to ampi-cillin, azithromycin, clarithromycin, and telithromycin. J Clin Microbiol 2001; 39:43–46

    Article  PubMed  CAS  Google Scholar 

  116. Bouchillon SK, Johnson JL, Hoban DJ, Stevens TM, Johnson BM. Impact of carbon dioxide on the susceptibility of key respiratory tract pathogens to telithromycin and azithromycin. J Antimicrob Chemother 2005; 56:224–227

    Article  PubMed  CAS  Google Scholar 

  117. Perez-Vazquez M, Roman F, Varela MC, Canton R, Campos J. Activities of 13 quinolones by three susceptibility testing methods against a collection of Haemophilus influenzae isolates with different levels of susceptibility to ciprofloxacin: evidence for cross-resistance. J Antimicrob Chemother 2003; 51:147–151

    Article  PubMed  CAS  Google Scholar 

  118. Sutton LD, Biedenbach DJ, Yen A, Jones RN. Development, characterization, and initial evaluations of S1. A new chromog-enic cephalosporin for beta-lactamase detection. Diagn Microbiol Infect Dis 1995; 21:1–8

    CAS  Google Scholar 

  119. Yogev R, Guzman-Cottrill J. Bacterial meningitis in children: critical review of current concepts. Drugs 2005; 65:1097–1112

    Article  PubMed  CAS  Google Scholar 

  120. American Academy of Pediatrics. Haemophilus influenzae infections. In: Pickering LK, editor. Red Book: 2003 Report of the Committee on Infectious Diseases, 26th edn. Elk Grove Village, IL: American Academy of Pediatrics; 2003, 293–301

    Google Scholar 

  121. Prymula R, Peeters P, Chrobok V, et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet 2006; 367:740–748

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jacobs, M.R. (2009). Mechanisms of Resistance in Haemophilus influenzae and Moraxella catarrhalis . In: Mayers, D.L. (eds) Antimicrobial Drug Resistance. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-60327-595-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-595-8_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-594-1

  • Online ISBN: 978-1-60327-595-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics