Advertisement

Mechanisms of Resistance in Haemophilus influenzae and Moraxella catarrhalis

  • Michael R. Jacobs
Part of the Infectious Disease book series (ID)

Haemophilus infl uenzae and Moraxella catarrhalis are found as both respiratory tract commensals and respiratory and invasive pathogens. While it is ideal to tailor chemotherapy to a known pathogen with a known drug susceptibility profi le it is often diffi cult or impractical to isolate the causative agent, and many infections are treated empirically (1). It is therefore important to know the activity of antimicrobial agents against the pathogens associated with diseases being treated empirically and the effect of resistance mechanisms on in vivo activity. Antimicrobial agents should be used rationally, avoiding overuse, tailoring treatment to identifi ed pathogens as much as possible, and basing empiric treatment on the disease being treated and the susceptibility of the predominant pathogens at breakpoints based on pharmacokinetic (PK) and pharmacodynamic (PD) parameters (2). The current status of resistance mechanisms found in Haemophilus infl uenzae and Moraxella catarrhalis against the antimicrobial agents recommended for empiric and directed treatment of the diseases caused by these pathogens form the basis of this review.

Keywords

Streptococcus Pneumoniae Acute Otitis Medium Haemophilus Influenzae Antimicrob Agent Pediatr Infect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartlett JG, Dowell SF, Mandell LA, File Jr TM, Musher DM, Fine MJ. Practice guidelines for the management of community-acquired pneumonia in adults. Infectious Diseases Society of America. Clin Infect Dis 2000; 31:347–382PubMedCrossRefGoogle Scholar
  2. 2.
    Jacobs MR. Anti-infective pharmacodynamics — maximizing efficacy, minimizing toxicity. Drug Discovery Today 2004; 1:505–512Google Scholar
  3. 3.
    Coles CL, Kanungo R, Rahmathullah L, et al. Pneumococcal nasopharyngeal colonization in young South Indian infants. Pediatr Infect Dis J 2001; 20:289–295PubMedCrossRefGoogle Scholar
  4. 4.
    Sethi S, Evans N, Grant BJ, Murphy TF. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med 2002; 347:465–471PubMedCrossRefGoogle Scholar
  5. 5.
    Hasegawa K, Kobayashi R, Takada E, et al. High prevalence of type b {beta}-lactamase-non-producing ampicillin-resistant Haemophilus influenzae in meningitis: the situation in Japan where Hib vaccine has not been introduced. J Antimicrob Chemother 2006; 57:1077–1082PubMedCrossRefGoogle Scholar
  6. 6.
    Tunkel AR, Hartman BJ, Kaplan SL, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis 2004; 39:1267–1284PubMedCrossRefGoogle Scholar
  7. 7.
    Juven T, Mertsola J, Waris M, et al. Etiology of community-acquired pneumonia in 254 hospitalized children. Pediatr Infect Dis J 2000; 19:293–298PubMedCrossRefGoogle Scholar
  8. 8.
    McCracken GH, Jr. Etiology and treatment of pneumonia. Pediatr Infect Dis J 2000; 19:373–377PubMedCrossRefGoogle Scholar
  9. 9.
    Heiskanen-Kosma T, Korppi M, Jokinen C, et al. Etiology of childhood pneumonia: serologic results of a prospective, population-based study. Pediatr Infect Dis J 1998; 17:986–991PubMedCrossRefGoogle Scholar
  10. 10.
    McIntosh K. Community-acquired pneumonia in children. N Engl J Med 2002; 346:429–437PubMedCrossRefGoogle Scholar
  11. 11.
    Bradley JS. Management of community-acquired pediatric pneumonia in an era of increasing antibiotic resistance and conjugate vaccines. Pediatr Infect Dis J 2002; 21:592–598; discussion 613–614PubMedCrossRefGoogle Scholar
  12. 12.
    Block S, Hedrick J, Hammerschlag MR, Cassell GH, Craft JC. Mycoplasma pneumoniae and Chlamydia pneumoniae in pediatric community-acquired pneumonia: comparative efficacy and safety of clarithromycin vs. erythromycin ethylsuccinate. Pediatr Infect Dis J 1995; 14:471–477PubMedGoogle Scholar
  13. 13.
    McMillan JA. Chlamydia pneumoniae revisited. Pediatr Infect Dis J 1998; 17:1046–1047PubMedCrossRefGoogle Scholar
  14. 14.
    Mandell LA, Bartlett JG, Dowell SF, File TM, Jr, Musher DM, Whitney C. Update of practice guidelines for the management of community-acquired pneumonia in immunocompetent adults. Clin Infect Dis 2003; 37:1405–1433PubMedCrossRefGoogle Scholar
  15. 15.
    Niederman MS, Mandell LA, Anzueto A, et al. Guidelines for the management of adults with community-acquired pneumonia. Diagnosis, assessment of severity, antimicrobial therapy, and prevention. Am J Respir Crit Care Med 2001; 163:1730–1754PubMedGoogle Scholar
  16. 16.
    Stevens DL. The role of vancomycin in the treatment paradigm. Clin Infect Dis 2006; 42 Suppl 1:S51–S57PubMedCrossRefGoogle Scholar
  17. 17.
    Daly KA. Epidemiology of otitis media. Otolaryngol Clin North Am 1991; 24:775–786PubMedGoogle Scholar
  18. 18.
    Dagan R, Leibovitz E. Bacterial eradication in the treatment of otitis media. Lancet Infect Dis 2002; 2:593–604PubMedCrossRefGoogle Scholar
  19. 19.
    Dowell SF, Butler JC, Giebink GS, et al. Acute otitis media: management and surveillance in an era of pneumococcal resistance — a report from the drug-resistant Streptococcus pneumoniae Therapeutic Working Group. Pediatr Infect Dis J 1999; 18:1–9PubMedCrossRefGoogle Scholar
  20. 20.
    Casey JR, Pichichero ME. Changes in frequency and pathogens causing acute otitis media in 1995–2003. Pediatr Infect Dis J 2004; 23:824–828PubMedCrossRefGoogle Scholar
  21. 21.
    Pichichero ME, Casey JR. Emergence of a multiresistant serotype 19A pneumococcal strain not included in the 7-valent conjugate vaccine as an otopathogen in children. JAMA 2007; 298:1772–1778PubMedCrossRefGoogle Scholar
  22. 22.
    Pelton SI, Huot H, Finkelstein JA, et al. Emergence of 19A as virulent and multidrug resistant pneumococcus in Massachusetts following universal immunization of infants with pneumococcal conjugate vaccine. Pediatr Infect Dis J 2007; 26:468–472PubMedCrossRefGoogle Scholar
  23. 23.
    American Academy of Pediatrics and American Academy of Family Physicians Clinical Practice Guideline. Diagnosis and management of acute otitis media. Pediatrics 2004; 113:1451–1465CrossRefGoogle Scholar
  24. 24.
    Anon JB, Jacobs MR, Poole MD, et al. Antimicrobial treatment guidelines for acute bacterial rhinosinusitis. Otolaryngol Head Neck Surg 2004; 130:1–45PubMedGoogle Scholar
  25. 25.
    Sethi S. Infectious exacerbations of chronic bronchitis: diagnosis and management. J Antimicrob Chemother 1999; 43 Suppl A:97–105PubMedCrossRefGoogle Scholar
  26. 26.
    Sethi S, Murphy TF. Acute exacerbations of chronic bronchitis: new developments concerning microbiology and pathophysiology — impact on approaches to risk stratification and therapy. Infect Dis Clin North Am 2004; 18:861–882, ixPubMedCrossRefGoogle Scholar
  27. 27.
    Balter MS, La Forge J, Low DE, Mandell L, Grossman RF. Canadian guidelines for the management of acute exacerbations of chronic bronchitis. Can Respir J 2003; 10 Suppl B:3B–32BPubMedGoogle Scholar
  28. 28.
    Turnidge J, Kahlmeter G, Kronvall G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin Microbiol Infect 2006; 12:418–425PubMedCrossRefGoogle Scholar
  29. 29.
    Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement. M100-S16. CLSI, Wayne, PA 2006Google Scholar
  30. 30.
    BSAC. BSAC Methods for Antimicrobial Susceptibility Testing, Version 5, January 2006. http://www.bsac.org.uk/db/documents/version_5_.pdf 2006
  31. 31.
    Jacobs MR, Bajaksouzian S, Windau A, et al. Susceptibility of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis to 17 oral antimicrobial agents based on pharmacodynamic parameters: 1998–2001 U S Surveillance Study. Clin Lab Med 2004; 24:503–530PubMedCrossRefGoogle Scholar
  32. 32.
    Andes D, Anon J, Jacobs MR, Craig WA. Application of phar-macokinetics and pharmacodynamics to antimicrobial therapy of respiratory tract infections. Clin Lab Med 2004; 24:477–502PubMedCrossRefGoogle Scholar
  33. 33.
    Chambers HF. Penicillin-binding protein-mediated resistance in pneumococci and staphylococci. J Infect Dis 1999; 179 Suppl 2:S353–359PubMedCrossRefGoogle Scholar
  34. 34.
    Massova I, Mobashery S. Structural and mechanistic aspects of evolution of beta-lactamases and penicillin-binding proteins. Curr Pharm Des 1999; 5:929–937PubMedGoogle Scholar
  35. 35.
    Ghuysen JM. Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol 1994; 2:372–380PubMedCrossRefGoogle Scholar
  36. 36.
    Blumberg PM, Strominger JL. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev 1974; 38:291–335PubMedGoogle Scholar
  37. 37.
    Hotomi M, Sakai KF, Billal DS, Shimada J, Suzumoto M, Yamanaka N. Antimicrobial resistance in Haemophilus influenzae isolated from the nasopharynx among Japanese children with acute otitis media. Acta Otolaryngol 2006; 126:130–137PubMedCrossRefGoogle Scholar
  38. 38.
    Hasegawa K, Yamamoto K, Chiba N, et al. Diversity of ampicillin-resistance genes in Haemophilus influenzae in Japan and the United States. Microb Drug Resist 2003; 9:39–46PubMedCrossRefGoogle Scholar
  39. 39.
    Jacobs MR. Worldwide trends in antimicrobial resistance among common respiratory tract pathogens in children. Pediatr Infect Dis J 2003; 22:S109–S119PubMedCrossRefGoogle Scholar
  40. 40.
    Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother 1998; 42:1–17PubMedGoogle Scholar
  41. 41.
    Jordens JZ, Slack MP. Haemophilus influenzae: then and now. Eur J Clin Microbiol Infect Dis 1995; 14:935–948PubMedCrossRefGoogle Scholar
  42. 42.
    Rubin LG, Medeiros AA, Yolken RH, Moxon ER. Ampicillin treatment failure of apparently beta-lactamase-negative Haemophilus influenzae type b meningitis due to novel beta-lactamase. Lancet 1981; 2:1008–1010PubMedCrossRefGoogle Scholar
  43. 43.
    Wallace RJ, Jr., Steingrube VA, Nash DR, et al. BRO beta-lactamases of Branhamella catarrhalis and Moraxella subgenus Moraxella, including evidence for chromosomal beta-lactamase transfer by conjugation in B. catarrhalis, M. nonliquefaciens, and M. lacunata. Antimicrob Agents Chemother 1989; 33:1845–1854PubMedGoogle Scholar
  44. 44.
    Bush K. Beta-lactamase inhibitors from laboratory to clinic. Clin Microbiol Rev 1988; 1:109–123PubMedGoogle Scholar
  45. 45.
    Bozdogan B, Tristram S, Appelbaum PC. Combination of altered PBPs and expression of cloned extended-spectrum beta- lactamases confers cefotaxime resistance in Haemophilus influenzae. J Antimicrob Chemother 2006; 57:747–749PubMedCrossRefGoogle Scholar
  46. 46.
    Pitout M, MacDonald K, Musgrave H, et al. Characterization of extended spectrum beta-lactamase (ESBL) activity in Haemophilus influenzae. In: Program and Abstracts of the 42nd Interscience Conference on Antimicrobials and Chemotherapy, San Diego, CA. American Society for Microbiology, Washington, DC, USA. Abstract C2–C645, p. 96, 2002Google Scholar
  47. 47.
    Tristram S, Jacobs MR, Appelbaum PC. Antimicrobial resistance in Haemophilus influenzae. Clin Microbiol Rev 2007; 20:368–389PubMedCrossRefGoogle Scholar
  48. 48.
    Ubukata K, Shibasaki Y, Yamamoto K, et al. Association of amino acid substitutions in penicillin-binding protein 3 with beta-lactam resistance in beta-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob Agents Chemother 2001; 45:1693–1699PubMedCrossRefGoogle Scholar
  49. 49.
    Dabernat H, Delmas C, Seguy M, et al. Diversity of beta-lactam resistance-conferring amino acid substitutions in penicillin-binding protein 3 of Haemophilus influenzae. Antimicrob Agents Chemother 2002; 46:2208–2218PubMedCrossRefGoogle Scholar
  50. 50.
    Sanbongi Y, Suzuki T, Osaki Y, Senju N, Ida T, Ubukata K. Molecular evolution of beta-lactam-resistant Haemophilus influ-enzae: 9-year surveillance of penicillin-binding protein 3 mutations in isolates from Japan. Antimicrob Agents Chemother 2006; 50:2487–2492PubMedCrossRefGoogle Scholar
  51. 51.
    Takahata S, Ida T, Senju N, et al. Horizontal gene transfer of ftsI, encoding penicillin-binding protein 3, in Haemophilus influenzae. Antimicrob Agents Chemother 2007; 51:1589–1595PubMedCrossRefGoogle Scholar
  52. 52.
    Fluit AC, Florijn A, Verhoef J, Milatovic D. Susceptibility of European beta-lactamase-positive and -negative Haemophilus influenzae isolates from the periods 1997/1998 and 2002/2003. J Antimicrob Chemother 2005; 56:133–138PubMedCrossRefGoogle Scholar
  53. 53.
    Dabernat H, Seguy M, Faucon G, Delmas C. Epidemiology of Haemophilus influenzae strains identified in 2001 in France, and assessment of their susceptibility to beta-lactams. Med Mal Infect 2004; 34:97–101PubMedCrossRefGoogle Scholar
  54. 54.
    Kim IS, Ki CS, Kim S, et al. Diversity of ampicillin resistance genes and antimicrobial susceptibility patterns in Haemophilus influenzae strains isolated in Korea. Antimicrob Agents Chemother 2007; 51:453–460PubMedCrossRefGoogle Scholar
  55. 55.
    Garcia-Cobos S, Campos J, Lazaro E, et al. Ampicillin-resistant non-beta-lactamase-producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob Agents Chemother 2007; 51:2564–2573PubMedCrossRefGoogle Scholar
  56. 56.
    Ng WL, Kazmierczak KM, Robertson GT, Gilmour R, Winkler ME. Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. J Bacteriol 2003; 185:359–370PubMedCrossRefGoogle Scholar
  57. 57.
    Vazquez D, Monro RE. Effects of some inhibitors of protein synthesis on the binding of aminoacyl tRNA to ribosomal subunits. Biochim Biophys Acta 1967; 142:155–173PubMedGoogle Scholar
  58. 58.
    Tait-Kamradt A, Davies T, Cronan M, Jacobs MR, Appelbaum PC, Sutcliffe J. Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrob Agents Chemother 2000; 44:2118–2125PubMedCrossRefGoogle Scholar
  59. 59.
    Tait-Kamradt A, Davies T, Appelbaum PC, et al. Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrob Agents Chemother 2000; 44:3395–3401PubMedCrossRefGoogle Scholar
  60. 60.
    Sanchez L, Leranoz S, Puig M, Loren JG, Nikaido H, Vinas M. Molecular basis of antimicrobial resistance in non-typable Haemophilus influenzae. Microbiologia 1997; 13:309–314PubMedGoogle Scholar
  61. 61.
    Sanchez L, Pan W, Vinas M, Nikaido H. The acrAB homolog of Haemophilus influenzae codes for a functional multidrug efflux pump. J Bacteriol 1997; 179:6855–6857PubMedGoogle Scholar
  62. 62.
    Bogdanovich T, Bozdogan B, Appelbaum PC. Effect of efflux on telithromycin and macrolide susceptibility in Haemophilus influen-zae. Antimicrob Agents Chemother 2006; 50:893–898PubMedCrossRefGoogle Scholar
  63. 63.
    Chopra I, Hawkey PM, Hinton M. Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother 1992; 29:245–277PubMedCrossRefGoogle Scholar
  64. 64.
    Marshall B, Roberts M, Smith A, Levy SB. Homogeneity of transferable tetracycline-resistance determinants in Haemophilus species. J Infect Dis 1984; 149:1028–1029PubMedGoogle Scholar
  65. 65.
    Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65:232–260PubMedCrossRefGoogle Scholar
  66. 66.
    Campos J, Chanyangam M, deGroot R, Smith AL, Tenover FC, Reig R. Genetic relatedness of antibiotic resistance determinants in multiply resistant Hemophilus influenzae. J Infect Dis 1989; 160:810–817PubMedGoogle Scholar
  67. 67.
    Levy J, Verhaegen G, De Mol P, Couturier M, Dekegel D, Butzler JP. Molecular characterization of resistance plasmids in epidemiologi-cally unrelated strains of multiresistant Haemophilus influenzae. J Infect Dis 1993; 168:177–187PubMedGoogle Scholar
  68. 68.
    Wang JC. DNA topoisomerases. Annu Rev Biochem 1985; 54:665–697PubMedCrossRefGoogle Scholar
  69. 69.
    Pan XS, Fisher LM. DNA gyrase and topoisomerase IV are dual targets of clinafloxacin action in Streptococcus pneumoniae. Antimicrob Agents Chemother 1998; 42:2810–2816PubMedGoogle Scholar
  70. 70.
    Davies TA, Kelly LM, Hoellman DB, et al. Activities and postan-tibiotic effects of gemifloxacin compared to those of 11 other agents against Haemophilus influenzae and Moraxella catarrhalis. Antimicrob Agents Chemother 2000; 44:633–639PubMedCrossRefGoogle Scholar
  71. 71.
    Davies TA, Kelly LM, Pankuch GA, Credito KL, Jacobs MR, Appelbaum PC. Antipneumococcal activities of gemifloxacin compared to those of nine other agents. Antimicrob Agents Chemother 2000; 44:304–310PubMedCrossRefGoogle Scholar
  72. 72.
    Perez-Vazquez M, Roman F, Garcia-Cobos S, Campos J. Fluoroquinolone resistance in Haemophilus influenzae is associated with hypermutability. Antimicrob Agents Chemother 2007; 51:1566–1569PubMedCrossRefGoogle Scholar
  73. 73.
    Burns JL, Mendelman PM, Levy J, Stull TL, Smith AL. A permeability barrier as a mechanism of chloramphenicol resistance in Haemophilus influenzae. Antimicrob Agents Chemother 1985; 27:46–54PubMedGoogle Scholar
  74. 74.
    Roberts MC, Swenson CD, Owens LM, Smith AL. Characterization of chloramphenicol-resistant Haemophilus influenzae. Antimicrob Agents Chemother 1980; 18:610–615PubMedGoogle Scholar
  75. 75.
    Powell M, Livermore DM. Mechanisms of chloramphenicol resistance in Haemophilus influenzae in the United Kingdom. J Med Microbiol 1988; 27:89–93PubMedCrossRefGoogle Scholar
  76. 76.
    Burchall JJ, Hitchings GH. Inhibitor binding analysis of dihy-drofolate reductases from various species. Mol Pharmacol 1965; 1:126–136PubMedGoogle Scholar
  77. 77.
    Hartman PG. Molecular aspects and mechanism of action of dihy-drofolate reductase inhibitors. J Chemother 1993; 5:369–376PubMedGoogle Scholar
  78. 78.
    Then R, Angehrn P. Nature of the bacterial action of sulfonamides and trimethoprim, alone and in combination. J Infect Dis 1973; 128:Suppl:498–501PubMedGoogle Scholar
  79. 79.
    Adrian PV, Klugman KP. Mutations in the dihydrofolate reductase gene of trimethoprim-resistant isolates of Streptococcus pneumo-niae. Antimicrob Agents Chemother 1997; 41:2406–2413PubMedGoogle Scholar
  80. 80.
    Maskell JP, Sefton AM, Hall LM. Multiple mutations modulate the function of dihydrofolate reductase in trimethoprim-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 2001; 45:1104–1108PubMedCrossRefGoogle Scholar
  81. 81.
    Pikis A, Donkersloot JA, Rodriguez WJ, Keith JM. A conservative amino acid mutation in the chromosome-encoded dihydrofolate reductase confers trimethoprim resistance in Streptococcus pneu-moniae. J Infect Dis 1998; 178:700–706PubMedCrossRefGoogle Scholar
  82. 82.
    de Groot R, Chaffin DO, Kuehn M, Smith AL. Trimethoprim resistance in Haemophilus influenzae is due to altered dihydro-folate reductase(s). Biochem J 1991; 274 (Pt 3):657–662PubMedGoogle Scholar
  83. 83.
    Then RL. Neisseriaceae, a group of bacteria with dihydrofolate reductases, moderately susceptible to trimethoprim. Zentralbl Bakteriol [Orig A] 1979; 245:450–458Google Scholar
  84. 84.
    Burman LG. The antimicrobial activities of trimethoprim and sulfonamides. Scand J Infect Dis 1986; 18:3–13PubMedCrossRefGoogle Scholar
  85. 85.
    Wallace RJ, Jr, Nash DR, Steingrube VA. Antibiotic susceptibilities and drug resistance in Moraxella (Branhamella) catarrhalis. Am J Med 1990; 88:46S–50SPubMedCrossRefGoogle Scholar
  86. 86.
    Eliopoulos GM, Wennersten CB. In vitro activity of trimethoprim alone compared with trimethoprim—sulfamethoxazole and other antimicrobials against bacterial species associated with upper respiratory tract infections. Diagn Microbiol Infect Dis 1997; 29:33–38PubMedCrossRefGoogle Scholar
  87. 87.
    Enne VI, King A, Livermore DM, Hall LM. Sulfonamide resistance in Haemophilus influenzae mediated by acquisition of sul2 or a short insertion in chromosomal folP. Antimicrob Agents Chemother 2002; 46:1934–1939PubMedCrossRefGoogle Scholar
  88. 88.
    Bower BD. Ampicillin ‘failure’ in H. influenzae meningitis. Dev Med Child Neurol 1973; 15:813–814PubMedCrossRefGoogle Scholar
  89. 89.
    Khan W, Ross S, Rodriguez W, Controni G, Saz AK. Haemophilus influenzae type B resistant to ampicillin. A report of two cases. JAMA 1974; 229:298–301Google Scholar
  90. 90.
    Tomeh MO, Starr SE, McGowan JE, Jr, Terry PM, Nahmias AJ. Ampicillin-resistant Haemophilus influenzae type B infection. JAMA 1974; 229:295–297PubMedCrossRefGoogle Scholar
  91. 91.
    Farrar WE, Jr., O'Dell NM. Beta-lactamase activity in ampicillin-resistant Haemophilus influenzae. Antimicrob Agents Chemother 1974; 6:625–629PubMedGoogle Scholar
  92. 92.
    Philpott-Howard J, Williams JD. Increase in antibiotic resistance in Haemophilus influenzae in the United Kingdom since 1977: report of study group. Br Med J (Clin Res Ed) 1982; 284:1597–1599CrossRefGoogle Scholar
  93. 93.
    Markowitz SM. Isolation of an ampicillin-resistant, non-beta-lactamase-producing strain of Haemophilus influenzae. Antimicrob Agents Chemother 1980; 17:80–83PubMedGoogle Scholar
  94. 94.
    Mendelman PM, Chaffin DO, Stull TL, Rubens CE, Mack KD, Smith AL. Characterization of non-beta-lactamase-mediated ampicillin resistance in Haemophilus influenzae. Antimicrob Agents Chemother 1984; 26:235–244PubMedGoogle Scholar
  95. 95.
    Jacobs MR, Bajaksouzian S, Zilles A, Lin G, Pankuch GA, Appelbaum PC. Susceptibilities of Streptococcus pneumoniae and Haemophilus influenzae to 10 oral antimicrobial agents based on pharmacodynamic parameters: 1997 U.S. Surveillance study. Antimicrob Agents Chemother 1999; 43:1901–1908Google Scholar
  96. 96.
    Jacobs MR, Felmingham D, Appelbaum PC, Gruneberg RN. The Alexander Project 1998–2000: susceptibility of pathogens isolated from community-acquired respiratory tract infection to commonly used antimicrobial agents. J Antimicrob Chemother 2003; 52:229–246PubMedCrossRefGoogle Scholar
  97. 97.
    Peric M, Bozdogan B, Jacobs MR, Appelbaum PC. Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother 2003; 47:1017–1022PubMedCrossRefGoogle Scholar
  98. 98.
    Tamargo I, Fuentes K, Llop A, Oteo J, Campos J. High levels of multiple antibiotic resistance among 938 Haemophilus influenzae type b meningitis isolates from Cuba (1990–2002). J Antimicrob Chemother 2003; 52:695–698PubMedCrossRefGoogle Scholar
  99. 99.
    Nazir J, Urban C, Mariano N, et al. Quinolone-resistant Haemophilus influenzae in a long-term care facility: clinical and molecular epidemiology. Clin Infect Dis 2004; 38:1564–1569PubMedCrossRefGoogle Scholar
  100. 100.
    Yokota SI, Ohkoshi Y, Sato K, Fujii N. Emergence of fluoroquinolone-resistant Haemophilus influenzae strains among elderly patients but not in children. J Clin Microbiol 2007Google Scholar
  101. 101.
    Walker ES, Levy F. Genetic trends in a population evolving antibiotic resistance. Evol Int J Org Evol 2001; 55:1110–1122Google Scholar
  102. 102.
    Jacobs M. Optimisation of antimicrobial therapy using phar-macokinetic and pharmacodynamic parameters. Clin Microbiol Infect 2001; 7:589–596PubMedCrossRefGoogle Scholar
  103. 103.
    Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am 2003; 17:479–501PubMedCrossRefGoogle Scholar
  104. 104.
    Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26:1–10; quiz 11–12PubMedCrossRefGoogle Scholar
  105. 105.
    Ambrose PG, Anon JB, Owen JS, et al. Use of pharmacodynamic end points in the evaluation of gatifloxacin for the treatment of acute maxillary sinusitis. Clin Infect Dis 2004; 38:1513–1520PubMedCrossRefGoogle Scholar
  106. 106.
    Hasegawa K, Chiba N, Kobayashi R, et al. Rapidly increasing prevalence of beta-lactamase-nonproducing, ampicillin-resistant Haemophilus influenzae type b in patients with meningitis. Antimicrob Agents Chemother 2004; 48:1509–1514PubMedCrossRefGoogle Scholar
  107. 107.
    Koeth LM, Jacobs MR, Good CE, et al. Comparative in vitro activity of a pharmacokinetically enhanced oral formulation of amoxicillin/clavulanic acid (2000/125 mg twice daily) against 9172 respiratory isolates collected worldwide in 2000. Int J Infect Dis 2004; 8:362–373PubMedGoogle Scholar
  108. 108.
    Jacobs MR. In vivo veritas: in vitro macrolide resistance in systemic Streptococcus pneumoniae infections does result in clinical failure. Clin Infect Dis 2002; 35:565–569PubMedCrossRefGoogle Scholar
  109. 109.
    Nakamura T, Takahashi H. Antibacterial activity of oral cephems against various clinically isolated strains and evaluation of efficacy based on the pharmacokinetics/pharmacodynamics theory. Jpn J Antibiot 2004; 57:465–474PubMedGoogle Scholar
  110. 110.
    Liu P, Rand KH, Obermann B, Derendorf H. Pharmacokinetic-pharmacodynamic modelling of antibacterial activity of cefpo-doxime and cefixime in in vitro kinetic models. Int J Antimicrob Agents 2005; 25:120–129PubMedCrossRefGoogle Scholar
  111. 111.
    Schaad UB. Fluoroquinolone antibiotics in infants and children. Infect Dis Clin North Am 2005; 19:617–628PubMedCrossRefGoogle Scholar
  112. 112.
    Clinical and Laboratory Standards Institute. M7-A7 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 7th edn. CLSI, Wayne, PA 2006Google Scholar
  113. 113.
    Jacobs MR, Bajaksouzian S, Windau A, et al. Effects of various test media on the activities of 21 antimicrobial agents against Haemophilus influenzae. J Clin Microbiol 2002; 40:3269–3276PubMedCrossRefGoogle Scholar
  114. 114.
    Reynolds R, Shackcloth J, Felmingham D, MacGowan A. Comparison of BSAC agar dilution and NCCLS broth microdilution MIC methods for in vitro susceptibility testing of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis: the BSAC Respiratory Resistance Surveillance Programme. J Antimicrob Chemother 2003; 52:925–930PubMedCrossRefGoogle Scholar
  115. 115.
    Fuchs PC, Barry AL, Brown SD. Influence of variations in test methods on susceptibility of Haemophilus influenzae to ampi-cillin, azithromycin, clarithromycin, and telithromycin. J Clin Microbiol 2001; 39:43–46PubMedCrossRefGoogle Scholar
  116. 116.
    Bouchillon SK, Johnson JL, Hoban DJ, Stevens TM, Johnson BM. Impact of carbon dioxide on the susceptibility of key respiratory tract pathogens to telithromycin and azithromycin. J Antimicrob Chemother 2005; 56:224–227PubMedCrossRefGoogle Scholar
  117. 117.
    Perez-Vazquez M, Roman F, Varela MC, Canton R, Campos J. Activities of 13 quinolones by three susceptibility testing methods against a collection of Haemophilus influenzae isolates with different levels of susceptibility to ciprofloxacin: evidence for cross-resistance. J Antimicrob Chemother 2003; 51:147–151PubMedCrossRefGoogle Scholar
  118. 118.
    Sutton LD, Biedenbach DJ, Yen A, Jones RN. Development, characterization, and initial evaluations of S1. A new chromog-enic cephalosporin for beta-lactamase detection. Diagn Microbiol Infect Dis 1995; 21:1–8Google Scholar
  119. 119.
    Yogev R, Guzman-Cottrill J. Bacterial meningitis in children: critical review of current concepts. Drugs 2005; 65:1097–1112PubMedCrossRefGoogle Scholar
  120. 120.
    American Academy of Pediatrics. Haemophilus influenzae infections. In: Pickering LK, editor. Red Book: 2003 Report of the Committee on Infectious Diseases, 26th edn. Elk Grove Village, IL: American Academy of Pediatrics; 2003, 293–301Google Scholar
  121. 121.
    Prymula R, Peeters P, Chrobok V, et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet 2006; 367:740–748PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michael R. Jacobs
    • 1
  1. 1.Case Western Reserve University School of Medicine, University Hospitals Case Medical CenterClevelandUSA

Personalised recommendations